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Continuous lattices were characterised by Mart́ın Escardó as precisely the objects that

are Kan-injective w.r.t. a certain class of morphisms. We study Kan-injectivity in general

categories enriched in posets. An example: ω-CPO’s are precisely the posets that are

Kan-injective w.r.t. the embeddings ω ↪→ ω + 1 and 0 ↪→ 1.

For every class H of morphisms we study the subcategory of all objects Kan-injective

w.r.t. H and all morphisms preserving Kan-extensions. For categories such as Top0 and

Pos we prove that whenever H is a set of morphisms, the above subcategory is monadic,

and the monad it creates is a Kock-Zöberlein monad. However, this does not generalise

to proper classes: we present a class of continuous mappings in Top0 for which

Kan-injectivity does not yield a monadic category.

Dedicated to the memory of Daniel M. Kan (1927–2013)

1. Introduction

Dana Scott’s result characterising continuous lattices as precisely the injective topological

T0-spaces, see (Scott 1972), was one of the milestones of domain theory. This was later

refined by Alan Day (Day 1975) who characterised continuous lattices as the algebras

for the open filter monad on the category Top0 of topological T0-spaces and by Mart́ın

Escardó (Escardó 1998) who used the fact that the category Top0 of topological T0-spaces

is naturally enriched in the category of posets (shortly: order-enriched).

In every order-enriched category one can define the left Kan extension f/h of a mor-
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phism f : A −→ X along a morphism h : A −→ A′

A
h //

f
��
66

66
66

≤

A′

f/h
����
��
��
�

X

(1.1)

as the smallest morphism from A′ to X with f ≤ (f/h) · h. An object X is called left

Kan-injective w.r.t. h iff for every morphism f the left Kan extension f/h exists and

fulfills f = (f/h) · h. Mart́ın Escardó proved that in Top0 the left Kan-injective spaces

w.r.t. all subspace inclusions are precisely the continuous lattices endowed with the Scott

topology. And w.r.t. all dense subspace inclusions they are precisely the continuous Scott

domains (again with the Scott topology), see (Escardó 1997; Escardó 1998).

Recently, Margarida Carvalho and Lurdes Sousa (Carvalho and Sousa 2011) extended

the concept of left Kan-injectivity to morphisms: a morphism is left-Kan injective w.r.t.

h if it preserves left Kan extensions along h.

We thus obtain, for every class H of morphisms in an order-enriched category X , a

(not full, in general) subcategory

LInj(H)

of all objects and all morphisms that are left Kan-injective w.r.t. every member of H.

Example 1.1. For H = subspace embeddings in Top0, LInj(H) is the category of contin-

uous lattices (endowed with the Scott topology) and meet-preserving continuous maps.

Example 1.2. In the category Pos of posets take H to consist of the two embeddings

ω ↪→ ω + 1 and ∅ ↪→ 1. Then LInj(H) is the category of ω-CPOS’s, i.e., posets with a

least element and joins of ω-chains, and ω-continuous strict functions.

We are going to prove that whenever the subcategory LInj(H) is reflective, i.e., its

embedding into X has a left adjoint, then the monad T = (T, η, µ) on X that this

adjunction defines is a Kock-Zöberlein monad, i.e., the inequality Tη ≤ ηT holds. And

LInj(H) is the Eilenberg-Moore category X T. Our main result is that in a wide class of

order-enriched categories, called locally ranked categories (they include Top0 and Pos),

every classH of morphisms, such that all members ofH but a set are order-epimorphisms,

defines a reflective subcategory LInj(H). However, this does not hold for general classes

H: we present a class H of continuous functions in Top0 whose subcategory LInj(H) fails

to be reflective.

We also study weak left Kan-injectivity: this means that for every f a left Kan extension

f/h exists but in (1.1) equality is not required. We prove that, in a certain sense, this

concept can always be substituted by the above (stronger) one.

2. Left Kan-injectivity

Throughout the paper we work with

(1) order-enriched categories X , i.e., all homsets X (X,X ′) are partially ordered, and

composition is monotone (in both variables)
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and

(2) locally monotone functors F : X −→ Y , i..e, the derived functions from X (X,X ′)

to Y (FX,FX ′) are all monotone.

Notation 2.1. Given morphisms

A
h //

f
��
66

66
66

A′

X

we denote by f/h : A′ −→ X the left Kan extension of f along h. That is, we have

f ≤ (f/h) · h and for all g : A′ −→ X

A
h //

f
��
66

66
66

≤

A′

g
����
��
��
�

X

implies

A′
f/h

��

≤
g

ssX

(2.2)

The following definition is due to Escardó (Escardó 1997) for objects and Carvalho

and Sousa (Carvalho and Sousa 2011) for morphisms:

Definition 2.2. Let h : A −→ A′ be a morphism of an order-enriched category.

(1) An object X is called left Kan-injective w.r.t. h provided that for every morphism

f : A −→ X there is a left Kan extension f/h and it makes the following triangle

A
h //

f
��
66

66
66

A′

f/h
����
��
��
�

X

(2.3)

commutative.

(2) A morphism p : X −→ X ′ is called left Kan-injective w.r.t. h if both X and X ′ are

and for every f : A −→ X the morphism p preserves the left Kan extension f/h. This

means that the following diagram

A
h //

f

��

A′

f/h

~~}}
}}
}}
}}

(pf)/h

��

X
p

// X ′

(2.4)

commutes.

Remark 2.3.

(1) Right Kan-injectivity is briefly mentioned in Section 8 below. (Escardó used “right

Kan-injective” for left Kan-injectivity in (Escardó 1997). We decided to follow the

usual terminology, see, e.g., (Mac Lane 1998).)

(2) A weaker variant of left Kan-injectivity would just require that for every f the left
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Kan extension f/h exists (i.e., we only have f ≤ f/h · h, instead of equality). We

also turn to this concept in Section 8, but we will show that it can (under mild side

conditions) be superseded by the concept of Definition 2.2.

Notation 2.4. Let H be a class of morphisms of an order-enriched category X . We

denote by

LInj(H)

the category of all objects and all morphisms that are left Kan-injective w.r.t. all members

of H. The category LInj(H) is order-enriched using the enrichment of X .

Examples 2.5. We give examples of Kan-injectivity in Pos. The order on homsets in

Pos is defined pointwise.

(1) Complete semilattices. For H = all order-embeddings (that is, strong monomor-

phisms) we have

LInj(H) = complete join-semilattices and join-preserving maps.

Indeed, Bernhard Banaschewski and Günter Bruns proved in (Banaschewski and

Bruns 1967) that every complete (semi)lattice X is left Kan-injective w.r.t. H since

for every order-embedding h : A −→ A′ and every monotone f : A −→ X we have

f/h given by

(f/h)(b) =
∨

h(a)≤b

f(a) (2.5)

And conversely, if X is left Kan-injective, then every set M ⊆ X either has a maxi-

mum, which is
∨
M , or we have

M ∩M+ = ∅ for M+ = all upper bounds of M .

In the latter case consider A = M ∪ M+ as a subposet of X and let A′ extend A

by a single element a′ that is an upper bound of M and a lower bound of M+. The

embedding f : A ↪→ X has a left Kan extension f/h that sends a′ to
∨
M .

By using the formula (2.5) it is easy to see that a monotone map g : X −→ Y between

complete join-semilattices is left Kan-injective iff g preserves joins.

(2) ωCPOS’s. Posets with joins of ω-chains and ⊥ and strict functions preserving joins of

ω-chains are LInj(H) for H consisting of the embeddings h : ω ↪→ ω+1 and h′ : ∅ ↪→ 1.

(3) Semilattices. For the embedding

• •
0 1

• •
0 1

•⊤
h
↪→ 




 44
4

we obtain the category of join-semilattices and their homomorphisms as LInj({h}).
(4) Conditional semilattices. For the embedding

• •
0 1

•⊤

• •
0 1

•⊤

•
h
↪→




 44
4





 44
4

oo OO
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we obtain the category of conditional join-semilattices (where every pair with an

upper bound has a join) and maps that preserve nonempty finite joins as LInj({h}).
(5) The category Posd of discrete posets. Form LInj({h}) for the morphism

•

•
•h−→

(6) The category Pos1 of posets of cardinality ≤ 1. Form LInj({h}) for the mapping h :

1 + 1 −→ 1.

Except for the trivial cases Posd and Pos1 all of the examples in 2.5 worked with H

consisting of strong monomorphisms. This is not coincidential:

Lemma 2.6. Let H be a class of morphisms of Pos such that LInj(H) is neither Posd
nor Pos1. Then all members of H are strong monomorphisms.

Proof. Assume the contrary, i.e., suppose there exists h : A −→ A′ in H such that for

some p, q in A we have h(p) ≤ h(q) although p � q. Then we prove that every poset X

left Kan-injective w.r.t. h is discrete. It then follows easily that LInj(H) is either Posd or

Pos1.

Given elements x ≤ x′ in X, we prove that x = x′. Define f : A −→ X by

f(a) =

{
x′, if a ≥ p

x, else

which is clearly monotone. Then p � q implies f(q) = x. Consequently, f/h sends h(p)

to x′ and h(q) to x. Since h(p) ≤ h(q), we conclude x′ ≤ x, thus, x = x′.

Example 2.7. The category Top0 of T0 topological spaces and continuous maps is order-

enriched as follows. Recall the specialisation order ⊑ that Dana Scott (Scott 1972) used

on every T0-space:

x ⊑ y iff every neighbourhood of x contains y.

We consider Top0 to be order-enriched by the opposite of the pointwise specialisation

order: for continuous functions f, g : X −→ Y we put

f ≤ g iff g(x) ⊑ f(x) for all x in X.

(1) Continuous lattices. For the collection H of all subspace embeddings in Top0 we have

LInj(H) = continuous lattices and meet-preserving continuous maps.

This was proved for objects by Escardo (Escardó and Flagg 1999) and for morphisms

by Carvalho and Sousa (Carvalho and Sousa 2011), we present a proof for the conve-

nience of the reader.

Indeed, Scott proved that a T0-space X is injective iff its specialisation order is a

continuous lattice, i.e., a complete lattice in which every element y satisfies

y =
⊔

U∈nbh(y)

(l
U
)
. (2.6)
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Moreover, he gave, for every subspace embedding h : A −→ A′ and every continuous

map f : A −→ X, a concrete formula for a continuous extension f ′ : A′ −→ X:

f ′(a′) =
⊔

U∈nbh(a′)

(l
f(h−1(U))

)
for all a′ ∈ A′. (2.7)

This is actually the desired left Kan extension f ′ = f/h, as proved by Escardó (Es-

cardó 1997). His proof uses the filter monad F on Top0 whose Eilenberg-Moore alge-

bras are, as proved by Alan Day (Day 1975) and Oswald Wyler (Wyler 1984), precisely

the continuous lattices: for every continuous lattice X the algebra α : FX −→ X is

defined by

α(F ) =
⊔
U∈F

(l
U
)

for all filters F. (2.8)

Every continuous map p : X −→ Y between continuous lattices preserving meets is

Kan-injective. This follows from the formula (2.7) for f/h: given f : A −→ X we have

p · (f/h)(a′) = p

 ⊔
U∈nbh(a′)

(l
f(h−1(U))

) by (2.7)

=
⊔

U∈nbh(a′)

p
(l

f(h−1(U))
)

since p is continuous

=
⊔

U∈nbh(a′)

(l
pf(h−1(U))

)
since p preserves meets

= (pf)/h(a′) by (2.7)

Conversely, if a continuous map p : X −→ Y is Kan-injective, then it preserves meets.

Indeed, following Day, p is a homomorphism of the corresponding monad algebras.

Given M ⊆ X, let FM be the filter of all subsets containing M , then (2.8) yields

α(FM ) =
d
M — hence, the fact that p is a homomorphism implies that p preserves

meets.

(2) Continuous Scott Domains. For the collection H of all dense subspace embeddings

we have

LInj(H) = continuous Scott domains and continuous functions preserving nonempty meets.

Recall that a continuous Scott domain is a poset with bounded joins (or, equivalently,

nonempty meets) satisfying (2.6). Escardó proved that the T0 spaces Kan-injective

w.r.t. dense embeddings are precisely those whose order is a continuous Scott do-

main. His proof uses the monad F+ of proper filters on Top0. The conclusion that

Kan-injective morphisms are precisely those preserving nonempty meets is analogous

to ((1)).

Remark 2.8. The order enrichment of Top0 above is frequently used in literature. How-

ever, some authors prefer the dual enrichment (by the pointwise specialisation order).

We mention in Example 8.10 below that this yields the same examples as above but for

the right Kan-injectivity.
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Example 2.9. In the category of locales further examples of Kan-injective objects were

presented in (Escardó 2003).

Example 2.10. Given an ordinary category, we can consider it order-enriched by the

trivial order. An object X is then Kan-injective w.r.t. H iff it is orthogonal , i.e., given

h : A −→ A′ it fulfills: for every f : A −→ X there is a unique f ′ : A′ −→ X such that

the triangle

A
h //

f
��
66

66
66

A′

f ′
����
��
��
�

X

commutes.

And every morphism between orthogonal objects is Kan-injective. Thus, the Kan-

injectivity subcategory is precisely

H⊥ = LInj(H)

the full subcategory of all orthogonal objects.

Remark 2.11.

(1) A special case is given by a monad T = (T, η, µ) on the (ordinary) category which is

idempotent , i.e., fulfills

Tη = ηT

Consequently, every object X carries at most one structure on an Eilenberg-Moore

algebra x : TX −→ X, since x = η−1
X . Thus, the category X T can be considered as

a full subcategory of X . For the class H = {ηX | X in X } of all units of T we then

have

X T = H⊥

(2) Conversely, whenever the full subcategory H⊥ is reflective, i.e., its embedding into

X has a left adjoint, then the corresponding monad T on X is idempotent and

X T ∼= H⊥.

(3) The concepts of (i) full reflective subcategory of X , (ii) idempotent monad on X

and (iii) orthogonal subcategory H⊥ coincide — modulo the orthogonal subcategory

problem. This is the problem whether given a class H of morphisms the subcategory

H⊥ is reflective. Some positive solutions can be found in (Freyd and Kelly 1972)

and (Adámek et. al 2009), for a negative solution in X = Top see (Adámek and

Rosický 1988).

The situation with order-enriched categories is completely analogous, as we prove be-

low. The following can be found in (Escardó 1998) and (Carvalho and Sousa 2011).

Example 2.12. Let T = (T, η, µ) be a Kock-Zöberlein monad on an order-enriched

category X , i.e., one satisfying

Tη ≤ ηT.
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Kock-Zöberlein monads over order-enriched categories are a particular case of the mon-

ads on 2-categories, independently introduced by Anders Kock (Kock 1995) and Volker

Zöberlein (Zöberlein 1976).

Every objectX carries at most one structure of an Eilenberg-Moore algebra α : TX −→
X, since α is left adjoint to ηX . Thus, X T can be considered as a (not necessarily full)

subcategory of X . Then the category of T-algebras consists precisely of all objects and

morphisms Kan-injective to all units:

X T = LInj(H) for H = {ηX | X in X }

see Proposition 4.9 below. Conversely, whenever the subcategory LInj(H) is reflective, i.e.,

its (possibly non-full) embedding into X has a left adjoint, then it is monadic and the

corresponding monad T satisfies the Kock-Zöberlein property, see Corollary 4.12 below.

3. Inserters and coinserters

Since inserters and coinserters play a central role in our paper, we recall the facts about

them we need (in our special case of order-enriched categories) in this section. Throughout

this section we work in an order-enriched category.

Definition 3.1.

(1) We call a morphism i : I −→ X an order-monomorphism provided that for all

f, g : I ′ −→ I we have: i · f ≤ i · g implies f ≤ g.

(2) An inserter of a parallel pair u, v : X −→ Y in an order-enriched category is a

morphism i : I −→ X universal w.r.t. u · i ≤ v · i.

I
i // X

u //

v
// Y

J

j

OO

j

??~~~~~~~~

Universality means the following two conditions:

(a) Given j with u · j ≤ v · j, there exists a unique j with j = i · j.
(b) i is an order-monomorphism.

Example 3.2. In Top0 the inserter of u, v : X −→ Y is the embedding I ↪→ X of

the subspace of X on all elements x ∈ X with u(x) ≤ v(x). In general, every subspace

embedding is an order-monomorphism.

In Pos, analogously, the inserter of u, v : X −→ Y is the embedding I ↪→ X of the

subposet of X on all elements x ∈ X with u(x) ≤ v(x). In general, every subposet

embedding is an order-monomorphism — and vice versa (up to isomorphism).

Lemma 3.3. For a morphism i in Pos the following conditions are equivalent:

(1) i is an order-monomorphism.

(2) i is a strong monomorphism.

(3) i is a subposet embedding (up to isomorphism).
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(4) i is an inserter of some pair.

Proof. It is easy to see that (2) and (3) are both equivalent to the validity of the im-

plication “i(x) ≤ i(y) implies x ≤ y”. Therefore (1) implies (3). To prove (3) implies (4),

given a subposet embedding i : X ↪→ Y , let Z be the poset obtained from Y by splitting

every element outside of i[X] to two incomparable elements. The two obvious embeddings

of Y into Z have i as their inserter. Finally, (4) implies (1) by the definition.

Definition 3.4.

(1) An order-epimorphism is a morphism e : X −→ Y such that for all f, g : Y −→ Z we

have: f · e ≤ g · e implies f ≤ g.

(2) A coinserter of a parallel pair u, v : X −→ Y is a morphism c : Y −→ C couniversal

w.r.t. c · u ≤ c · v. That is, the following two conditions hold:

(a) Given d : Y −→ Z with d ·u ≤ d ·v there exists a unique d : C −→ Z with d = d ·c.
(b) c is an order-epimorphism.

Examples 3.5.

(1) In Pos every surjection (= epimorphism) is an order-epimorphism, see Lemma 3.6

below.

(2) In Top0 also every epimorphism is an order-epimorphism. We can describe coinserters

by using those in Pos and applying the forgetful functor

U : Top0 −→ Pos

of Example 2.7.

This functor has the following universal property: given a monotone function c :

UY −→ (Z,≤) where Y is a T0 space, there exists a semifinal solution in the sense

of 25.7 (Adámek et. al 1990), which means a pair consisting of c : Y −→ Z in Top0
and c0 : (Z,≤) −→ UZ in Pos universal w.r.t.

UY
Uc //

c
��
??

??
??

??
UZ

(Z,≤)

c0

??��������

Thus given another pair c̃ : Y −→ Z̃ and c̃0 : (Z,≤) −→ UZ̃ with Uc̃ = c̃0 · c there

exists a unique p : Z −→ Z̃ in Top0 making the diagrams

Y
c̃ //

c
��
44

44
44

Z̃

Z

p

EE






and

(Z,≤)
c̃0 //

c0
��
>>

>>
>>

>
UZ̃

UZ

Up

BB�������

commutative.

Indeed, to construct c, let τ be the topology on Z of all lowersets whose inverse image

under c is open in Y . Let r : (Z, τ) −→ Z be a T0-reflection, then put c = r · c.
Consequently, we see that each such c is an order-epimorphism in Pos.
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The coinserter of u, v : X −→ Y in Top0 is obtained by first forming a coinserter

c : UY −→ (Z,≤) of Uu, Uv in Pos and then taking the semifinal solution c : Y −→ Z.

Lemma 3.6. For a morphism e in Pos the following conditions are equivalent:

(1) e is an order-epimorphism.

(2) e is an epimorphism.

(3) e is surjective.

(4) e is a coinserter of some pair.

Proof. The equivalence of (2) and (3) is well-known, see, e.g., Example 7.40(2) (Adámek

et. al 1990).

It is clear that (1) implies (2) and (4) implies (1). To prove that (3) implies (4), choose

a surjective map e : A −→ B and define the poset A0 as follows: its elements are pairs

(x, x′) such that e(x) ≤ e(x′), the pairs are ordered pointwise. Denote by d0, d1 : A0 −→ A

the obvious monotone projections. Then it follows easily that e is a coinserter of the pair

(d0, d1), using the fact that e is surjective.

Definition 3.7. An order-enriched category is said to have conical products if it has

products
∏

i∈I Xi and the projections πi are collectively order-monic. That is, given a

parallel pair f, g : Y −→
∏

i∈I Xi we have that

πi · f ≤ πi · g for all i ∈ I implies f ≤ g. (3.9)

Example 3.8. In Top0 and Pos products are clearly conical.

Remark 3.9. Throughout Section 4 we work with order-enriched categories having in-

serters and conical products. This can be expressed more compactly by saying that

weighted limits exist. We recall this fact (that can be essentially found in Max Kelly’s

book (Kelly 1982)) for convenience of the reader. However, we are not going to apply

any weighted limits except inserters and conical limits in our paper.

Given order-enriched categories X and D , where D is small, we denote by

X D

the order-enriched category of all locally monotone functors from D to X and all natural

transformations between them (the order on natural transformations is objectwise: given

α, β : F −→ G then α ≤ β means αd ≤ βd for every d in D).

Definition 3.10. Let X and D be order-enriched categories, D small. Given a locally

monotone functor D : D −→ X , its limit weighted by W : D −→ Pos, also locally

monotone, is an object

{W,D}
together with an isomorphism

X (X, {W,D}) ∼= PosD(W,X (X,D−))

natural in X in X .

Examples 3.11.
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(1) Conical limits (which means limits whose limit cones fulfill (3.9)) are precisely the

weighted limits with weight constantly 1 (the terminal poset).

(2) Inserters are weighted limits with the scheme

• •d d′D :
v //

u
//

and the weight W given by

• •
•Wv 11ddddddd

Wu
--ZZZZZZZ

Remark 3.12. A category with conical products and inserters has conical equalisers,

hence all conical limits. Indeed, an equaliser of a pair f, g : X −→ Y is obtained as an

inserter of the pair

X
⟨f,g⟩

//

⟨g,f⟩
// X × Y

Just observe that a morphism i : I −→ X fulfills ⟨f, g⟩ · i ≤ ⟨g, f⟩ · i iff it fulfills f · i = g · i.
Moreover, we see that equalisers are order-monomorphisms (since inserters are).

Lemma 3.13. An order-enriched category has weighted limits iff it has conical products

and inserters.

Proof. The necessity follows from Examples 3.11. For the sufficiency, we use Theo-

rem 3.73 of (Kelly 1982). In fact, it suffices to prove that a particular type of weighted

limits, called cotensors, exists in X . Given a poset P and an object X, then the P -th

cotensor of X is an object P t X, together with an isomorphism

X (X ′, P t X) ∼= Pos(P,X (X ′, X))

natural in X ′.

Observe that, for a discrete poset P , the cotensor P t X is just the P -fold conical

product of X. Hence the category X has cotensors with discrete posets, since it has

products.

A general poset P can be described as a coinserter in Pos of a parallel pair

P1

d1 //

d0

// P0

where P0 is the discrete poset on elements of P , P1 is the discrete poset on all pairs

(x, x′) such that x ≤ x′ holds, and d0 and d1 are the obvious projections. Then one can

define P t X as an inserter of

P0 t X
d1tX

//

d0tX
// P1 t X

in X .

Whereas inserters and conical products are required in Section 4, we work with the

dual concepts in Section 5.
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Definition 3.14. An order-enriched category is said to have conical coproducts if it has

coproducts
⨿

i∈I Xi and the injections γi are collectively order-epic. That is, given a

parlallel pair f, g :
⨿

i∈I Xi −→ Y , we have that f · γi ≤ g · γi for all i ∈ I implies f ≤ g.

Example 3.15. The categories Pos and Top0 clearly have conical coproducts. Therefore,

they have conical colimits. This is dual to Remark 3.12.

Again, the dual notions can be subsumed by the concept of a weighted colimit.

Definition 3.16. Let X and D be order-enriched categories, D small. Given a locally

monotone functor D : D −→ X , its colimit weighted by W : Dop −→ Pos, also locally

monotone, is an object

W ⋆D

together with an isomorphism

X (W ⋆D,X) ∼= PosD
op

(W,X (D−, X))

natural in X in X .

Lemma 3.17. An order-enriched category has weighted colimits iff it has conical co-

products and coinserters.

Proof. This is dual to Lemma 3.13.

4. KZ-monadic subcategories and inserter-ideals

In this section we prove that whenever the Kan-injectivity subcategory LInj(H) is reflec-

tive, then the monad T this generates is a Kock-Zöberlein monad and the Eilenberg-Moore

category X T is precisely LInj(H). In the subsequent sections we prove that for small col-

lections H in “reasonable” categories LInj(H) is always reflective. A basic concept we

need is that of an inserter-ideal subcategory.

Definition 4.1. A subcategory of an order-enriched category X is inserter-ideal pro-

vided that it contains with every morphism u also inserters of the pairs (u, v), where v

is any morphism in X parallel to u.

Lemma 4.2. Every Kan-injectivity subcategory LInj(H) is inserter-ideal.

Proof. Suppose that we have an inserter i of (u, v) in X . It is our task to prove that

if u is left Kan-injective w.r.t. h : A −→ A′ in H, then so is i. We first verify that I is

left Kan-injective. Consider an arbitrary f : A −→ I. In the following diagram

A
h //

f

��

A′

(if)/h

��

f∗

xx
I

i
// X

v //

u
// Y Y
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the morphism (if)/h : A′ −→ X exists since X is left Kan-injective. Also, u is left

Kan-injective and therefore we have

u · (if)/h = (uif)/h ≤ (vif)/h ≤ v · (if)/h

proving that (if)/h factorises through i as indicated above.

That the morphism f∗ : A′ −→ I is f/h follows immediately from the two aspects of

the universal property of an inserter. This proves that the object I is left Kan-injective

w.r.t. h.

Moreover, we also have the equality (if)/h = i ·f∗ = i ·f/h, proving that the morpism

i : I −→ X is left Kan-injective w.r.t. h, as desired.

Corollary 4.3. LInj(H) is closed under weighted limits.

Proof. Indeed, it is closed under inserters by Lemma 4.2 and under conical limits

by (Carvalho and Sousa 2011), Proposition 2.10. The rest is analogous to the proof of

Lemma 3.13 above.

Definition 4.4. A subcategory of an order-enriched category X is called KZ-monadic

if it is the Eilenberg-Moore category X T of a Kock-Zöberlein monad T on X .

Example 4.5.

(1) Continuous lattices, see Example 2.7((1)), are KZ-monadic for the filter monad on

Top0, as proved by Escardó (Escardó 1997).

(2) Complete semilattices, see Example 2.5((1)), are KZ-monadic w.r.t. the lowerset

monad T = (T, η, µ) on Pos. More in detail: TX is the poset of all lowersets on

a poset X, ηX : X −→ TX assigns the principal lowerset ↓x to every x ∈ X,

µX : TTX −→ TX is the union.

Remark 4.6. Recall the concept of a projection-embedding pair of Mike Smyth and

Gordon Plotkin (Smyth and Plotkin 1982). We use the dual concept and call a morphism

r : C −→ X a coprojection if there exists s : X −→ C with

r · s = idC and idX ≤ s · r.

In the terminology of (Carvalho and Sousa 2011) the morphism r would be called reflec-

tive left adjoint.

Definition 4.7. A subcategory C of an order-enriched category X is said to be closed

under coprojections if (a) for every coprojection r : C −→ X whenever C is in C , then

so is X, and (b) for any commutative square in X

C1
f

//

r1

��

C2

r2

��

X1 g
// X2

whenever f is in C and r1, r2 are coprojections, then also g is in C .
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Proposition 4.8 (Proposition 2.13 of (Carvalho and Sousa 2011)). Every Kan-

injectivity subcategory LInj(H) is closed under coprojections.

Proposition 4.9 (See (Bunge and Funk 1999) and (Carvalho and Sousa 2011)).

Every KZ-monadic category is the Kan-injectivity subcategory w.r.t. all units, i.e.,

X T = LInj(H) for H = {ηX : X −→ TX | X in X }.

This follows from Proposition 1.5 and Corollary 1.6 in (Bunge and Funk 1999), as well

as from Theorem 3.9 and Remark 3.10 in (Carvalho and Sousa 2011).

Remark 4.10. For the larger collection H′ of all morphisms i with Ti having a right

adjoint Ti ⊣ j such that j · Ti = id it also holds that X T = LInj(H′), see (Escardó and

Flagg 1999) and (Carvalho and Sousa 2011).

Theorem 4.11. A subcategory of an order-enriched category is KZ-monadic iff it is

(1) reflective,

(2) inserter-ideal, and

(3) closed under coprojections.

Proof. We first recall from (Carvalho and Sousa 2011), Theorems 3.13 and 3.4 that a

subcategory C is KZ-monadic iff it is

(a) reflective, with reflections ηX : X −→ FX (X in X )

(b) closed under coprojections,

(c) a subcategory of LInj(H) for H = {ηX | X in X },
and such that

(d) every morphism f : FX −→ A in C fulfils (fηX)/ηX = f .

Indeed, Theorem 3.4 states that (a), (c) and (d) are equivalent to C being KZ-reflective,

thus Theorem 3.13 applies.

Every KZ-monadic category is inserter ideal by Lemma 4.2 and Proposition 4.9, thus

it has all the properties of our Theorem: see Conditions (a) and (b) above.

For the converse implication, we only need to verify Conditions (c) and (d) above.

For (c) see Proposition 4.9. Condition (d) easily follows from the implication

fηX ≤ gηX implies f ≤ g

for all pairs f, g : FX −→ A with f in C .

In order to prove the implication, form the inserter i of the pair (f, g):

I
i // FX

g
//

f
//

v
oo C

X

ηX

==zzzzzzzz
u

OO

Thus, we have a morphism u in X with ηX = i · u. Since f lies in the inserter-ideal

subcategory C , so does I. Therefore u factorises through the reflection ηX :

u = v · ηX
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and both v and i are morphisms of C . Thus so is i · v and from (i · v) · ηX = ηX we

therefore conclude i ·v = id . Now i is monic as well as split epic, therefore it is invertible.

This gives the desired inequality f ≤ g.

From Lemma 4.2, Theorem 4.11, and Proposition 4.8, we obtain the following:

Corollary 4.12. Whenever LInj(H) is a reflective subcategory, then it is KZ-monadic.

5. Kan-injective reflection chain

Here we show how a reflection of an object X in the Kan-injectivity subcategory LInj(H)

is constructed: we define a transfinite chain Xi (i ∈ Ord) with X0 = X such that with

increasing i the objects Xi are “nearer” to being Kan-injective. This chain is said to

converge if for some ordinal k the connecting map Xk
//___ Xk+2 is invertible. When

this happens, Xk is Kan-injective, and a reflection of X is given by the connecting map

X0
//___ Xk . In Section 6 sufficient conditions for the convergence of the reflection chain

are discussed.

Assumption 5.1. Throughout this section X denotes an order-enriched category with

weighted colimits.

Construction 5.2 (Kan-injective reflection chain). Let X be an order-enriched

category with weighted colimits, and H a set of morphisms in X . Given an object

X, we construct a chain of objects Xi (i ∈ Ord). We denote the connecting maps by

xij : Xi −→ Xj or just by Xi
//___ Xj , for all i ≤ j.

The first step is the given object X0 = X. Limit steps Xi, i a limit ordinal, are defined

by (conical) colimits of i-chains:

Xi = colim
j<i

Xj .

Isolated steps: given Xi we define both Xi+1 and Xi+2, thus, we can restrict ourselves

to even ordinals i (having distance 2n, n < ω, from 0 or a limit ordinal).

(1) To define Xi+1 and the connecting map Xi
//___ Xi+1 , consider all spans

A

f

��

h // A′

Xi

(5.10)

where h is in H and f is arbitrary. We form the colimit of this diagram and call

the colimit morphisms Xi
//___ Xi+1 and f�h (because they “approximate” f/h),

respectively:

A

f

��

h // A′

f�h

��

Xi
//___ Xi+1

(5.11)
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More detailed: given h in H and f : A −→ Xi we form a pushout

A
h //

f

��

A′

f

��

Xi
h

// C

(5.12)

Then Xi
//___ Xi+1 is the wide pushout of all h (with the colimit cocone cf,h : C −→

Xi+1) and we put f�h = cf,h · f .
(2) To define Xi+2 and the connecting map Xi+1

//___ Xi+2 , consider all inequalities

A

f

��

h // A′

g

��

Xj

≤

//___ Xi+1

(5.13)

where h ∈ H, j ≤ i is an even ordinal, and f , g are arbitrary. We let Xi+1
//___ Xi+2

be the universal map such that (5.13) implies the inequality

A′

f�h

{{ww
ww
ww
ww
w

g

��
44

44
44

44
44

44
44

44

≤

Xj+1

��
�
�
�

Xi+1

##G
G

G
G

Xi+1

{{w
w
w
w

Xi+2

(5.14)

In other words, Xi+1
//___ Xi+2 is the wide pushout of all the coinserters

coins(xj+1,i+1 · (f�h), g).
Example 5.3. In case of join semilattices (where h is the embedding of Example 2.5((3)))

the even step from Xi to Xi+1 adds to every pair x, y of elements of Xi an upper bound

compatible only with all elements under x or y. And the odd step from Xi+1 to Xi+2 is

a quotient that turns this upper bound into a join of x and y. After ω steps we get the

join-semilattice reflection of X.

Lemma 5.4. Given a morphism p0 : X0 −→ P where P is Kan-injective, there exists

a unique cocone pi : Xi −→ P (i ∈ Ord) such that for all spans (5.10) the following

triangle

A′

f�h

��

(pif)/h

!!D
DD

DD
DD

DD

Xi+1 pi+1

// P

(5.15)
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commutes.

Proof. We only need to prove the isolated step: given pi for i even, we have unique pi+1

and pi+2. For pi+1 we observe that the morphisms pi : Xi −→ P and (pif)/h : A′ −→ P

form a cocone of the diagram defining Xi
//___ Xi+1 . Indeed, the square

A

f

��

h // A′

(pif)/h

��

Xi pi

// P

clearly commutes. It follows that there is a unique pi+1 for which the above triangle

commutes and which prolongs the given cocone.

Next we prove the existence of pi+2 (uniqueness is clear since Xi+1
//___ Xi+2 is

epic) by verifying that pi+1 has the universal property of Xi+1
//___ Xi+2 : for every

square (5.13) we have

A′

f�h

��

g
// Xi+1

pi+1

��

Xj+1 pj+1

//

≤

P

Indeed, by (5.15), the lower passage is (pj · f)/h, hence, it is sufficient to verify pj · f ≤
pi+1 · g · h. To that end, compose the given inequality (5.13) with pi+1.

Remark 5.5. In the Kan-injective reflection chain, for every pair i, j of even ordinals

with j ≤ i and every span as in (5.10) with j in place of i, the connecting map xi+1,i+2

merges the morphisms (xjif)�h and xj+1,i+1 · (f�h).
Indeed, the equality (5.11) for f implies clearly the equality

((xjif)�h) · h = xj+1,i+1 · (f�h) · h
decomposes into two inequalities which by the universal property of the morphism

xi+1,i+2 gives rise to

xi+1,i+2 · xj+1,i+1 · f�h ≤ xi+1,i+2 · (xjif)�h (putting g = (xjif)�h in (5.13)),

and

xi+1,i+2 · (xj,if)�h ≤ xi+1,i+2 · xj+1,i+1 · f�h (putting g = xj+1,i+1 · f�h in (5.13)).

Theorem 5.6. If the Kan-injective reflection chain converges at an even ordinal k (i.e.,

xk,k+2 is invertible), then Xk lies in LInj(H) and x0k : X0 −→ Xk is a reflection of X0 in

LInj(H).

Proof.

(1) We prove the Kan-injectivity of Xk. Given h : A −→ A′ in X and f : A −→ Xk, the

square (5.11) allows us to define a morphism

f/h = x−1
k,k+2 · xk+1,k+2 · (f�h) : A′ −→ Xk (5.16)
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and we verify the two properties needed. The first one is clear by applying (5.11) to

i = k:

(f/h) · h = x−1
k,k+2 · xk+1,k+2 · (f�h) · h

= x−1
k,k+2 · xk+1,k+2 · xk,k+1 · f

= x−1
k,k+2 · xk,k+2 · f

= f.

For the second one let g : A′ −→ Xk fulfil gh ≥ f . Then we prove g ≥ f/h. The

morphism g = xk,k+1 ·g fulfils gh ≥ xk,k+1 ·f , thus, the universal property of xk+1,k+2

implies

xk+1,k+2 · ḡ ≥ xk+1,k+2 · (f�h).
That is,

xk,k+2 · g ≥ xk+1,k+2 · (f�h).
By composing with x−1

k,k+2 we get g ≥ x−1
k,k+2 · xk+1,k+2 · (f�h), as desired.

(2) Given p : X0 −→ P where P lies in LInj(H), we prove that the morphism pk of

Lemma 5.4 belongs to LInj(H). For every span (5.10) we want to prove that the

bottom triangle in the following diagram

A
h //

f

��

A′

f/h
wwppp

ppp
ppp

ppp
p

(pkf)/h

��

Xk pk

// P

is commutative. Indeed,

pk · (f/h) = pk · x−1
k,k+2 · xk+1,k+2 · (f�h), by (5.16)

= (pk+2 · xk,k+2) · x−1
k,k+2 · xk+1,k+2 · (f�h) by Lemma 5.4

= pk+2 · xk+1,k+2 · (f�h)
= pk+1 · (f�h), by Lemma 5.4

= (pk · f)/h again by Lemma 5.4

(3) We have, for every p as in ((2)), the morphism pk of LInj(H) with p = pk · x0,k. Now

we prove the unicity of pk. It suffices to show that, given morphisms b, b0 : Xk −→ P

with b0 in LInj(H), then

b0 · x0k ≤ b · x0k implies b0 ≤ b.

Indeed, in the case where b is also a morphism of LInj(H) then the equality b0 ·x0k =

b ·x0k will imply b0 = b. We are going to verify the above implication by proving that

b0 · x0k ≤ b · x0k implies b0 · xik ≤ b · xik

for all i ≤ k. We use transfinite induction. The first step i = 0 is clear. Also limit

steps are clear since the colimit cocones are collectivelly order-epic.

It remains to check the isolated steps i+ 1 and i+ 2 for i an even ordinal.
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(a) From i to i+ 1.

A

f

��

h // A′

f�h

��

Xi
//_______

  
B

B
B

B Xi+1

||y
y
y
y

Xk
b0

//

b //
P

Since xi,i+1 and all f�h are collectively order-epic, we only need proving

b0 · xi+1,k · f�h ≤ b · xi+1,k · f�h
The formula (5.16) for xikf in place of f yields

(xikf)/h = x−1
k,k+2 · xk+1,k+2 · (xikf)�h.

And, since xk+1,k+2 merges (xikf)�h and xi+1,k+1 · f�h, see Remark 5.5, we get

(xikf)/h = x−1
k,k+2 · xk+1,k+2 · xi+1,k+1 · f�h

= x−1
k,k+2 · xk,k+2 · xi+1,k · f�h

= xi+1,k · f�h.
Since b0 lies in LInj(H), we know that b0[(xikf)/h] = (b0xikf)/h. And, since by

induction hypothesis b0xik ≤ bxik, we then obtain that (b0xik)/h ≤ (bxik)/h.

Consequently:

b0 · xi+1,k · f�h = b0 · [(xikf)/h]

= (b0xikf)/h

≤ (bxikf)/h

≤ b · (xikf)/h

= b · xi+1,k · f�h
(b) From i+ 1 to i+ 2. This is trivial because xi+1,i+2 is order-epic.

Remark 5.7. The construction above can also be performed, assuming the base category

X is cowellpowered, with every class H of morphisms, provided that it has the form

H = H0 ∪He where H0 is small and He is a class of epimorphisms.

Indeed, in the isolated step i 7→ i+1 with i even the conical colimit exists because xi,i+1

is the wide pushout of all the morphisms h. If h lies in He then h is an epimorphism.

Thus cowellpoweredness guarantees that Xi+1 is obtained as a small wide pushout. The

isolated step i + 1 7→ i + 2 with i even also makes no problem because xi+1,i+2 is an

epimorphism, and we obtain it as the cointersection of the corresponding epimorphisms

over all subsets of H.
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6. Locally ranked categories

Our main result, proved in Theorem 6.11 below, states that for every class H of mor-

phisms in an order-enriched category X such that all but a set of members of H are

order-epic, the subcategory LInj(H) is KZ-reflective. For that we need to assume that X

is locally ranked, a concept introduced in (Adámek et. al 2002). It is based on a factoriza-

tion system (E,M) in a (non-enriched) category X which is proper , i.e., all morphisms in

E are epimorphisms and all morphisms in M are monomorphisms. An object X of X has

rank λ, where λ is an infinite regular cardinal, provided that its hom-functor preserves

unions of λ-chains of subobjects in M.

Definition 6.1 (See (Adámek et. al 2002)). An ordinary category X with a proper

factorization system (E,M) is called locally ranked if it is cocomplete and E-cowellpowered,

and every object has a rank.

Remark 6.2. In order-enriched categories proper is defined for a factorization system

(E,M) to mean that all morphisms in E are epimorphisms, and all morphisms in M are

order-monomorphisms.

Example 6.3. Recall from (Adámek et. al 1990) that every cocomplete, cowellpowered

category has the factorization system (Epi ,Strong Mono). In every order-enriched cate-

gory this factorization system is proper. Indeed, consider the inequality mu ≤ mv with

m a strong monomorphism, and let c be the coinserter of u and v.

X
v //

u
// A

c

��

m // B

C
m′

??

Then m factorizes through c. But c is an epimorphism and m a strong monomorphism,

thus c is invertible. Equivalently, u ≤ v.

Definition 6.4. Let X be an order-enriched category with a proper factorization system

(E,M). We call X locally ranked if it has weighted colimits, is E-cowellpowered, and every

object has a rank.

Remark 6.5. Explicitly, an object A has rank λ iff given a union X =
∪

i<λ mi of a

λ-chain mi : Mi −→ X of subobjects in M, then every morphism p : A −→ X factorizes

through some mi.

This concept is “automatically enriched”: given p, q : A −→ X with p ≤ q, it follows

that there exists i such that they both factorize through mi:

Mi

mi

��

A

p

;;wwwwwwwwwww

q

;;wwwwwwwwwww

p′
//

q′
// X
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and we get p′ ≤ q′ from mi being an order-monomorphism.

In other words: if the hom-functor into Set preserves λ-unions of M-subobjects, it

follows that the hom-functor into Pos also does.

Example 6.6.

(1) Pos is a locally ranked category w.r.t. (Epi ,Strong Mono). Indeed, in the non-enriched

sense all locally presentable categories are locally ranked, see (Adámek et. al 2002),

and, by Example 6.3, (Epi ,Strong Mono) is proper. From Examples 3.5, 3.15 and

Lemma 3.17 we know that Pos has weighted colimits.

(2) Top0 is a locally ranked category w.r.t. (Surjection,Subspace Embedding). Indeed,

every space A of cardinality less than λ has rank λ — this follows from unions of

subspace embeddings in Top0 being carried by their unions in Set. Cowellpoweredness

w.r.t. surjective morphisms is obvious. From Examples 3.5, 3.15 and Lemma 3.17 we

know that Top0 has weighted colimits.

Remark 6.7. In Theorem 6.10 below we use the following trick of Jan Reiterman,

see (Reiterman 1976) or (Koubek and Reiterman 1979). Given a transfinite chain X :

Ord −→ X and an ordinal i, factorize all connecting maps

Xi

xij
//

eij

����

Xj

Eij

>>
mij

>>||||||||

in the (E,M) factorization system. Since X is E-cowellpowered there exists an ordinal i∗

such that all eij with j ≥ i∗ represent the same quotient of Xi. Define φ : Ord −→ Ord

by φ(0) = 0, φ(i+1) = φ(i)∗ and φ(i) =
∨

j<i φ(j) for limit ordinals i. This gives a new

transfinite chain

Yi = Ei,φ(i)

and natural transformations βi = mi,φ(i+1) and γi = ei,φ(i+1) with the following proper-

ties that were explicitly formulated by Max Kelly (Kelly 1980), Proposition 4.1.

Lemma 6.8. For every transfinite chain X : Ord −→ X there exists a monotone

function φ : Ord −→ Ord preserving joins, a transfinite chain Y : Ord −→ X of M-

monomorphisms and natural transformations γi : Xi −→ Yi and βi : Yi −→ Xî, where

î = φ(i+ 1), such that

(1) βi · γi = xîi for all i ∈ Ord.

(2) For all j ≥ î we have a morphism of M

Yi
βi // Xî

xij
// Xj

and

(3) For every limit ordinal j the union of the chain Yi (i ≤ j) is given by

Yi
βi // Xî

xiφ(j)
// Xφ(j)
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Remark 6.9. Without loss of generality we choose φ so that î is an even ordinal for

every ordinal i.

Theorem 6.10. For every set H of morphisms of a locally ranked category, LInj(H) is

a KZ-monadic subcategory.

Proof. Since H is a set, there exists a cardinal λ such that for every h : A −→ A′ in

H both A and A′ have rank λ. Put

k = φ(λ).

We show that the connecting map X0
//___ Xk of the Kan-injective reflection chain, see

Construction 5.2, is a reflection of X = X0 in LInj(H).

(1)Xk belongs to LInj(H). Indeed, given h : A −→ A′ in H and f : A −→ Xk, since A

has rank λ, there is some i < λ making the diagram

A

f

��

f ′

��

Yi

mi

??

βi // Xî
//___ Xk

commutative. And we may choose this i to be even. Put

f/h = xî+1,k · (βif
′)�h (6.17)

We show that it is the desired f/h.

A
h //

f ′

��

A′

(βif
′)�h

��

f/h

��

Yi

βi

��

Xî
//___ Xî+1

//___ Xk

(1a) (f/h) · h = xî+1,k · (βif
′)�h · h = xî+1,k · xî,̂i+1 · βi · f ′ = xî,k · βi · f ′ = f .

(1b) Let g : A′ −→ Xk fulfil the inequality f ≤ gh. We show that f/h ≤ g.

Again, the rank λ of A′ ensures a factorization of g for some ordinal j < γ:

A′

g

��

g′

��

Yj

mj

>>

βj
// Xĵ

//___ Xk

And we may choose this j to be even and fulfill j ≥ i. Then the inequality
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f ≤ gh yields mj ·yij ·f ′ ≤ mj ·g′ ·h, and, since mj is order-monic, yij ·f ′ ≤ g′ ·h.
Consequently, composing with xĵ,ĵ+1 · βj , and using the naturality of β, we

obtain

xî,ĵ+1 · βi · f ′ = xĵ,ĵ+1 · βj · yij · f ′ ≤ xĵ,ĵ+1 · βj · g′ · h.
This is an instance of the inequality (5.13) with βi · f ′ in place of f and xĵ,ĵ+1 ·
βj · g′ in place of g. Hence, taking into account the universal property of the

morphism Xĵ+1
//___ Xĵ+2 , we conclude that

xĵ+1,ĵ+2 · xî,ĵ+1 · (βi · f ′)�h ≤ xĵ+1,ĵ+2 · xĵ,ĵ+1 · βj · g′

from which it follows that f/h ≤ mj · g′ = g.

(2) Let p : X0 −→ P be a morphism with P ∈ LInj(H). Then we know that p gives rise

to a cocone pi : Xi −→ P of the chain X : Ord −→ X as in Lemma 5.4. We show

that the morphism pk : Xk −→ P belongs to LInj(H), i.e., the bottom triangle in the

following diagram

A
h //

f

��

A′

f/h

~~||
||
||
||

(pkf)/h

��

Xk pk

// P

is commutative.

Indeed, given f = mi · f ′, as in ((1)) above, then, recalling from ((1)) that f/h =

xî+1,k · (βif
′)�h, and applying Lemma 5.4, we have that:

pk · f/h = pî+1 · (βif
′)�h = [pî · (βif

′)]/h = (pk · xî,k · βi · f ′)/h = (pk · f)/h.

(3) In order to conclude that pk is unique, let q : Xk −→ P be another morphism of

LInj(H) with q · x0k = p. We prove that q = pk by showing, by transfinite induction,

that q · xik = pk · xik for all i ≤ k.

For i = 0, this is the assumption. For limit ordinals the inductive step is trivial, by

the universal property of the colimit. So we prove the property for i + 1 and i + 2

with i even.

(3a) From i to i + 1. Since xi,i+1 and all f�h are collectively epic, we only need

proving

pk · xi+1,k · f�h = q · xi+1,k · f�h
for all h ∈ H and all f . For that, we first prove the equalities

(xik · f)/h = xi+1,k · f�h, i < k. (6.18)

From Lemma 6.8 we have that xik ·f = xîk · (βi ·γi ·f), that is, xikf = mi(γif).

Then, by (6.17), we know that

(xik · f)/h = xî+1,k · (βi · γi · f)�h = xî+1,k · (xîi · f)�h. (6.19)

By Remark 5.5, the morphism xî+1,̂i+2 merges (xi,̂i · f)�h and xi+1,̂i+1 · f�h.
Thus, xî+1,k · (xi,̂i · f)�h = xi+1,k · f�h. That is, by (6.19), (xik · f)/h =

xi+1,k · f�h.
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Now, due to the equality pk · xik = q · xik, we have (pk · xik)/h = (q · xik)/h,

hence pk · (xik)/h = q · (xik)/h, because both pk and q belong to LInj(H).

Using (6.18), we obtain then that pk · xi+1,k · f�h = q · xi+1,k · f�h.
(3b) From i+ 1 to i+ 2. This is clear, since xi+1,i+2 is an order-epimorphism.

(4) From ((2)) and ((3)) we know that LInj(H) is reflective, therefore KZ-monadic by

Corollary 4.12.

Theorem 6.11. In every locally ranked, order-enriched category X the subcategory

LInj(H) is KZ-monadic for every class

H = H0 ∪He

of morphisms with H0 small and He consisting of order-epimorphisms.

Proof.

(1) Since the members of He are order-epimorphisms, the category LInj(He) is simply

the orthogonal (full) subcategory H⊥
e , see Example 2.10. It was proved in 2.4(c)

of (Adámek et. al 2009) that H⊥
e is again a locally ranked category w.r.t. E = all

epis and M = all monics lying in H⊥
e . (The proof concerned ordinary categories, but

it adapts immediately to the order-enriched setting.)

Moreover, H⊥
e is a reflective subcategory of X whose units are order-epimorphisms.

Indeed, the reflection of an object X of X is the wide pushout of all morphisms h in

all pushouts (5.12).

Since h is an order-epimorphism and X has weighted colimits (thus, h and f are

collectively order-epic), it is clear that h is also an order-epimorphism. Analogously, a

wide pushout of order-epimorphisms is an order-epimorphism. Thus, if R : X −→ H⊥
e

denotes the reflector, the units ηX : X −→ RX are all order-epimorphisms.

(2) The set

Ĥ0 = {Rh | h in H0}

of morphisms of the locally ranked category H⊥
e fulfills, by Theorem 6.10, that

LInjH⊥
e
(Ĥ0) is reflective in H⊥

e .

(The lower index is used to stress in which category the injectivity is considered.)

Consequently, LInjH⊥
e
(Ĥ0) is a reflective subcategory of X . The theorem will be

proved by verifying that

LInjX (H) = LInjH⊥
e
(Ĥ0).

We prove that (a) LInjX (H) is a subcategory of LInjH⊥
e
(Ĥ0) and (b) the other way

round.

(a1) Every object X of X Kan-injective w.r.t. H is clearly an object of H⊥
e ; we
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prove that it is Kan-injective w.r.t. Rh in Ĥ0.

A
h //

ηA

��
//
//
//

fηA

""

A′

ηA′

��



(fηA)/h

{{

RA
Rh //

f

��
00
00
00

RA′

f̂

��



X

Given f : RA −→ X, the morphism (fηA)/h factorises, since X is in H⊥
e ,

through ηA′ : we have a unique f̂ such that the diagram above commutes. Then

f̂ = f/Rh.

Indeed, f̂ · Rh = f . And given g : RA′ −→ X with f ≤ g · Rh, then f · ηA ≤
g · Rh · ηA = g · ηA′ · h which implies (fηA)/h ≤ g · ηA′ . Recall that R is a

reflector of H⊥
e and ηA′ is an order-epimorphism. Thus f̂ ≤ g, as desired.

(a2) Every morphism p : X −→ Y of X Kan-injective w.r.t. H lies in the (full)

subcategory H⊥
e , and we must prove that p is Kan-injective w.r.t. Rh. Given

f : RA −→ X we have seen that f̂ = f/Rh above, and analogously for f1 = p ·
f : RA −→ Y we have f̂1, defined by f̂1 ·ηA′ = (f1ηA)/h, satisfying f̂1 = f1/Rh.

Since p is Kan-injective w.r.t. H, we have

p · f̂ · ηA′ = p · (fηA)/h = (pfηA)/h = (f1ηA)/h = f̂1 · ηA′

and this implies p · f̂ = f̂1 since ηA′ is order-epic. Thus

p · (f/Rh) = p · f̂ = f̂1 = (pf)/Rh

as required.

(b1) Every object X of H⊥
e Kan-injective w.r.t. Ĥ0 is Kan-injective w.r.t. H. We

only need to consider h : A −→ A′ in H0.

A
h //

ηA

��
88

88
88

8

f

((

A′

ηA′

����
��
��
�

f/h

vv

RA
Rh //

f♯

��
--
--
--
--
--
--

RA′

f♯/Rh

����
��
��
��
��
��
�

X

Given f : A −→ X, since X is in H⊥
e , we have a unique f ♯ : RA −→ X with

f = f ♯ηA. And we define

f/h = (f ♯/Rh) · ηA′ .
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This morphism has both of the required properties: firstly

(f/h) · h = (f ♯/Rh) · ηA′ · h
= (f ♯/Rh) ·Rh · ηA
= f ♯ · ηA
= f.

Secondly, given g : A′ −→ X with f ≤ g·h, there exists a unique g♯ : RA′ −→ X

with g = g♯ · ηA′ . From

f ♯ · ηA = f ≤ g · h = g♯ · ηA′ · h = g♯ ·Rh · ηA

we derive, since ηA is an order-epimorphism, that f ♯ ≤ g♯ · Rh. Since clearly

(g♯Rh)/Rh ≤ g♯, we conclude

f/h = (f ♯/Rh) · ηA′

≤
(
(g♯Rh)/Rh

)
· ηA′

≤ g♯ · ηA′

= g.

(b2) Every morphism p : X −→ Y of H⊥
e Kan-injective w.r.t. H0 is Kan-injective

w.r.t. H. Again, we only need to consider h in H0. Given f : A −→ X we have

f/h = (f ♯/Rh)·ηA′ . Put f1 = p·f and obtain the corresponding f ♯
1 : RA −→ Y

with f1/h = (f ♯
1/Rh) · ηA′ . Then f1 = p · f implies f ♯

1 · ηA = p · f ♯ · ηA, and
since ηA is an order-epimorphism, we conclude f ♯

1 = p · f ♯. Consequently, from

the Kan-injectivity of p w.r.t. Rh we obtain the desired equality:

p · (f/h) = p · (f ♯/Rh) · ηA′

=
(
(pf ♯)/Rh

)
· ηA′

= (f ♯
1/Rh) · ηA′

= f1/h

= (pf)/h.

7. A counterexample

We give an example of a proper class H of continuous maps in Top0 for which the Kan-

injectivity category LInj(H) is not reflective. The example is based on ideas of (Adámek

and Rosický 1988).
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(1) We denote by C the following category

Cc0

~~

c1

{{ww
ww
ww
w

c2
��

ci

++VVV
VVVVV

VVVVV
VVVVV

VVV

A0
a01 //

b0k 00

A1
a12 //

b1k ##G
GG

GG
G A2

a23 //

b2k
��

. . . Ai
//

bik

tthhhh
hhhh

hhhh
hhhh

hhhh
. . .

Bk

It consists of a transfinite chain aij : Ai −→ Aj (i ≤ j in Ord) and, for every ordinal

k, a cocone bik : Ai −→ Bk (i ∈ Ord) of that chain. Furthermore, there are morphisms

ci : C −→ Ai (i in Ord) with free composition modulo the equations

bkk · ck = bik · ci, for all i ≥ k

In particular, we have

bkk · ck ̸= bik · ci, for all i < k

This category is concrete, i.e., it has a faithful functor into Set. For example, take

U : C −→ Set with UBi = UAi = {t ∈ Ord | t ≤ i} and UC = {0}. The morphisms

Uaij are then the inclusions, Ubik(t) = max(t, k) and Uci(0) = i.

Václav Koubek proved in (Koubek 1975) that every concrete category has an almost

full embedding E : C −→ Top2 into the category Top2 of topological Hausdorff spaces.

This means that E is faithful and maps morphisms of C into nonconstant mappings,

and every nonconstant continous map p : EX −→ EY has the form p = Ef for a

unique f : X −→ Y in C .

(2) For the proper class

H = {Ea0i | i ∈ Ord}
in Top0 we prove that the space EA0 does not have a reflection in LInj(H). We first

verify that all spaces EBk are Kan-injective:

EA0
Ea0i //

f
##G

GG
GG

GG
G EAi

f/Ea0i{{xx
xx
xx
xx

EBk

Given i ∈ Ord and f : EA0 −→ EBk we find f/Ea0i as follows:

(a) If f is nonconstant, then f = Eb0k and we claim that f/Ea0i = Ebik. For that it

is sufficient to recall that EBk is a Hausdorff space, thus, given g : EAi −→ EBk

with f ≤ g · Ea0i, it follows that f = g · Ea0i. Hence, g is also nonconstant. But

then g = Ebik.

(b) If f is constant, then we claim that f/Ea0i is the constant function with the same

value. For that, take again g with f ≤ g · Ea0i and conclude f = g · Ea0i. This

implies that g is constant (and thus g = f/Ea0i) because otherwise g = Ebik, but

the latter implies f = Ebik ·Ea0i = Eaik which is nonconstant — a contradiction.

(3) Suppose that r : EA0 −→ R is a reflection of EA0 in LInj(H). We derive a contradic-
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tion by proving that there exists a proper class of continuous functions from EC to

R.

Since r is Kan-injective, for every i ∈ Ord we have

ri = r/Ea0i : EAi −→ R

And the Kan-injectivity of EBk implies that there exists a Kan-injective morphism

sk : R −→ EBk with Eb0k = sk · r

See the diagram

EA0
Ea0i //

r

%%KK
KKK

KKK

Eb0k

��
88

88
88

88
88

88
8 EAi

ri

yysss
sss

ss

Ebik

����
��
��
��
��
��
�

R
sk

��

EBk

Then, due to Kan-injectivity of sk, we have

sk · ri = sk · (r/Ea0i) = (Ea0i)/(Eb0k)

and in part ((2)a) above we have seen that the last morphism is Ebik. Thus the above

diagram commutes. For all k > i we have bkk · ck ̸= bik · ci, therefore, Ebkk · Eck ̸=
Ebik · Eci. Thus

sk · rk · Eck ̸= sk · ri · Eci

which implies

rk · Eck ̸= ri · Eci : EC −→ R

for all k > i in Ord. This is the desired contradiction.

8. Weak Kan-injectivity and right Kan-injectivity

It may seem more natural to define left Kan-injectivity of an object X w.r.t. h : A −→ A′

by requiring only that for every morphism f : A −→ X a left Kan extension f/h : A′ −→
X exists. Thus, we only have f ≤ (f/h) · h, but not necessarily an equality.

Example 8.1. For the morphism

• • •h−→

in Pos, the left Kan-injective objects in the above weak sense are precisely the join-

semilattices.

Definition 8.2. Let h : A −→ A′ be a morphism.

(1) An object X is called weakly left Kan-injective w.r.t. h if for every morphism f :

A −→ X a left Kan extension f/h : A′ −→ X of f along h exists.
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(2) A morphism p : X −→ Y between weakly left Kan-injective objects is called weakly

left Kan-injective if p · (f/h) = (pf)/h holds for all f : A −→ X.

Remark 8.3. When comparing Examples 8.1 and 2.5 we see that in some cases (strong)

left Kan-injectivity seems more “natural” than the weak one. Theorem 8.5 indicates that

the weak notion is, moreover, not really needed.

Notation 8.4. For every class H of morphisms of an order-enriched category X we

denote by

LInjw (H)

the category of all objects and morphisms of X that are weakly left Kan-injective w.r.t.

all members of H.

Theorem 8.5. In every locally ranked order-enriched category X , given a set H of

morphisms there exists a class H of morphisms such that

LInjw (H) = LInj(H)

Proof.

(1) The category X has cocomma objects, i.e., given a span A D
q

//
p

oo B there

exists a couniversal square

D
q

//

p

��

B

q

��

A
p

//

≤

C

Its construction is analogous to the construction of pushouts via coequalisers: form a

coproduct A
iA //A+B B

iBoo and a coinserter

D
iB ·q

//

iA·p
��

A+B

c

��

A+B
c

//

≤

C

Then put p = c · iA and q = c · iB.
(2) The category LInjw (H) is reflective. The proof is completely analogous to that of

Theorem 5.6, except that Construction 5.2 needs one modification: in diagram (5.11)

we do not require equality but inequality:

A

f

��

h // A′

f�h

��

Xi
//___

≤

Xi+1
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Thus, given h in H and f : A −→ Xi we form a cocomma object

A

f

��

h // A′

f

��

Xi
h

//

≤

C

Then Xi
//___ Xi+1 is the wide pushout of all h (with the colimit cocone cf,h :

C −→ Xi+1) and we put f�h = cf,h · f .
(3) The category LInjw (H) is also inserter-ideal: the proof is completely analogous to that

of Lemma 4.2. By Theorem 4.11 LInjw (H) is a KZ-monadic category.

(4) Let H denote the collection of all reflection maps of objects of X in LInjw (H). Then

LInjw (H) = LInj(H)

holds by Proposition 4.9.

Remark 8.6. There is another obvious variation of Kan-injectivity, using right Kan

extensions instead of left ones. Given h : A −→ A′ and f : A −→ X we denote by

f\h : A′ −→ X the largest morphism with

A
h //

f
��
66

66
66

≥

A′

f\h
����
��
��
�

X

Definition 8.7.

(1) An object X is right Kan-injective w.r.t. h : A −→ A′ provided that for every

morphism f : A −→ X a right Kan extension f\h exists and fulfils

f = (f\h) · h.

(2) A morphism p : X −→ Y is right Kan-injective w.r.t. h : A −→ A′ provided that

both X and Y are, and for every morphism f : A −→ X we have

p · (f\h) = (pf)\h.

Notation 8.8. RInj(H) is the subcategory of all right Kan-injective objects and mor-

phisms w.r.t. all members of H.

Remark 8.9.

(1) If X co denotes the category obtained from X by reversing the ordering of homsets

(thus leaving objects, morphisms and composition as before), then every class H of

morphisms in X yields a right Kan-injectivity subcategory RInj(H) of X as well as

a left Kan-injectivity subcategory LInj(H) in X co , and we have

RInj(H) = (LInj(H))co .



Kan injectivity in order-enriched categories 31

Thus, in a sense, right Kan-injectivity is not needed. However, in some examples it is

more intuitive to work with this concept.

(2) Analogously, left Kan-injectivity in the opposite category X op (where just the arrows

are reversed and the order on homsets is unchanged) leads to left Kan-projectivity .

Left Kan extensions in X op are called left Kan liftings, see, e.g., (Lack 2009). In

more detail, an object X in X is left Kan-projective w.r.t. h : A′ −→ A provided

that for every morphism f : X −→ A there is a left Kan lifting (h, f) : X −→ A′ of

f through h and the triangle

X
(h,f)

//

f
��
@@

@@
@@

@@
A′

h
~~~~
~~
~~
~~

A

commutes. A morphism p : X ′ −→ X is said to be left Kan-projective, if both X and

X ′ are and p respects the above left Kan lifting, i.e., (h, f) · p = (h, f · p).
(3) Finally, combining the above two duals, left Kan-injectivity in X coop (i.e., both the

order on homsets and the arrows of X are reversed) leads to the concept of right

Kan-projectivity in X . Left Kan extensions in X coop are called right Kan liftings in

X , see (Lack 2009).

Example 8.10. We have considered Top0 above as an ordered category with respect to

the specialisation order. Thus Topco0 is the same category with dual of the specialisation

order on homsets. This is the prefered enrichment of many authors. The examples of

LInj(H) in Section 2 become, under the last enrichment of Top0, examples of RInj(H).

9. Conclusion and open problems

For locally ranked categories (which is a wide class containing all locally presentable

categories and Top) it is known that orthogonality w.r.t. a set of morphisms defines a

full reflective subcategory. And the latter is the Eilenberg-Moore category of an idem-

potent monad. In our paper we have proved the order-enriched analogy: given an order-

enriched, locally ranked category, then Kan-injectivity w.r.t. a set of morphisms defines

a (not generally full) reflective subcategory. The monad this creates is a Kock-Zöberlein

monad whose Eilenberg-Moore category is the given subcategory. And conversely, ev-

ery Eilenberg-Moore category of a Kock-Zöberlein monad is specified by Kan-injectivity

w.r.t. all units of the monad. On the other hand, we have presented a class of continuous

maps in Top0 whose Kan-injectivity class is not reflective.

Our main technical tool was the concept of an inserter-ideal subcategory: we proved

that every inserter-ideal reflective subcategory is the Eilenberg-Moore category of a Kock-

Zöberlein monad. And given any class of morphisms, Kan-injectivity always defines an

inserter-ideal subcategory.

It is easy to see that for every set of morphisms in an order-enriched locally pre-

sentable category the Kan-injectivity subcategory is accessibly embedded, i.e., closed

under κ-filtered colimits for some infinite cardinal κ. It is an open problem whether ev-
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ery inserter-ideal, accessibly embedded subcategory closed under weighted limits is the

Kan-injectivity subcategory for some set of morphisms. This would generalise the known

fact that the orthogonality to sets of morphisms defines precisely the full, accessibly

embedded subcategories closed under limits, see (Adámek and Rosický 1988).

In case of orthogonality, a morphism h is called a consequence of a set H of morphisms

provided that objects orthogonal to H are also orthogonal w.r.t. h. A simple logic of

orthogonality, making it possible to derive all consequences of H, is known (Adámek

et. al 2009). Despite the strong similarity between orthogonality and Kan-injectivity, we

have not been so far able to find a (sound and complete) logic for Kan-injectivity.
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J. Adámek, H. Herrlich, J. Rosický and W. Tholen, On a generalized small-object argument for

the injective subcategory problem, Cah. Topol. Géom. Différ. Catég. XLIII (2002), 83–106.
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