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Abstract

In this paper, we consider a coupled system of partial differential equations (PDEs) based model

for image restoration. Both the image and the edge variables are incorporated by coupling them

into two different PDEs. It is shown that the initial-boundary value problem has global in time

dissipative solutions (in a sense going back to P.-L. Lions), and several properties of these solutions

are established. Some numerical examples are given to highlight the denoising nature of the proposed

model along with some comparison results.

Keywords: Image restoration, Coupled PDE, Nonlinear diffusion, Edge variable, Wellposedness,

Dissipative solutions.

1 Introduction1

Partial differential equation (PDE) based image restoration is now a well-researched area within the2

image processing community [?, ?, ?]. Starting with the parabolic paradigm of Perona and Malik [?] a3

wide variety of PDEs have been studied for the past past two decades. Among a wealth of PDE based4

schemes available for image restoration we mention total variation [?, ?, ?, ?], Shock filters [?, ?] and5

fourth order PDEs [?, ?, ?, ?, ?, ?, ?, ?] based approaches. Other approaches include combining different6

type of PDEs [?, ?, ?, ?], integro-differential equations [?], fractional anisotropic diffusion [?, ?, ?, ?] etc.7

Most of these schemes use the absolute value of the gradient image as a guiding road map in the8

diffusion process to restore the noisy images. It is well–known that under noisy conditions gradient9

map can give spurious oscillations [?] in the restoration process. There have been numerous efforts to10

improve/built upon the successful restoration results obtained with the classical PDEs and to avoid11

gradient based artifacts. Based on the approach they take, we can classify such improvements into two12

broad categories: (a) adaptive schemes [?, ?, ?, ?, ?, ?] - a single PDE with some kind of adaptive edge13

map estimation included and (b) coupled PDEs [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?] - a separate PDE for14
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estimating a better edge map. Separate estimation of the edge map for restoring noisy images can be15

considered as solving for an edge variable along with image variable.16

Starting with the pioneering work of Geman and Geman [?] various researchers have studied the17

concept of a separate edge variable. For example, half–quadratic method studied by Charbonnier et18

al [?] compute the edge variable separately using an alternative minimization scheme. This type of19

coupled edge variable computation has connections to the famous Mumford–Shah functional [?] in image20

segmentation, for example phase field method [?] utilizes a sort of inverse edge variable, see also [?].21

Another approach is to statistically model the edges present in an image and treat them in Markov22

random field theory [?, ?]. In this case, the edge variable is known as edge prior and can be utilized in23

finding the contours of objects present.24

In this paper, we study a coupled PDE which combines the Gaussian smoothing based regularization25

approach of Catté et al [?] with that of the Perona–Malik anisotropic PDE [?]. The PDE for the edge26

variable is devised using a balanced approach which interpolates between the spatial smoothing approach27

with that of the anisotropic diffusion. It is shown that the corresponding Dirichlet initial-boundary value28

problem possesses global in time dissipative solutions ; uniqueness, regularity and some other properties of29

these solutions are studied. The concept of dissipative solution was suggested in [?] for the Euler equations30

of ideal fluid flow. Later, existence of dissipative solutions was established for Boltzmann’s equation [?, ?],31

the ideal MHD equations [?], Navier-Stokes-Maxwell equations [?], Euler-α and Maxwell-α models [?]32

and viscoelastic diffusion equations [?].33

The features of our problem (8)–(11) which oppose strong and classical weak wellposedness are the34

presence of a nonlinear function (modulus) of the gradient of u in the right-hand side of (9) and the Perona-35

Malik-like form of g. The inequality (19) in the definition of dissipative solutions turns out to contain36

the absolute value function as well. Therefore, unlike in the previous works on dissipative solutions,37

it is impossible to pass to the limit in this inequality via weak and weak-* compactness argument.38

Nevertheless, we manage to do it via strong compactness, although it is not sufficiently strong to obtain39

classical (i.e. not dissipative) weak solutions. Numerical comparison of the results with anisotropic40

diffusion PDEs and coupled PDEs is undertaken on noisy synthetic and real images, highlighting the41

advantages of the proposed model.42

Rest of the paper is organized as follows. Section 2 introduces diffusion PDE models in image restora-43

tion and the coupled PDE studied in this paper. Section 3 presents the wellposedness theory for the44

model. Section 4 gives some numerical examples to illustrate the effect of the proposed approach against45

some well–known PDE based schemes. Finally, Section 5 concludes the paper.46
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2 Diffusion for image restoration47

2.1 Anisotropic diffusion48

Perona–Malik [?] considered the following anisotropic diffusion PDE to improve the denoising capabilities49

of the linear diffusion50

∂u

∂t
= div (g (|∇u|)∇u) (1)

with u(0) = u0, i.e. the input noisy image is the initial datum, and the above PDE is run for a finite51

time T > 0 to obtain denoised image u(·, T ). The choice of the diffusion function g : [0,∞) → [0,∞) is52

important in controlling the smoothing and even enhancement of edges. In [?] the following two diffusion53

functions are considered54

gpm1(s) =
1

1 + (s/K)2
, gpm2(s) = exp (−(s/K)2) (2)

where K > 0 is the contrast parameter. Separating and finding edges from a digital image is a well55

studied problem. Due to the usage of edge maps (via the diffusion coefficient function g(∇u)) in the56

restoration process a well-defined edge modelling can give better denoising results. Catté et al [?] in57

their pioneering work to make the Perona–Malik type PDE work better as well as to prove wellposedness58

introduced the following modification59

∂u

∂t
= div (g(|Gσ ⋆∇u|)∇u) (3)

where Gσ(x) = (2πσ)−1 exp−(|x|2 /2σ) is the Gaussian kernel and the operation ⋆ means convolution.60

This introduction of spatial pre-smoothing not only made the gradient computation robust to outliers it61

also provided a smooth edge map for the diffusion to operate upon. Following Koenderink [?] one can62

observe that such a Gaussian smoothing is equivalent to solving the following linear diffusion equation63

up to time T = σ/264

v′ = ∆v

with initial datum v(0, x) = ∇u(t, x), and consequently substitute the Catté et al.’s modification with

the following coupled PDE

u′ = div (g(v)∇u) , v′ = ∆v = div(∇v).

The models following the above idea of using a separate PDE to create better edge maps, which rely not65

only on the absolute value of gradient, have been studied by some researchers in the past [?, ?, ?, ?].66
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2.2 Proposed coupled PDE model67

In this paper we consider the following coupled PDE which combines both the Perona–Malik PDE (1)

and Catté et al’s spatially regularization framework (3),

∂u

∂t
=div (g(v)∇u) (4)

∂v

∂t
=λdiv(∇v) + (1− λ) (|∇u| − v) (5)

where g(s) = 1
1+(s/K)2 (Perona-Malik type diffusion function) or g(s) = |v|−1

(total variation diffusion68

function). The balancing parameter 0 ≤ λ ≤ 1 is an important parameter, see Section 2.3 below.69

The first PDE is the usual Perona–Malik type PDE. Here it is modified and instead of using a gradient

based diffusion function g = g(|∇u|), we separate it into another variable v and incorporate into that

function g = g(v). Note that the gradient |∇u| acts like an edge map computed from the image u and is

prone to noise and can lead to staircasing artifacts. So this separation will give better restoration as we

can control the edge map better by using a separate PDE. The second term in Eqn. (5) is important as

it constrains the variable v to be like |∇u|, i.e v ∼ |∇u|. The parameter λ which appears in the second

PDE (5) balances between the PM model (1) and the Catté et al’s model (3). Hence it is important in

localizing denoising effects of the diffusion based scheme. That is, Catté et al’s model can lead to poor

edge localization if the pre-smoothing is higher whereas the PM model can lead to staircasing artifacts in

flat regions of the image. A balanced model can avoid both these drawbacks and can give better results.

A related model to the proposed coupled system is that of Nitzberg and Shoita [?] who considered the

following relaxation model:

∂u

∂t
=div (g(v)∇u)

∂v

∂t
=wGσ ⋆ |∇u|2 − wv

where w > 0 relaxation parameter. We give a brief overview of the known mathematical treatments of70

the systems close to (4)–(5) in Section 3, Remark 4.71

2.3 Role of balancing parameter72

As λ approaches unity, the proposed model Eqns. (4-5) behaves like the Catté et al’s spatial smoothing73

based PDE model Eqn. (3), and hence the denoised image lack edge localization. Figure 1 shows that as74

λ → 1 restored images tends to become smoothed along the edges as well as around them. This effect75

can be better explained by looking at the corresponding edge variable v in Figure 1.76

To fix the parameter in an automatic way here we consider an adaptive approach based on probable77

image edges found at multiple scales. Note that the edge variable v(t, x) gives an estimate of edges78

present at scale t and for a fixed λ certain scale edges are retained, compare for example Figure 1(a) and79
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(a)

λ =

0

(b)

λ =

0.20

(c)

λ =

0.40

(d)

λ =

0.60

(e)

λ =

0.80

(f)

λ =

1

Figure 1: Influence of balancing parameter λ in the restoration process by the proposed coupled PDE

Eqns. (4-5) as the λ value increases from 0 to 1. Noisy Peppers image is used as the initial image u0

with noise level σn = 30. In each sub-figure top shows the denoised image u and the bottom is the

corresponding edge variable v. We refer to the electronic version for better visualization of the fine scale

details in the edge variable images.

(a)(b)(c)

Figure 2: Examples to highlight adaptive λ in denoising using (a) synthetic piecewise constant Shapes

image, (b) piecewise smooth Peppers image, and (c) strongly textured Barbara image. (Top row)

denoised images u, (middle rows) some regions taken from each image showing flat regions with no

staircasing artifacts, other edge, texture details are well preserved under the coupled PDE model (bottom

row) corresponding adaptive λ computed from the edge variable v using Eqn. (6).
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(f). When λ = 0 small scale edges as well as some staircasing artifacts are visible in flat regions of the80

middle pepper (Figure 1(a) bottom) whereas when λ = 1, except some big scale edges other features are81

washed away. A simple way to combine probable edges found by the edge variable is to sum them up82

λ = λ(x) =

t−1
∑

τ=0

Gστ ⋆ v(τ, x) (6)

where Gστ represent Gaussian kernels with half-width στ > 0. At t = 0 we fix λ = 0.05 uniformly and83

further iterations follow Eqn. (6) with στ = 1/τ2. The multiscale Gaussian pre-smoothing is done to avoid84

outliers in the edge variable causing oscillations in the restoration process. Moreover, as the iteration85

t increases, due to the smoothing property of the diffusion PDE noise is reduced and hence Gaussian86

filter width is reduced accordingly to avoid losing fine scale edges. Note that Eqn. (6) sums edge maps87

found at all the previous iterations from t at zero to t − 1. Figure 2 shows three different standard test88

images and their denoised version using the coupled PDE Eqns. (4-5) with adaptive λ using formula in89

Eqn. (6). Note the near perfect recovery of piecewise constant Shapes image in Figure 2(a). The scheme90

does preserve piecewise smooth Peppers image in Figure 2(b) without any staircasing artifacts usually91

associated with Perona and Malik type PDE based schemes. In the textured Barbara image, Figure 2(c),92

the scheme does preserve textures but small scale textures are removed due to the Gaussian smoothing93

utilized in the adaptive parameter term λ.94

Remark 1. The parameter λ in the proposed coupled PDE is related to the regularization parameter95

selection problem from variational minimization. Gilboa et al [?] used the relation to propose an adaptive96

parameter for denoising partially textured images.97

Remark 2. Further adaptation of the balancing parameter λ is also possible, for example, λ = λ(x, u(t, x)).98

Such consideration can lead to a more general restoration model and will be studied elsewhere.99

Remark 3. Nordstörm [?] proposed a biased version following the relation between the PDE and varia-100

tional minimization methods101

∂u

∂t
= div (g (|∇u|)∇u)− λ(u− u0) (7)

The term on the right hand side of the above equation comes from the data fidelity and is added to keep102

the restored image diverging far away from the input image u0. Here we do not consider this term in the103

restoration step (PDE for u) and instead utilize it in the edge variable step (PDE for v).104
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3 Wellposedness of the problem105

The objective of this section is to prove Theorem 1 concerning existence, uniqueness, regularity and some106

other properties of dissipative solutions to the problem107

∂u(t, x)

∂t
= div(g(v(t, x))∇u(t, x)), (8)

108

∂v(t, x)

∂t
− λ(x)∆v(t, x) = (1− λ(x))(|∇u(t, x)| − v(t, x)), (9)

109

u
∣

∣

∣

∂Ω
= 0, v

∣

∣

∣

∂Ω
= 0, (10)

110

u|t=0 = u0, v|t=0 = v0. (11)

We consider the simplest Dirichlet boundary condition (10), but other boundary conditions can also111

be handled.112

In the section, Ω is considered to be a bounded domain (i.e. an open set in R
2) possessing the cone

property. We recall [?] that this means that each point x ∈ Ω is a vertex of a finite cone Cx contained in

Ω, and all these cones Cx are congruent. A finite cone is a set of the form

Cx = B1 ∩ {x+ ξ(y − x)|y ∈ B2, ξ > 0}

where B1 and B2 are open balls in R
2, B1 is centered at x, and B2 does not contain x. Obviously,113

rectangular domains have this property.114

The symbol C will stand for a generic positive constant that can take different values in different115

lines. We sometimes write C(. . . ) to specify that the constant depends on a certain parameter or value.116

We assume that g : R → R, 1√
g and λ : Ω → R are Lipschitz functions having positive values, g is117

bounded, λ ≤ 1,118

λ0 = inf
x∈Ω

λ(x) > 0.

The assumptions on g hold, for instance, if119

g(s) =
a

b + c|s|d , (12)

where a, b, c, d are positive numbers, and 1 ≤ d ≤ 2.120

Note that121

1
√

g(s)
≤
∣

∣

∣

1
√

g(s)
− 1
√

g(0)

∣

∣

∣+
1

√

g(0)
≤ C(g)(1 + |s|). (13)
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Remark 4. In [?, ?], equation (8) is considered to be coupled with122

∂v

∂t
+ v = F (|∇u|2), (14)

where F is a smooth function (instead of coupling with (9)). The resulting model coincides with the123

Nitzberg–Shiota one [?] if F (ξ) = ξ, and with our model provided λ ≡ 0 and F (ξ) =
√
ξ (non-smooth at124

zero). Existence and uniqueness of local in time strong solutions is proved in [?]. Global in time weak125

solution is shown to exist in [?] provided F is uniformly bounded (thus excluding the Nitzberg–Shiota126

model). Another time averaging model, with (14) replaced by127

v(t, x) =

+∞
∫

−∞

|∇u(s, x)|2θ(t− s) ds, (15)

with fixed function θ, is studied in [?]. Global in time strong wellposedness is established when the support128

of θ is bounded, lies in the positive semi-axis and is separated from 0 (if it approaches 0, the local129

wellposedness takes place). The Nitzberg–Shiota model corresponds to the case θ(s) = 0, s < 0; θ(s) =130

e−s, s ≥ 0, where the support is unbounded and includes 0. Global in time solvability (in any sense) for131

both Nitzberg–Shiota model and our model with λ ≡ 0 remains an open problem.132

We use the standard notations Lp(Ω), Wm
p (Ω), Hm(Ω) = Wm

2 (Ω) for the Lebesgue and Sobolev133

spaces. We will often keep the function space symbol and omit Ω.134

The Euclidean norm in finite-dimensional spaces is denoted by | · |. The symbol ‖ · ‖ will stand for the135

Euclidean norm in L2(Ω). The corresponding scalar products is denoted by a dot · and parentheses (·, ·).136

Let H1
0 (Ω) be the closure of the set of smooth, compactly supported in Ω, functions in H1(Ω). By

virtue of Friedrichs’ inequality, the Euclidean norm ‖ · ‖1 corresponding to the scalar product

(u, v)1 = (∇u,∇v)

is a norm in H1
0 .137

The set V2 = H1
0 (Ω) ∩H2(Ω) is a Hilbert space with the scalar product

(u, v)2 = (u, v)1 +
∑

|α|=2

(Dαu,Dαv).

Denote the corresponding Euclidean norm by ‖ · ‖2.138

Let Vr, 1 < r < 2, be the closure of V2 in W 1
r .139

We recall the following abstract observation [?, ?]. Assume that we have two Hilbert spaces, X ⊂ Y,

with continuous embedding operator i : X → Y , and i(X) is dense in Y . The adjoint operator i∗ : Y ∗ →
X∗ is continuous and, since i(X) is dense in Y , one-to-one. Since i is one-to-one, i∗(Y ∗) is dense in X∗,

and one may identify Y ∗ with a dense subspace of X∗. Due to the Riesz representation theorem, one
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may also identify Y with Y ∗. We arrive at the chain of inclusions:

X ⊂ Y ≡ Y ∗ ⊂ X∗.

Both embeddings here are dense and continuous. Observe that in this situation, for f ∈ Y, u ∈ X , their140

scalar product in Y coincides with the value of the functional f from X∗ on the element u ∈ X :141

(f, u)Y = 〈f, u〉. (16)

Such triples (X,Y,X∗) are called Lions triples. We use the Lions triples (V2, L2, V
∗
2 ) and (H1

0 , L2, H
−1).142

The symbols C(J ;E), Cw(J ;E), L2(J ;E) etc. denote the spaces of continuous, weakly continuous,143

quadratically integrable etc. functions on an interval J ⊂ R with values in a Banach space E. We recall144

that a function u : J → E is weakly continuous if for any linear continuous functional g on E the function145

g(u(·)) : J → R is continuous.146

We require the following spaces

W1 = W1(Ω, T ) = {τ ∈ L2(0, T ;V2), τ ′ ∈ L2(0, T ;V
∗
2 )},

‖τ‖W1 = ‖τ‖L2(0,T ;V2) + ‖τ ′‖L2(0,T ;V ∗

2 ),

W2 = W2(Ω, T ) = {τ ∈ L2(0, T ;H
1
0), τ ′ ∈ L2(0, T ;H

−1)},

‖τ‖W2 = ‖τ‖L2(0,T ;H1
0 )

+ ‖τ ′‖L2(0,T ;H−1).

Let us introduce the operator

A : V2 → V ∗
2 , 〈Au, ϕ〉 = (u, ϕ)2,

where ϕ is an arbitrary element of V2.147

Denote by R the following class of pairs of functions:

R = L4,loc(0,∞;V2) ∩ L∞(0,∞;W 1
∞) ∩W 1

4,loc(0,∞;L2)

×L2,loc(0,∞;V2) ∩ L∞(0,∞;L∞) ∩W 1
2,loc(0,∞;L2).

Observe that the following expressions, where δ is a positive number, are well-defined for (w, τ) ∈ R,

and their values are in L2,loc(0,∞;L2):

E1(w, τ, δ) = −∂w

∂t
+ δ div(g(τ)∇w),

E2(w, τ, δ) = −∂τ

∂t
+ λ∆τ + δ(1− λ)(|∇w| − τ) + (1− δ)(∇τ · ∇λ),

E1(w, τ) = E1(w, τ, 1),

E2(w, τ) = E2(w, τ, 1).
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Let us recall the Sobolev inequality148

‖u‖L∞
≤ C(Ω)‖u‖2, u ∈ V2, (17)

and the Ladyzhenskaya inequality [?]149

‖u2‖ ≤
√
2‖u‖ ‖∇u‖, u ∈ H1

0 . (18)

The following Gronwall-like lemma will be useful.150

Lemma 1. ([?, Lemma 3.1]) Let f, χ, L,M : [0, T ] → R be scalar functions, χ,L,M ∈ L1(0, T ), and

f ∈ W 1
1 (0, T ) (i.e. f is absolutely continuous). If

χ(t) ≥ 0, L(t) ≥ 0

and

f ′(t) + χ(t) ≤ L(t)f(t) +M(t)

for almost all t ∈ (0, T ), then

f(t) +

t
∫

0

χ(s) ds ≤ exp





t
∫

0

L(s)ds







f(0) +

t
∫

0

exp





0
∫

s

L(ξ)dξ



M(s) ds





for all t ∈ [0, T ].151

We can now give152

Definition 1. Let u0, v0 ∈ L2(Ω). A pair of functions (u, v) from the class

u, v ∈ Cw([0,∞);L2),

is called a dissipative solution to problem (8) – (11) if, for all test functions (ζ, θ) ∈ R and all non-negative

moments of time t, one has

γ‖u(t)‖2 [‖u(t)− ζ(t)‖2 + ‖v(t)− θ(t)‖2
]

≤ γ2t+‖u0‖2
{

‖u0 − ζ(0)‖2 + ‖v0 − θ(0)‖2

+

t
∫

0

2γ−s
∣

∣

∣

(

E1(ζ, θ)(s), u(s) − ζ(s)
)

+
(

E2(ζ, θ)(s), v(s) − θ(s)
)

∣

∣

∣

}

(19)

where γ= γ(Ω, g, λ, ζ, θ) > 1 is a certain function of Ω, g, λ, ζ and θ.153

Theorem 1. a) Given u0, v0 ∈ L2, there is a dissipative solution to problem (8) – (11).154

b) This solution (u, v) belongs to L4/3,loc(0,∞;V−ǫ+4/3)× L2,loc(0,∞;H1
0 ), 0 < ǫ < 1

3 .155
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c) If, for some u0, v0 ∈ L2, there exist T > 0 and a strong solution (uT , vT ) to problem (8) – (11),156

which is a restriction of a function from R to (0, T ). Then the restriction of any dissipative solution157

(with the same initial data) to (0, T ) coincides with (uT , vT ).158

d) Every strong solution (u, v) ∈ R is a (unique) dissipative solution.159

e) The dissipative solutions satisfy the initial condition (11).160

To prove Theorem 1, we consider the following auxiliary problem:161

∂u

∂t
+ εAu = δ div(g(v)∇u), (20)

162

∂v

∂t
− λ∆v = δ(1− λ)(|∇u| − v) + (1− δ)(∇v · ∇λ), (21)

163

u
∣

∣

∣

∂Ω
= 0, v

∣

∣

∣

∂Ω
= 0, (22)

164

u|t=0 = δu0, v|t=0 = δv0. (23)

Here, ε > 0 and 0 ≤ δ ≤ 1 are parameters. The weak formulation of (20) – (23) is as follows.165

Definition 2. A pair of functions (u, v) from the class166

u ∈ W1, v ∈ W2

is a weak solution to problem (20) – (23) if the equalities167

d

dt
(u, ϕ) + ε(u, ϕ)2 + δ(g(v)∇u,∇ϕ) = 0, (24)

and168

d

dt
(v, φ) + (λ∇v,∇φ) + δ(∇v, φ∇λ) − δ ((1 − λ)(|∇u| − v), φ) = 0 (25)

are satisfied for all ϕ ∈ V2, φ ∈ H1
0 almost everywhere in (0, T ), and (22) and (23) hold.169

Lemma 2. Let (u, v) be a weak solution to problem (20) – (23). Then, for all test functions (ζ, θ) ∈ R
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and 0 ≤ t ≤ T , one has

γ‖u(t)‖2{‖u(t)− ζ(t)‖2 + ‖v(t)− θ(t)‖2

+ 2ε

t
∫

0

‖u(s)− ζ(s)‖22 ds+ λ0

t
∫

0

‖v(s)− θ(s)‖21 ds
}

≤ γ2t+δ‖u0‖2
{

‖δu0 − ζ(0)‖2 + ‖δv0 − θ(0)‖2

+

t
∫

0

2γ−s
∣

∣

∣

(

E1(ζ, θ, δ)(s), u(s) − ζ(s)
)

+
(

E2(ζ, θ, δ)(s), v(s) − θ(s)
)

− ε(ζ(s), u(s) − ζ(s))2

∣

∣

∣ ds
}

(26)

where γ= γ(Ω, g, λ, ζ, θ) > 1 is a certain function of Ω, g, λ, ζ and θ.170

Proof. Let us first derive the straightforward energy estimate. For almost all t ∈ (0, T ), let ϕ = u(t) in171

(24). Then1172

1

2

d

dt
(u, u) + δ(g(v)∇u,∇u) + ε(u, u)2 = 0. (27)

Integration in time gives173

1

2
‖u(t)‖2 +

t
∫

0

(δg(v(s))∇u(s),∇u(s)) ds ≤ δ

2
‖u0‖2. (28)

Observe now that174

d

dt
(ζ, ϕ) + δ(g(θ)∇ζ,∇ϕ) + (E1(ζ, θ, δ), ϕ) + ε(ζ, ϕ)2 = ε(ζ, ϕ)2, (29)

and175

d

dt
(θ, φ) + (λ∇θ,∇φ) + δ(∇θ, φ∇λ) − δ ((1− λ)(|∇ζ| − θ), φ) + (E2(ζ, θ, δ), φ) = 0. (30)

for ϕ ∈ V2, φ ∈ H1
0 . Denote w = u − ζ and ς = v − θ. For almost all t ∈ (0, T ), put ϕ = w(t) and176

φ = ς(t). Add the difference between (24) and (29) with the difference between (25) and (30), arriving at177

1

2

d

dt
(w,w) +

1

2

d

dt
(ς, ς) + δ(g(v)∇w,∇w)

+ ε(w,w)2 + (λ∇ς,∇ς) + δ ((1− λ)ς, ς)

= −δ([g(v)− g(θ)]∇ζ,∇w) + δ ((1− λ)(|∇u| − |∇ζ|), ς) − δ(∇ς, ς∇λ)

+ (E1(ζ, θ, δ), w) + (E2(ζ, θ, δ), ς) − ε(ζ, w)2. (31)

1See e.g. [?, p. 153] on how 1

2
appears in (27).
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Let us estimate the first three terms in the right-hand side.

− δ([g(v)− g(θ)]∇ζ,∇w) + δ ((1− λ)(|∇u| − |∇ζ|), ς)

≤ C(ζ, g)δ(|v − θ|, |∇w|)

≤ C(ζ, g)

(

|ς |
√

g(v)
,
√

δg(v)|∇w|
)

= C(ζ, g)

[(

|ς |
√

g(0)
,
√

δg(v)|∇w|
)

+

(

|ς |
(

1
√

g(θ)
− 1
√

g(0)

)

,
√

δg(v)|∇w|
)]

+ C(ζ, g)

(

|ς |
(

1
√

g(v)
− 1
√

g(θ)

)

,
√

δg(v)|∇w|
)

≤ C(ζ, θ, g)
(

|ς |,
√

δg(v)|∇w|
)

+ C(ζ, g)
(

ς2,
√

δg(v)(|∇ζ| + |∇u|)
)

≤ ‖
√

δg(v)∇w‖2 + C(ζ, θ, g)‖ς‖2 + C(ζ, g)
(

ς2,
√

δg(v)|∇u|
)

, (33)

and178

−δ(∇ς, ς∇λ) ≤ C(λ)(ς,∇ς) ≤ λ0

4
‖ς‖21 + C(λ)‖ς‖2

179

Now, (31) implies180

1

2

d

dt
(w,w) +

1

2

d

dt
(ς, ς) + ε(w,w)2 +

3λ0

4
‖ς‖21

≤ C(ζ, θ, λ, g)
(

ς2, 1 +
√

δg(v)|∇u|
)

+ (E1(ζ, θ, δ), w) + (E2(ζ, θ, δ), ς)− ε(ζ, w)2.

Denote Φ(t) =
∥

∥

∥1 +
√

δg(v(t))|∇u(t)|
∥

∥

∥. Due to (18),

d

dt
(w,w) +

d

dt
(ς, ς) + 2ε(w,w)2 +

3λ0

2
‖∇ς‖2

≤ C(ζ, θ, λ, g)Φ‖ς‖‖∇ς‖+ 2(E1(ζ, θ, δ), w) + 2(E2(ζ, θ, δ), ς) − 2ε(ζ, w)2.

Thus,

d

dt
‖w‖2 + d

dt
‖ς‖2 + 2ε‖w‖22 + λ0‖∇ς‖2

≤ C(ζ, θ, λ, g)Φ2‖ς‖2

+ 2(E1(ζ, θ, δ), w) + 2(E2(ζ, θ, δ), ς) − 2ε(ζ, w)2. (35)
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We now require two estimates for Φ,

t
∫

0

Φ2(s)ds =

t
∫

0

∫

Ω

[1 +
√

δg(v(s))|∇u(s)|]2 dx ds

≤ 2

t
∫

0

∫

Ω

dx ds+ 2

t
∫

0

∫

Ω

δg(v(s))|∇u(s)|2 dx ds

≤ 2t|Ω|+ δ‖u0‖2 − ‖u(t)‖2, (36)

by virtue of (28), and181

t
∫

0

Φ2(s)ds ≥
t
∫

0

∫

Ω

dx ds = t|Ω|. (37)

With the help of Lemma 1, we derive from (35)– (37) that

‖w(t)‖2 + ‖ς(t)‖2 + 2ε

t
∫

0

‖w(s)‖22 ds+ λ0

t
∫

0

‖∇ς(s)‖2 ds

≤ exp



C(ζ, θ, λ, g)

t
∫

0

Φ2(s)ds





{

‖w(0)‖2 + ‖ς(0)‖2+

t
∫

0

exp



C(ζ, θ, λ, g)

0
∫

s

Φ2(ξ)dξ



 [2(E1(ζ, θ, δ)(s), w(s))

+ 2(E2(ζ, θ, δ)(s), ς(s)) − 2ε(ζ(s), w(s))2] ds
}

≤ exp
(

C(ζ, θ, λ, g)(2t|Ω|+ δ‖u0‖2 − ‖u(t)‖2)
)

{

‖w(0)‖2 + ‖ς(0)‖2+
t
∫

0

exp (−C(ζ, θ, λ, g)s|Ω|)
∣

∣2(E1(ζ, θ, δ)(s), w(s))

+ 2(E2(ζ, θ, δ)(s), ς(s)) − 2ε(ζ(s), w(s))2
∣

∣ ds
}

≤ exp
(

C(ζ, θ, λ, g)(|Ω| + 1)(2t+ δ‖u0‖2 − ‖u(t)‖2)
)

{

‖w(0)‖2 + ‖ς(0)‖2+
t
∫

0

exp (−C(ζ, θ, λ, g)s(|Ω|+ 1))
∣

∣2(E1(ζ, θ, δ)(s), w(s))

+ 2(E2(ζ, θ, δ)(s), ς(s)) − 2ε(ζ(s), w(s))2
∣

∣ ds
}

, (38)

since s ≤ 2t. Now (38) yields (26) with

γ = exp{C(ζ, θ, λ, g)(|Ω| + 1)}.

182
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Lemma 3. Let (u, v) be a weak solution to problem (20) – (23). The following estimates are valid:183

‖u‖L∞(0,T ;L2) + ‖v‖L∞(0,T ;L2) + ‖v‖L2(0,T ;H1
0 )

≤ C, (39)

184

‖u‖L2(0,T ;V2) ≤
C√
ε
, (40)

185

‖∇u‖L2(0,T ;L1) + ‖∇u‖L1(0,T ;Lr) + ‖∇u‖L4/3(0,T ;L
−ǫ+4/3) ≤ C, (41)

1 < r < 2, 0 < ǫ <
1

3
,

186

‖u′‖L2(0,T ;V ∗

2 ) + ‖v′‖L2(0,T ;H−2) ≤ (1 +
√
ε)C, (42)

187

‖v′‖L2(0,T ;H−1) ≤ (1 + 1/
√
ε)C. (43)

The constants C = C(T, ‖u0‖, ‖v0‖, λ, g,Ω) are independent of ε and δ.188

Proof. The estimates (39) and (40) are direct consequences of (26) with ζ ≡ θ ≡ 0.189

Then, using (13) and (28), we have

‖∇u‖L2(0,T ;L1) ≤ ‖
√

δg(v)∇u‖L2(0,T ;L2)‖1/
√

g(v)‖L∞(0,T ;L2)

≤ C‖1 + |v|‖L∞(0,T ;L2) ≤ C,

and, since H1
0 ⊂ Lp for any p < ∞ by Sobolev embedding,

‖∇u‖L1(0,T ;Lr) ≤ ‖
√

δg(v)∇u‖L2(0,T ;L2)‖1 + |v|‖L2(0,T ;L2r/(2−r))

≤ C(1 + ‖v‖L2(0,T ;H1
0)
) ≤ C.

By the time-space Hölder inequality [?, Lemma 2.2.1(b)],

‖∇u‖L4/3(0,T ;L
−ǫ+4/3) ≤ ‖|∇u|1/2‖L4(0,T ;L2)‖|∇u|1/2‖L2(0,T ;L 8−6ǫ

2+3ǫ
)

≤
√

‖∇u‖L2(0,T ;L1)‖∇u‖L1(0,T ;L 4−3ǫ
2+3ǫ

) ≤ C.

It remains to estimate the time derivatives, expressing them from (24) and (25). Utilizing (28), we

get

‖〈u′, ϕ〉‖L2(0,T ) ≤ δ‖(g(v)∇u,∇ϕ)‖L2(0,T ) + ε‖(u, ϕ)2‖L2(0,T )

≤ ‖
√

δg(v)‖L∞(0,T ;L∞)‖
√

δg(v)∇u‖L2(0,T ;L2)‖∇ϕ‖+
√
ε
√
ε‖u‖L2(0,T ;V2)‖ϕ‖2

≤ C(1 +
√
ε)‖ϕ‖2,

15



and

‖〈v′, φ〉‖L2(0,T ) ≤ ‖(λ∇v,∇φ)‖L2(0,T ) + δ‖(∇v, φ∇λ)‖L2(0,T )

+ δ‖ ((1− λ)v, φ) ‖L2(0,T ) + δ‖ ((1 − λ)|∇u|, φ) ‖L2(0,T )

≤ ‖v‖L2(0,T ;H1
0 )
‖φ‖1 + C(λ)‖v‖L2(0,T ;H1

0 )
‖φ‖

+ ‖∇u‖L2(0,T ;L1)‖φ‖L∞
≤ C‖φ‖2.

In order to get (43), it suffices to observe that

δ‖ ((1− λ)|∇u|, φ) ‖L2(0,T ) ≤ ‖∇u‖L2(0,T ;L2)‖φ‖ ≤ C‖u‖L2(0,T ;V2)‖φ‖1 ≤ C√
ε
‖φ‖1.

190

Lemma 4. Given T > 0 and u0, v0 ∈ L2, there exists a weak solution to problem (20) – (23) with δ = 1.191

Proof. Let us rewrite the weak statement of (20) – (23) in the suitable operator form192

Ã(u, v) = δQ(u, v). (44)

The operators Ã, Q : W1 ×W2 → L2(0, T ;V
∗
2 )×L2(0, T ;H

−1)×L2 ×L2 are determined by the formulas193

〈Ã(u, v), (ϕ, φ)〉 =
( d

dt
(u, ϕ) + ε(u, ϕ)2,

d

dt
(v, φ) + (λ∇v,∇φ), u|t=0, v|t=0

)

,

〈Q(u, v), (ϕ, φ)〉 =
(

− (g(v)∇u,∇ϕ),−(∇v, φ∇λ) + ((1− λ)(|∇u| − v), φ) , u0, v0

)

.

Here ϕ ∈ V2 and φ ∈ H1
0 are test functions.194

The operatorQ is continuous and compact. Here we only explain this claim for its first component, and195

for the others the proof is more straightforward. We observe first that the embedding W1 ⊂ Lp(0, T ;W
1
p )196

is compact for some p > 2. This can be shown using [?, Corollary 8]. The embedding W2 ⊂ L2(0, T ;L2) is197

compact by [?, Corollary 4]. Let (um, vm) ⇀ (u0, v0) be a weakly converging sequence in W1×W2. Then198

(um, vm) is strongly converging in Lp(0, T ;W
1
p ) × L2(0, T ;L2). By Krasnoselskii’s theorem [?, Theorem199

2.1], g(vm) → g(v0) in Lq(0, T ;Lq) for any q < +∞. Thus, g(vm)∇um → g(v0)∇u0 in L2(0, T ;L2), and200

the claim follows.201

The linear operator Ã is continuous by [?, Corollary 2.2.3] and invertible by [?, Lemma 3.1.3].

Thus, (44) can be rewritten as

(u, v) = δÃ−1Q(u, v)

in the space W1 ×W2.202

Lemma 3 yields the a priori estimate

‖u‖W1 + ‖v‖W2 ≤ C,
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where C may depend on ε but does not depend on δ. By Schaeffer’s theorem [?, p. 539], there exists a203

fixed point of the map Ã−1Q, which is the required solution.204

We will also need the following simple fact.205

Proposition 1. Let G be a measurable set in a finite-dimensional space, χ : R → R be a continuous206

function, and let ym : G → R be a sequence of functions. Assume that {ym} is uniformly bounded in207

L∞(G), and ym → y0 in Lq(G), q ≥ 1. Then χ(ym) → χ(y0) in Lp(G) for any p < ∞.208

Proof. Due to the uniform boundedness of {ym}, without loss of generality we may assume that χ is also209

bounded, and then it suffices to apply [?, Theorem 2.1].210

Based on the obtained lemmas, we can proceed with the sketch of the proof of Theorem 1. We211

refer to [?] for the details of the technique, and mainly focus on the new issues. To prove a) and b), one212

passes to the limit in (26) with δ = 1 as ε = εm → 0 on every interval (0, T ), T > 0. However, unlike213

in [?, ?, ?, ?], in view of the presence of the absolute value in the right-hand member of (26), it is not214

possible to do it via weak and weak-* compactness.215

Let (um, vm) be the weak solution to problem (20) – (23) with ε = εm. Lemma 3, [?, Corollary 4]

and the compact Sobolev embedding W 1
−ǫ+4/3 ⊂ L2 imply that without loss of generality um → u in

L4/3(0, T ;L2), vm → v in L2(0, T ;L2). Then, by (39) and Proposition 1,

γ‖um(t)‖2 → γ‖u(t)‖2

in L2(0, T ). Furthermore, by the same proposition, ‖um(t)− ζ(t)‖2 → ‖u(t)− ζ(t)‖2, ‖vm(t)− θ(t)‖2 →216

‖v(t)− θ(t)‖2 in L2(0, T ). Therefore217

γ‖um(t)‖2{‖um(t)− ζ(t)‖2 + ‖vm(t)− θ(t)‖2
}

218

→ γ‖u(t)‖2{‖u(t)− ζ(t)‖2 + ‖v(t)− θ(t)‖2
}

in L1(0, T ). Note that219

θ ∈ L4(0, T ;H
1) ⊂ L∞(0, T ;L2) ∩ L2(0, T ;H

2).

This yields E1(ζ, θ) ∈ L4(0, T ;L2). Remember that E2(ζ, θ) ∈ L2(0, T ;L2). Thus, we can pass to the220

limit in the right-hand side of (26) as well; the last summand (the one with ε) goes to zero due to (40).221

To get c), one lets ζ = uT , θ = vT in (19) for t ∈ (0, T ), and then the right-hand member of (19)222

vanishes there. And e) is obtained by putting t = 0 in (19) and applying a density argument. Finally, d)223

is a consequence of a), e) and c).224
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Figure 3: Comparison of denoising results on noisy Lena image. (a) Perona and Malik [?] (PM) (b)

Catté et al [?] (CLMC) (c) Coupled PDE Eqn. (4-5) with λ = 0.5 (CPDE), and (d) with adaptive λ

using Eqn. (6) (ADAP). Top row shows the denoised image and the bottom row shows method noise,

i.e., (|u0 − u|)

(a)(b)(c)(d)

Figure 4: Comparison results with classical diffusion schemes for a circle taken from the Shapes test

image. (a) Perona and Malik [?] (PM) (b) Catté et al [?] (CLMC) (c) Coupled PDE Eqn. (4-5) with

λ = 0.5 (CPDE), and (d) with adaptive λ using Eqn. (6) (ADAP). Top row shows the surface visualization

and the bottom row shows corresponding level lines as contours.

4 Numerical experiments225

4.1 Implementation226

Implementing the proposed coupled PDE Eqns. (4-5) can be done in a variety of ways [?]. Here we follow227

a standard finite difference approach and utilize an explicit Euler scheme for both PDEs as a proof of228

concept. Dirichlet boundary conditions are used and the initial image u = u0 and initial edge map v = 1229

are fixed. An alternating scheme is used, that is, at each iteration we solve for the image variable u and230

then for the edge variable v. In this case, the first PDE Eqn. (4) is an inhomogeneous linear PDE in the231

image variable u which can be solved very efficiently, and the second PDE Eqn. 5 is a time dependent232

inhomogeneous Poisson problem in the edge variable v and we can adapt fast Poisson solvers for it. Note233

that the adaptive parameter λ in Eqn. (6) requires storage of the entire scale space of v(τ, x)
t−1
t=0 at every234

iteration t > 1. To speed up the computational efforts we can utilize down-scaling techniques or other235

advanced numerical techniques such as operator splitting formulae for solving coupled PDE systems.236

4.2 Comparison results and discussion237

The proposed system of coupled PDE (we denote CPDE the non-adaptive λ = 0.5 and ADAP the238

adaptive case Eqn. (6) respectively) are compared numerically first with the following two classical single239

(a)

Figure 5: One dimensional signal taken from the Shapes image illustrating the edge preserving and noise

removal properties of the proposed coupled PDE scheme. Original signal is given by (−.−) dash-dotted

line, noisy by (· · · ) dotted, and the restored signal is in solid line.
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(a)(b)(c)(d)(e)(f)

Figure 6: Comparison of denoising results on noisy (σn = 20)Montage image. (a) Nitzberg and Shoita [?]

(NS) (b) Chen and Levine [?] (CL) (c) Belahmidi and Chambolle [?] (BC) (d) Amann [?] (AM) (e)

Coupled PDE Eqns. (4-5) with constant λ = 0.5 (CPDE), and (d) with adaptive λ using Eqn. (6)

(ADAP). From top to bottom: the denoised image u, edge indicator based function g(v), method noise

(|u0 − u|), surface visualization of the piecewise smooth part, and corresponding level lines shown as

contours.

PDE schemes:240

(a) Perona and Malik [?]:241

∂u

∂t
= div

(

∇u

1 + |∇u|2 /K2

)

(b) Catté et al [?]:242

∂u

∂t
= div

(

∇u

1 + |∇Gσ ⋆ u|2 /K2

)

Note that, to make a fair comparison we utilize the same diffusion function gpm1 Eqn. (2) in all schemes.243

The contrast parameter K > 0 can be chosen in a variety of ways, see for example [?]. For simplicity we244

utilize the original suggestion given by Perona and Malik [?] uniformly for all the schemes. Further, the245

proposed coupled PDEs are compared numerically with the following coupled PDE schemes from recent246

literature:247

(a) Nitzberg and Shoita [?]:

∂u

∂t
=div (g(v)∇u)

∂v

∂t
=wGσ ⋆ |∇u|2 − wv

where w > 0 relaxation parameter.248

(b) Chen and Levine [?]:

∂u

∂t
=div (L(v)∇u)− λ(u − u0)

τ
∂v

∂t
=(∇Gσ ⋆ u− v)

where L is the matrix valued diffusion tensor.249

(b) Belahmidi and Chambolle [?]:

∂u

∂t
=div (g(v)∇u)− λ(u − u0)

∂v

∂t
=F (|∇u|2)− v

19



where F is a smoothed version of truncation s → min(s,M), M > 0 large.250

(b) Amann [?]:251

∂u

∂t
= div

(

∇u

1 + (θ ⋆ |∇u|2)/K2

)

where θ⋆|∇u|2 (t) =
∫ t

t−δ
|∇u(τ)|2 dτ represents the time-delayed convolution. Note that technically252

this is not a coupled system although it can be written as a relaxation similar to our model Eqns. (4-253

5).254

The parameters2 in all these schemes were tuned to obtain the best possible PSNR values (see Eqn. (45)255

below).256

Figure 3 shows a comparison results for the noisy (σn = 20) Lena gray scale image with the classical257

diffusion PDEs. As can be seen from Figure 3, the coupled PDE model performs well in general and258

avoids the staircasing artifacts associated with the classical PDEs of Perona and Malik [?] and Rudin et259

al [?]. Moreover compared to Catté et al [?] the proposed method preserves fine scale structures better.260

To highlight the smoothing property of the proposed scheme, in Figure 4 we show the surface and level261

lines of a circle taken from the synthetic Shapes image for different schemes.262

Figure 5 shows a line of 80 pixel width taken across the noisy Shapes image (at pixel position x = 250263

and y = 140 to 220, corresponds to the circle and the spiral at the right end of the image) and the264

corresponding restored version of it using our scheme with adaptive choice for the parameter. As can be265

seen, the jumps seen at pixel ranges 50-60 and 70 are well-preserved, whereas the noisy perturbations at266

pixel range 10-40 are smoothed out. By comparing with the original signal one can see clearly the strong267

smoothing effects of the proposed coupled PDE scheme in flat regions. The sharp corners are slightly268

blurred due to the Laplacian involved in Eqn. (5).269

Figure 6 shows a comparison of systems of coupled PDEs for the noisy (σn = 20) Montage gray270

scale image. As can be seen by comparing the piecewise constant circle and the ramp slope part the271

proposed system of coupled PDEs preserve them while removing noise effectively. To compare the schemes272

quantitatively two commonly used error metrics from the image processing literature are utilized:273

1. PSNR is given in decibels (dB). A difference of 0.5 dB can be identified visually. Higher PSNR274

value indicates optimum denoising capability.275

PSNR(u) := 20 ∗ log 10
(

umax√
MSE

)

dB (45)

2Unfortunately there is no universal guideline for choosing parameters in diffusion based schemes and maximum PSNR

based selection is done by sweeping the parameter set thoroughly. The important parameter σ in smoothing kernel Gσ is

set σ = 2 for all the schemes and experiments reported here. This parameter needs to be increased if the noise level σn is

higher.
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(a)(b)(c)

(d)(e)

Figure 7: Application of denoising bio-medical images using the proposed scheme. (a) Input image (b)

Output image u (c) Edge variable image v. Surface visualization of BrainMRI image: (d) Input image

(e) Output image.

where MSE = (mn)−1
∑∑

(u − u0), m × n denotes the image size, umax denotes the maximum276

value, for example in 8-bit images umax = 255.277

2. MSSIM index is in the range [0, 1]. The MSSIM value near one implies the optimal denoising278

capability of a scheme and is mean value of the SSIM metric. The SSIM is calculated between two279

windows ω1 and ω2 of common size N ×N280

SSIM(ω1, ω2) =
(2µω1µω2 + c1)(2σω1ω2 + c2)

(µ2
ω1

+ µ2
ω2

+ c1)(σ2
ω1

+ σ2
ω2

+ c2)

where µωi the average of ωi, σ
2
ωi

the variance of ωi, σω1ω2 the covariance, c1, c2 stabilization pa-281

rameters, see [?] for more details3.282

Table 1 shows the comparison results using these three metrics for different test images. As can be seen,283

the proposed scheme performs well for a variety of images (Barbara4, Cameraman 5, Montage, and284

standard test images taken from USC-SIPI miscellaneous database6). Even with the global parameter285

λ = 0.5, the coupled PDE outperforms the standard diffusion PDEs of Perona and Malik [?] and Catte286

et al [?]. Further test results and images used here are available online7. Moreover, for textured images287

(Mandrill, Barbara etc) the non adaptive coupled PDE system seems to perform better than the adaptive288

case. We stress however that this work, the system of coupled PDE, does not aim to give state-of-the-art289

results for image denoising, and instead concentrates on demonstrating how a coupled PDE combined290

with an adaptive parameter choice can be harnessed directly for noise removal and edge detection. For291

instance, denoising will give similar or even better results as with total variation regularization through292

the classical ROF model [?] if one is able to identify an appropriate regularization parameters involved293

in the model [?]. Our examples are again a proof-of-concept that uses the coupled system and we do not294

claim it outperforms state of the art TV regularization based schemes.295

As an application of the proposed system we consider denoising medical images. Figure 7 shows input296

Ultrasound (481 × 403), Bacteria (391 × 380), BrainMRI (210 × 210) images and its corresponding297

3Code available at http://ece.uwaterloo.ca/~z70wang/research/ssim/
4Image courtesy of J. Portilla and available online at http://decsai.ugr.es/~javier/denoise/barbara.png
5Image courtesy of MIT
6Available at http://sipi.usc.edu/database/
7http://sites.google.com/site/suryaiit/research/aniso
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(a)(b)(c)

(d)(e)

(f)(g)

Figure 8: Top row: Noisy Barbara image decomposition using the adaptive coupled PDE system (a)

smoothed image u (b) edge variable v (c) noise residue w = u0 − (u + v) Bottom rows: Edges detected

from noise-free Aircraft 659 × 409 image using the adaptive coupled PDE system with reaction terms

(ǫ1 = ǫ2 = 0.0015) (d) Canny detector [?] with σ = 1 (e) Canny detector with σ = 2 (f) Synchronization

coupled PDE scheme [?] (g) Modified proposed system of coupled PDEs.

(u, v) functions. Figure 7(d,e) shows both input u0 and the result u in surface format which highlights298

the selective smoothing property of the scheme.299

We can further modify the scheme to obtain meaningful decomposition of a digital image. For example,300

Figure 8 (top row) shows the decomposition of the Barbara image into three different components, i.e,301

u0 = u + v + w where w component is computed simply by w = u0 − (u + v). Note that such a three302

part decomposition model is originally devised to obtain smooth + edges + texture part. In our case, we303

obtain texture as part of the edge variable v itself and the w component includes mainly random noise304

present in the image. Thus, we naturally obtain image decomposition as part of the proposed system of305

coupled PDEs [?]. Moreover, following a similar idea in [?] we can obtain edge detection as part of the306

image decomposition using the common initial condition, namely the input image, for both the PDEs. A307

weak coupling is utilized with the addition of reaction terms of the form ǫ1(u−v), ǫ2(v−u) to the coupling308

PDEs Eqn. (4-5). Finally, the difference (residual) u(x, T ) − v(x, T ) is advocated as synchronization of309

the two dynamical systems which can facilitate better edge detection, we refer to [?] for more details.310

Figure 8(bottom rows) illustrate this for Aircraft8 image and compares it with the scheme in [?]. As can311

be seen we obtain similar results but with much smoother output as we use different diffusion terms in312

the system. Compared with Canny edge detector [?] with two different parameters9 σ = 1, 2 the proposed313

scheme provides better edge map as well.314

Note that, adding the usual fidelity (u − u0) (a reaction term) such as the Nordstörm’s bias PDE

version Eqn. (7) does not modify the proofs presented in Section 3. Currently, we are studying a model

8Image courtesy of UCF CVPRGroup and available online at http://marathon.csee.usf.edu/edge/edge_detection.html
9Implemented using the MATLAB command edge(u0,‘canny’, σ).
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which involves a L1 fidelity as well as adaptive fidelity parameter for better texture preserving denoising,

∂u

∂t
=div (g(v)∇u)− µ(x)

u− u0

|u− u0|
(46)

∂v

∂t
=λ(x) div(∇v) + (1− λ(x)) (|∇u| − v) (47)

Further, the edge variable PDE can be generalized as well315

∂v

∂t
= λ(x) div(g̃(u)∇v) + (1− λ(x)) (F (|∇u|)− v) (48)

where g̃, F ∈ C1([0,+∞)), F (0) = 0, g(0) = 1, lims→∞ g(s) = 0. Extension of the results presented in316

Section 3 for these generalized system of coupled PDEs is the subject of our ongoing work.317

5 Conclusions318

A novel coupled PDE based scheme is studied for image restoration. By utilizing a separate PDE for319

the edge variable our proposed model improves the denoising results significantly. A combination of edge320

preserving Perona–Malik and Catté et al’s smoothing PDEs is considered for image restoration. Adaptive321

choice for choosing the balancing parameter involved in the edge variable PDE has been studied. Existence322

and uniqueness result for the coupled PDE model is proved using the theory of dissipative solutions due323

to P.-L. Lions. Further, numerical experiments conducted on a variety of noisy images indicate that the324

model gives artifact free restoration results than other related schemes from the past.325
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Image PM [?] CLMC [?] NS [?] CL [?] BC [?] AM [?] CPDE ADAP

Girl1 16.17/0.7965 16.27/0.8465 19.21/0.8904 19.21/0.8884 19.21/0.9120 19.37/0.8824 21.31/0.9500 21.10/0.9562

Couple1 16.18/0.7965 16.22/0.7865 19.27/0.8984 18.72/0.9102 19.20/0.9091 21.20/0.9280 19.10/0.9081 22.45/0.9421

Girl2 16.09/0.8210 17.43/0.8303 19.51/0.8885 19.54/0.8650 19.21/0.8205 19.54/0.9010 20.32/0.9150 20.82/0.9231

Girl3 15.97/0.8192 15.80/0.8548 18.50/0.8311 18.22/0.8872 18.97/0.8900 19.22/0.8985 20.86/0.8995 21.01/0.8945

House1 15.86/0.7966 15.72/0.7949 18.29/0.8219 19.00/0.8985 18.75/0.8282 19.19/0.9099 21.31/0.9085 22.17/0.9455

Tree 18.15/0.8287 18.45/0.8116 18.52/0.8110 17.95/0.8018 17.48/0.8256 17.93/0.8452 19.15/0.8401 19.88/0.8483

Jelly1 16.17/0.7696 16.91/0.7555 19.69/0.7657 19.53/0.7586 19.39/0.7683 19.21/0.7885 21.01/0.7908 21.56/0.7998

Jelly2 16.00/0.7968 15.75/0.8219 18.72/0.8562 18.28/0.8231 19.04/0.8143 19.28/0.8184 19.23/0.8765 19.85/0.8804

Splash 15.96/0.7966 15.46/0.7898 18.89/0.8248 19.17/0.8720 18.94/0.9164 18.73/0.9105 19.80/0.9215 19.57/0.9316

T iffany 16.24/0.7889 16.50/0.8108 17.00/0.8115 18.25/0.8018 18.73/0.8229 18.24/0.8049 18.69/0.8522 18.80/0.8904

Mandrill 15.35/0.8231 15.87/0.8484 16.27/0.8349 16.82/0.8146 16.84/0.8390 17.53/0.8727 17.84/0.8970 17.56/0.8851

Lena 15.62/0.7960 16.03/0.8187 17.12/0.8450 18.29/0.8384 17.56/0.8900 18.87/0.9454 19.22/0.9667 19.85/0.9874

Barbara 15.65/0.7965 15.45/0.7982 17.48/0.8994 17.59/0.9210 17.23/0.8945 18.00/0.7868 18.72/0.9498 17.81/0.8996

Cameraman 15.71/0.8025 16.82/0.8091 17.90/0.8703 18.19/0.8451 18.94/0.7918 17.57/0.7887 18.96/0.9118 17.97/0.8862

Montage 15.32/0.7965 15.32/0.8465 17.45/0.8982 17.45/0.8982 17.40/0.8982 17.75/0.8983 18.84/0.9499 18.86/0.9799

Table 1: PSNR and MSSIM comparison of various schemes for standard test images from the USC-SIPI database. In each case noisy image

(PSNR = 15.21 dB) is obtained by adding random Gaussian noise of strength σn = 30 to the original gray-scale image of size 256× 256. Each

row indicates PSNR/MSSIM values for different test images. The proposed coupled PDE with λ = 0.5 and with adaptive choice for choosing λ

are given as CPDE and ADAP (last two columns) respectively. Best results are indicated in boldface.
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