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1. Introduction

Laguerre-Hahn orthogonal polynomials arise in several subjects of mathe-
matics, such as probability theory [9], differential equations [8, 14, 17], mea-
sure perturbation theory [6], constructive theory of approximation [11].

From an analytical point of view, Laguerre-Hahn orthogonal polynomials
can be regarded as a generalization of semi-classical orthogonal polynomi-
als, since they are related to Stieltjes functions that are solutions of Riccati
differential equations

AS ′ = BS2 + CS +D , (1)

where A−D are polynomials (note that in the semi-classical case there holds
B ≡ 0) [1, 7, 15].

In this paper we present a study of the Laguerre-Hahn families of orthog-
onal polynomials in terms of matrix Sylvester differential equations. Such a
connection is established by means of the equivalence between (1) and the
matrix Sylvester differential equations

AY ′
n = BnYn − YnC , n ≥ 0 , (2)
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where Yn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
, with {Pn} the sequence of monic orthogonal

polynomials related to S and {P (1)
n } the corresponding sequence of asso-

ciated polynomials (also known as the numerator polynomials), and Bn, C
matrices with polynomial entries. The theory of matrix Sylvester differential
equations [16] provides a representation for the solutions of (2) in terms of
the solutions of two first order linear systems, which we will relate to the
semi-classical orthogonal polynomials.

Our first main result is contained in Theorem 1, where we show the equiv-
alence between (1), (2),

AQ′
n = (Bn + (BS + C/2)I)Qn , Qn =

[
qn+1

qn

]
, n ≥ 0 , (3)

and

AA′
n = BnAn −AnBn−1 , An =

[
x− βn −γn

1 0

]
, n ≥ 1 , (4)

with qn the functions of the second kind, I the identity matrix, and where
βn, γn are the recurrence relation coefficients of {Pn}.

As a consequence of the previous equivalence, we obtain that a necessary
and sufficient condition for a sequence of monic polynomials {Pn}, orthog-
onal with respect to a weight w, to be semi-classical is that the following
differential system holds (cf. Theorem 2):

AỸ ′
n = (Bn − C/2 I) Ỹn , Ỹn =

[
Pn+1 qn+1/w
Pn qn/w

]
, n ≥ 1 ,

where C is a polynomial (similar differential systems had been studied, for
example, in [13, Section 3]). Such a characterization for semi-classical or-
thogonal polynomials allows us to deduce a representation for the solutions
of (2) as Yn = P̃nL−1, where L satisfies AL′ = CL and P̃n is defined in terms
of a semi-classical family, say {P̃n} (cf. Lemma 3 and Theorem 4). Further-
more, it is shown that the Stieltjes functions related to {Pn} and {P̃n} are a
fractional linear transformation of each other (cf. Lemma 3).

The above referred results will be applied to the study of the Laguerre-
Hahn family of class zero, i.e., max{deg(A), deg(B)} ≤ 2 and deg(C) = 1
in (1): in the Theorem 5 we show the solutions of the equation (4) in closed
form expressions for the recurrence relation coefficients; in the Theorem 6
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we show a representation of a given sequence of Laguerre-Hahn orthogonal
polynomials.

Let us emphasize that the equations (4), enclosing nonlinear difference
equations for the recurrence coefficients βn and γn, are given by the Lax pair

Yn = AnYn−1 , AY ′
n = BnYn − YnC .

The equations (4) can be viewed as comparable to the so-called Laguerre-
Freud’s equations that hold for semi-classical families [12]. There are stud-
ies on the recurrence coefficients of (semi-classical) orthogonal polynomials
showing its relevance in the theory of integrable systems and Painlevé equa-
tions, and we refer the reader to [13] and the references therein (see also [4]).

This paper is organized as follows. In Section 2 we give the definitions and
state the basic results which will be used in the forthcoming sections. In
Section 3 we establish the equivalence between (1), (2), (3), (4), and we de-
duce the characterization for semi-classical orthogonal polynomials in terms
of first order differential systems. In Section 4 we study the representation
of Laguerre-Hahn orthogonal polynomials. The Section 5 is devoted to the
study of Laguerre-Hahn orthogonal polynomials of class zero.

2. Preliminary Results

Let P = span {zk : k ∈ N0} be the space of polynomials with complex
coefficients, and let P

′ be its algebraic dual space. We will denote by 〈u, f〉
the action of u ∈ P

′ on f ∈ P.
Given the moments of u, un = 〈u, xn〉, n ≥ 0, where we take u0 = 1, the

principal minors of the corresponding Hankel matrix are defined by Hn =
det((ui+j)

n
i,j=0), n ≥ 0, where, by convention, H−1 = 1. u is said to be quasi-

definite (respectively, positive-definite) if Hn 6= 0 (respectively, Hn > 0), for
all n ≥ 0.

Definition 1. (see [18]) Let u ∈ P
′ and let {Pn}n≥0 be a sequence of poly-

nomials such that deg(Pn) = n , n ≥ 0 . {Pn} is said to be a sequence of
orthogonal polynomials with respect to u if

〈u, PnPm〉 = hnδn,m , hn = 〈u, P 2
n〉 6= 0 , n,m ≥ 0 . (5)

Throughout the paper we shall take each Pn monic, that is, Pn(z) = zn+
lower degree terms, and we will denote {Pn} by SMOP.

The equivalence between the quasi-definiteness of u ∈ P
′ and the existence

of a SMOP with respect to u is well-known in the literature of orthogonal
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polynomials (see [5, 18]). Furthermore, if u is positive-definite, then it has
an integral representation in terms of a positive Borel measure, µ, supported
on an infinite set of points of the real line, I, such that

〈u, xn〉 =

∫

I

xn dµ(x) , n ≥ 0 , (6)

and the orthogonality condition (5) becomes
∫

I

Pn(x)Pm(x)dµ(x) = hnδn,m , hn > 0 , n,m ≥ 0 .

Further, if µ is defined in terms of a weight w, dµ(x) = w(x)dx, then we will
also say that {Pn} is orthogonal with respect to w.

Monic orthogonal polynomials satisfy a three term recurrence relation [18]

Pn+1(x) = (x− βn)Pn(x) − γnPn−1(x) , n = 1, 2, . . . (7)

with P0(x) = 1, P1(x) = x− β0 and γn 6= 0, n ≥ 1, γ0 = 1.

Definition 2. Let {Pn} be the SMOP with respect to a linear functional u.
The sequence of associated polynomials is defined by

P (1)
n (x) = 〈ut,

Pn+1(x) − Pn+1(t)

x− t
〉 , n ≥ 0 ,

where ut denotes the action of u on the variable t.

Definition 3. The Stieltjes function of u ∈ P′ is defined in terms of the

moments, (un), of u by S(x) = −
+∞∑

n=0

un

xn+1
.

S has an expansion in terms of a continued fraction, given by

S(x) =
1

x− β0 −
γ1

x− β1 − γ2

...

(8)

where the γ’s and the β’s are the three term recurrence relation coefficients
of the corresponding SMOP. Note that if u is positive-definite, defined by (6),

then S is given by S(x) =

∫

I

dµ(t)

x− t
, x ∈ C \ I .

The sequence of functions of the second kind corresponding to {Pn} is
defined as follows:

qn+1 = Pn+1S − P (1)
n , n ≥ 0 , q0 = S .
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Definition 4. (see [15]) A Stieltjes function, S, is said to be Laguerre-Hahn
if there exist polynomials A,B,C,D, with A 6= 0, such that it satisfies a
Riccati differential equation

AS ′ = BS2 + CS +D. (9)

The corresponding sequence of orthogonal polynomials is called Laguerre-
Hahn. If B = 0, then S is said to be Laguerre-Hahn affine or semi-classical.

If S is related to a positive-definite linear functional defined in terms of a
weight, w, then the semi-classical character of S means w′/w = C/A, with
A,C polynomials, and such a differential equation is equivalent to AS ′ =
CS +D, where D is a polynomial given in terms of A,C (see [15]).

Note that (9) is equivalent to the distributional equation [7, 15]

D(Au) = ψu +B(x−1u2) , ψ = A′ + C .

In the sequel we will use the following matrices:

Yn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
, Ỹn =

[
Pn+1 qn+1/w
Pn qn/w

]
, Qn =

[
qn+1

qn

]
, n ≥ 0 . (10)

Lemma 1. Let {Pn} be a SMOP and let βn, γn be the coefficients of the three

term recurrence relation (7). Let {Yn}, {Ỹn}, {Qn} be the sequences defined
in (10). Then,

(a) Yn and Ỹn satisfy the difference equation

Xn = AnXn−1 , An =

[
x− βn −γn

1 0

]
, n ≥ 1 , (11)

with initial conditions Y0 =

[
x− β0 1

1 0

]
, Ỹ0 =

[
x− β0 q1/w

1 q0/w

]
;

(b) Qn satisfies

Qn = AnQn−1 , n ≥ 1 , (12)

with An given in (11) and initial conditions Q0 =

[
(x− β0)S − 1

S

]
.

Throughout the paper I denotes the 2×2 identity matrix. The (i, j) entry
of a matrix X will be denoted by X(i,j).
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3. Characterization in terms of matrix Sylvester differ-

ential equations

Theorem 1. Let S be a Stieltjes function, let {Yn} and {Qn} be the corre-
sponding sequences defined in (10), and let βn, γn be the corresponding recur-
rence relation coefficients. The following statements are equivalent:
(a) S satisfies

AS ′ = BS2 + CS +D , A,B, C,D ∈ P ;

(b) Yn satisfies the matrix Sylvester equation

AY ′
n = BnYn − YnC , n ≥ 0 , (13)

where

Bn =

[
ln Θn

−Θn−1/γn ln−1 + (x− βn)Θn−1/γn

]
, C =

[
C/2 −D
B −C/2

]

with ln,Θn polynomials of uniformly bounded degrees, satisfying the initial
conditions

A = (l0 − C/2)(x− β0) −B + Θ0 , 0 = D(x− β0) + l0 + C/2 ,

Θ−1 = D, l−1 = C/2 ; (14)

(c) the matrices defined in (11), An =

[
x− βn −γn

1 0

]
, satisfy

AA′
n = BnAn −AnBn−1 , n ≥ 1 ; (15)

(d) Qn satisfies

AQ′
n = (Bn + (BS + C/2)I)Qn , n ≥ 0 .

Proof : Taking into account [3, Theorem 2] we only need to prove (b) ⇔ (c).
(b) ⇒ (c). To obtain (15) we take derivatives on Yn = AnYn−1 (cf. (11)), and
substitute it in (13), thus obtaining

AA′
nYn−1 +AAnY

′
n−1 = BnYn − YnC .

Using (13) for n− 1 in the previous equation we get

AA′
nYn−1 + An (Bn−1Yn−1 − Yn−1C) = BnYn − YnC .

Using the recurrence relation (11) for Yn we obtain

AA′
nYn−1 + An (Bn−1Yn−1 − Yn−1C) = BnAnYn−1 −AnYn−1C ,
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that is,

AA′
nYn−1 = (BnAn −AnBn−1)Yn−1 .

Since Yn is nonsingular, for all n ≥ 0 , there follows (15).
(c) ⇒ (b). If we multiply (15) by Yn−1, we obtain

A(AnYn−1)
′ −AAnY

′
n−1 = BnAnYn−1 −AnBn−1Yn−1 .

Taking into account the recurrence relation (11) for Yn we get

AY ′
n − BnYn = An(AY

′
n−1 − Bn−1Yn−1) ,

thus

AY ′
n − BnYn = An · · · A2(AY

′
1 − B1Y1) .

The use of An · · · A2 = YnY
−1
1 in the preceding equation yields an equation

for Yn of the Sylvester type (13), AY ′
n = BnYn−YnC̃, with C̃ = −Y −1

1 (AY ′
1 −

B1Y1).

Corollary 1. The following relations hold:

tr(Bn) = 0 , n ≥ 0 , (16)

det(Bn) = det(B0) +A
n∑

k=1

Θk−1

γk
, n ≥ 1 , (17)

and det(B0) = D(A+ B) − (C/2)2 .

Proof : The formulas for the trace and determinant of the matrices Bn in-
volved in equations of the same type as (15) were deduced in [2, Lemma 2.5].
The use of the initial conditions (14) yields (16) and (17).

Remark 1. Since tr(Bn) = 0, henceforth we parameterize the matrix Bn in

terms of the two functions ln and Θn as Bn =

[
ln Θn

−Θn−1/γn −ln

]
.

Remark 2. Equation (15) reads as
{

(x− βn)(ln − ln−1) = A− Θn + γn

γn−1
Θn−2

ln − ln−2 = − (x−βn)
γn

Θn−1 + (x−βn−1)
γn−1

Θn−2 , n ≥ 1 ,

which are comparable with the so-called Laguerre-Freud’s equations [12, 13].
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3.1. Characterization of semi-classical orthogonal polynomials. As
a consequence of the previous theorem we deduce the characterization that
follows.

Theorem 2. Let {Pn} be a SMOP with respect to a weight w, and let
{qn} be the corresponding sequence of functions of the second kind. The

weight w is semi-classical and satisfies w′/w = C/A if, and only if, Ỹn =[
Pn+1 qn+1/w
Pn qn/w

]
satisfies the matrix differential equation

AỸ ′
n =

(
Bn −

C

2
I

)
Ỹn , n ≥ 1 , (18)

where Bn is the matrix associated with the equation AS ′ = CS + D for the
Stieltjes function of w.

Proof : Note that w′/w = C/A implies AS ′ = CS + D, D ∈ P, for the cor-
responding Stieltjes function (see [15]). Taking into account the Theorem 1
we get {

AP ′
n+1 = (ln − C/2)Pn+1 + ΘnPn

Aq′n+1 = (ln + C/2)qn+1 + Θnqn , n ≥ 0 .
(19)

Therefore, using the three term recurrence relation (7) for {Pn} we obtain

AP ′
n =

(
ln−1 − C/2 +

(x− βn)

γn
Θn−1

)
Pn −

Θn−1

γn
Pn+1 , n ≥ 1 . (20)

From (19) there follows

A
(qn+1

w

)′
= Θn

qn
w

+ (ln − C/2)
qn+1

w
, (21)

where we used w′/w = C/A. Furthermore, using the three term recurrence
relation for {qn} (cf. (12)) we obtain

A
(qn
w

)′
=

(
ln−1 − C/2 +

(x− βn)

γn
Θn−1

)
qn
w

− Θn−1

γn

qn+1

w
, n ≥ 1 . (22)

Equations. (19)-(22) yield

AỸ ′
n = B̃nỸn , B̃n =

[
ln − C/2 Θn

−Θn−1/γn ln−1 + (x− βn)Θn−1/γn − C/2

]
, n ≥ 1 ,

thus we get (18).
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Conversely, if Ỹn satisfies (18), then

(det(Ỹn))
′ =

tr(Bn − C/2 I)

A
det(Ỹn) .

Since det(Ỹn) = (γ1 . . . γn)/w and tr(Bn−C/2 I) = −C, there follows w′/w =
C/A, thus w is semi-classical.

Remark 3. The analogue result for orthonormal polynomials was established
in [13].

4. Matrix Sylvester equations and Radon’s Lemma

The theorem that follows is a particular case of the result known, in the
literature of matrix Riccati equations, as Radon’s Lemma [10, 16].

Theorem 3. Let A be a polynomial, let Bn/A, n ≥ 1, and C/A be matrices
whose entries are integrable functions in a domain G of the complex plane,
and let x0 ∈ G. If the matrices Pn and L, L nonsingular, satisfy{

AL′ = CL ,
L(x0) = I ,

(23)

and {
AP ′

n = BnPn , n ≥ 1 ,
Pn(x0) = Yn(x0) ,

(24)

then the solution of AY ′
n = BnYn − YnC, in G, is given by:

Yn = PnL−1 , n ≥ 1 .

Our aim is to find a representation for Yn satisfying (13),AY ′
n = BnYn−YnC,

related to AS ′ = BS2 +CS +D (cf. Theorem 1). To that end we start with
some remarks on the solution of the corresponding problem (24). Note that
we are searching for matrices Pn of order two satisfying

AP ′
n = BnPn . (25)

Hereafter we will consider x1 ∈ C and C̃ a polynomial such that
∫ x

x1

C̃(t)
2A(t)dt is

defined in suitable domains.

Lemma 2. Let Bn be the matrices given in (13), and let C̃ be a polynomial.

A matrix Ỹn satisfies
AỸ ′

n = (Bn − C̃/2 I)Ỹn (26)

if, and only if, Pn = e
∫ x

x1

C̃

2A
dt
Ỹn satisfies (25).
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Taking into account the previous Lemma, we will solve (25) by considering

Pn = e
∫ x

x1

C̃

2A
dt
Ỹn ,

where Ỹn satisfies (26). Furthermore, taking into account the Theorem 2, we

will search for Ỹn defined by

Ỹn =

[
P̃n+1 q̃n+1/w̃

P̃n q̃n/w̃

]
, (27)

with {P̃n} a SMOP with respect to a weight function w̃ and {q̃n} the corre-
sponding sequence of functions of the second kind.

Remark 4. Note that (26) implies det(Ỹn)
′ = tr(Bn−C̃/2 I)

A
Ỹn, which combined

with (27) yields w̃′/w̃ = C̃/A, thus w̃ = e
∫

C̃/A.

Lemma 3. Let S be a Stieltjes function that satisfies the Riccati differen-
tial equation AS ′ = BS2 + CS + D. Let {Pn} be the corresponding SMOP
such that the equations (13), AY ′

n = BnYn − YnC, hold, and let (24) be the
corresponding system AP ′

n = BnPn. Let the following assumption hold:

∃C̃ ∈ P, ∃n0 ≥ 1 : Pn = e
∫ x

x1

C̃(t)
2A(t) dt

Ỹn−n0
, n ≥ n0 + 1 , (28)

with the Ỹn’s given as in (27), related to a SMOP {P̃n}. Denote by S̃ the
Stieltjes functions related to {P̃n}. Then, the following statements hold:
(a) S̃ is a fractional linear transformation of S,

S̃ =
a+ bS

c+ dS
, a, b, c, d ∈ P ; (29)

(b) S̃ satisfies

AS̃ ′ = C̃S̃ + D̃ , D̃ ∈ P , (30)

the polynomials C̃, D̃ being related to B,C,D by

(bc− ad)B = (bd′ − b′d)A+ bdC̃ + d2D̃ , (31)

(bc− ad)C = (bc′ + ad′ − b′c− a′d)A+ (ad+ bc)C̃ + 2cdD̃ , (32)

(bc− ad)D = (ac′ − a′c)A+ ac C̃ + c2D̃ . (33)

Proof : (a). Let us denote by Ãn the matrices of the recurrence relation of

{Ỹn}. From Pn = e
∫ z

z1

C̃

2A
dt
Ỹn−n0 and Ỹn−n0 = Ãn−n0Ỹn−n0−1 there follows

Pn = Ãn−n0
Pn−1 , n ≥ n0 + 1 . (34)
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The substitution of (34) into AP ′
n = BnPn yields

A(Ãn−n0
Pn−1)

′ = BnÃn−n0
Pn−1 , n ≥ n0 + 1 ,

from which we obtain

AÃ′
n−n0

= BnÃn−n0
− Ãn−n0

Bn−1 , n ≥ n0 + 1 . (35)

Using the equations enclosed in the positions (2, 1) and (2, 2) of (35) we
obtain

γ̃n−n0
= γn, β̃n−n0

= βn, n ≥ n0 + 1 .

Consequently, taking into account the representation of the Stieltjes function
in terms of a continued fraction (8), (29) follows.
(b). From (28) we obtain that {P̃n} is semi-classical, and the corresponding
w̃ satisfies w̃′/w̃ = C̃/A (note the remark 4). Thus, the first order differential
equation (30) for the corresponding Stieltjes function, S̃, follows.

By substituting S̃ given by (29) in (30) we get

A(bc− ad)S ′ = B1S
2 + C1S +D1 (36)

with

B1 = (bd′ − b′d)A+ bdC̃ + d2D̃ ,

C1 = (bc′ + ad′ − b′c− a′d)A+ (ad+ bc)C̃ + 2cdD̃ ,

D1 = (ac′ − a′c)A+ acC̃ + c2D̃.

Since S satisfies AS ′ = BS2 + CS + D as well as (36), there follows, if
A−D and B1 −D1 are non vanishing, that

̺ =
B

B1
=

C

C1
=

D

D1
, ̺ = 1/(bc− ad) .

Hence, we obtain (31)-(33).

Theorem 4. Let S be a Stieltjes function satisfying AS ′ = BS2 + CS +D.
To AS ′ = BS2 +CS+D associate AY ′

n = BnYn−YnC and the corresponding
systems (23) and (24), AL′ = CL, AP ′

n = BnPn. Let G be a domain in
the complex plane such that the entries of the matrices Bn/A and C/A are
integrable in G. Assume that the assumption (28) holds. Then, there exists

a polynomial C̃ (defined by (31)-(33)) and a weight function w̃ = e
∫

C̃

A such
the following representation holds in G:

Yn =

[ √
w̃P̃n−n0+1 q̃n−n0+1/

√
w̃√

w̃P̃n−n0 q̃n−n0/
√
w̃

]
EnL−1 , n ≥ n0 + 1 ,
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with {P̃n} the SMOP with respect to w̃, {q̃n} the corresponding sequence of
functions of the second kind, and En = Pn(x0)

−1Yn(x0), x0 ∈ G.

Proof : The result follows from the Theorem 3 combined with the Lemma 3
(note the remark 4).

5. Laguerre-Hahn orthogonal polynomials of class zero

Laguerre-Hahn orthogonal polynomials of class zero are related to Stieltjes
functions, S, satisfying

AS ′ = BS2 + CS +D , deg(C) = 1 , max{deg(A), deg(B)} ≤ 2 .

There are, up to a linear change of variable, three canonical cases for the
triples of polynomials satisfying the above Riccati differential equation, ac-
cording to the degree of A be zero, one or two [1].

In subsection 5.1 we will show the solutions of the corresponding difference
equation (15) in the class zero: we give closed form expressions for the recur-
rence relation coefficients of the orthogonal polynomials. In subsection 5.2
we will use Radon’s Lemma in order to obtain representations for a sequence
of Laguerre-Hahn orthogonal polynomials.

5.1. The recurrence relation coefficients.

Theorem 5. Let S be a Stieltjes function satisfying AS ′ = BS2+CS+D with
deg(C) = 1,max{deg(A), deg(B)} ≤ 2. Let A(x) = a2x

2 + a1x + a0, B(x) =
b2x

2 + b1x + b0, C(x) = c1x + c0. The recurrence relation coefficients of the
SMOP {Pn} related to S are given by

βn =
(r2

1 − a2
2)β1 + 2a1(n− 1)(r1 − (n− 1)a2)

(r1 − (2n− 1)a2)(r1 − (2n− 3)a2)
, n ≥ 2 , (37)

γn+1 =
r1(r1 − 2a2)γ2 +

∑n
k=2A(βk)(r1 − 2(k − 1)a2)

(r1 − 2na2)(r1 − 2(n− 1)a2)
, n ≥ 2 , (38)

where

β1 =
a1 + 2β0D − c0

r1 − a2
, r1 = Θ0/γ1 , Θ0 = A+B+(x−β0)

2D+(x−β0)C ,

γ1 =
Θ0

2D + c1 − a2
, γ2 =

A(β1) + γ1D

r1 − 2a2
. (39)
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Proof : The corresponding equations (15) read as
{

(x− βn)(ln − ln−1) = A− Θn + γn

γn−1
Θn−2

ln − ln−2 = − (x−βn)
γn

Θn−1 + (x−βn−1)
γn−1

Θn−2 , n ≥ 1 ,
(40)

where the initial conditions hold (cf. (14)):

l−1(x) = C(x)/2 , l0(x) = −(x− β0)D − C(x)/2 ,

Θ−1 = D , Θ0 = A(x) + B(x) + (x− β0)
2D + (x− β0)C(x) .

Note that under the stated conditions on the degrees of A,B,C, one has

ln(x) = ℓn,1x+ ℓn,0 , Θn, D constants. (41)

By substituting (41) into (40) and equating the coefficients of x2, x, x0 we
obtain, for all n ≥ 1,

ℓn,1 − ℓn−1,1 = a2 , (42)

ℓn,0 − ℓn−1,0 = βn(ℓn,1 − ℓn−1,1) + a1 , (43)

−βn(ℓn,0 − ℓn−1,0) = a0 − Θn +
γn

γn−1
Θn−2 ,

ℓn,1 − ℓn−2,1 = −Θn−1

γn
+

Θn−2

γn−1
, (44)

ℓn,0 − ℓn−2,0 = βn
Θn−1

γn
− βn−1

Θn−2

γn−1
. (45)

From (42) and (43) there follows

ℓn,1 = ℓ0,1 + na2 , n ≥ 1 , (46)

ℓn,0 = ℓ0,0 + a2

n∑

k=1

βk + na1 , n ≥ 1 . (47)

Note that (46) and (47) are also valid for n = 0, using the convention
∑j

k=i · =
0 whenever i > j.

The use of (46) for n and n− 2 in (44) yields

Θn−1

γn
=

Θn−2

γn−1
− 2a2 , n ≥ 2 ,

thus
Θn−1

γn
=

Θ0

γ1
− 2(n− 1)a2 , n ≥ 2.
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Note that the above equality also holds for n = 1, thus we get

Θn−1 = (r1 − 2(n− 1)a2)γn , r1 =
Θ0

γ1
, n ≥ 1 . (48)

The use of (47) for n and n−2 as well as (48) for n and n−1 in (45) yields
a2(βn−1 + βn) + 2a1 = βn(r1 − 2(n− 1)a2)− βn−1(r1 − 2(n− 2)a2) , n ≥ 2 ,

that is,

βn(r1 − (2n− 1)a2) = βn−1(r1 − (2n− 5)a2) + 2a1 , n ≥ 2 .

If we multiply the above equation by r1 − (2n− 3)a2 we get

Ln+1 = Ln + 2a1(r1 − (2n− 3)a2) ,

Ln = βn−1(r1 − (2n− 3)a2)(r1 − (2n− 5)a2) .

Therefore, we obtain

Ln+1 = L2 + 2a1

n∑

k=2

(r1 − (2k − 3)a2) , n ≥ 2 ,

thus for n ≥ 2

βn(r1− (2n−1)a2)(r1− (2n−3)a2) = β1(r
2
1−a2

2)+2a1(n−1)(r1− (n−1)a2) ,

thus (37) follows.
To obtain an equation for the γ’s we start by evaluating the first equation

of (40) at βn, thus obtaining

Θn −
γn

γn−1
Θn−2 = A(βn) , n ≥ 1 .

Using (48) for n+ 1 and n− 1 in the above equation we get

γn+1(r1 − 2na2) − γn(r1 − 2(n− 2)a2) = A(βn) , n ≥ 2 .

If we multiply the above equation by r1 − 2(n− 1)a2 we get for n ≥ 2

Tn+1 = Tn+A(βn)(r1−2(n−1)a2) , Tn = γn(r1−2(n−2)a2)(r1−2(n−1)a2) .

Therefore, we obtain

Tn+1 = T2 +
n∑

k=2

A(βk)(r1 − 2(k − 1)a2) , n ≥ 2 ,

thus (38) follows.
(39) follows from the initial conditions.
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5.2. Representations of Laguerre-Hahn orthogonal polynomials of

class zero via Radon’s Lemma: an example.

Lemma 4. Let {Pn} be a SMOP related to AS ′ = BS2 + CS +D, A(x) =
a2x

2 + a1x + a0, B(x) = b2x
2 + b1x + b0, C(x) = c1x + c0 . Then, the matri-

ces Bn =

[
ln Θn

−Θn−1/γn −ln

]
involved in the corresponding equations (13) are

defined by ln(x) = ℓn,1x+ ℓn,0 and Θn constant, where, for all n ≥ 1,

ℓn,1 = c1/2 + (n+ 1)a2 + b2 , (49)

ℓn,0 = c0/2 + (n+ 1)a1 + b1 + β0(b2 + a2) + αna2 , (50)

Θn = (ℓn,0 + c0/2 − (n− 1)a1)αn − (ℓn,1 + c1/2 − (n− 2)a2)νn

−(νn + β0αn − γ1)D + na0 , (51)

and

ℓ0,1 = −D − c1/2 , ℓ0,0 = β0D − c0/2 ,

Θ0 = A+ B + (x− β0)
2D + (x− β0)C , Θ−1 = D , (52)

with

D = −a2 − c1 − b2 , αn =
n∑

k=1

βk , νn =
n∑

1≤i<j≤n

βiβj −
n∑

k=2

γk , n ≥ 1 .

Proof : Write

P (1)
n (x) = xn − αnx

n−1 + νnx
n−2 + · · ·

Pn+1(x) = xn+1 − (αn + β0)x
n + (νn + β0αn − γ1)x

n−1 + · · ·
and compare the coefficients of the corresponding monomials. To obtain
l0(x),Θ0, and Θ−1, use the initial conditions (14).

For later purposes we show some results concerning the Hermite polyno-
mials.

Lemma 5. Let {Hn} denote the sequence of monic Hermite polynomials,
and let {q̃n} be the corresponding sequence of functions of the second kind.
The following statements hold:
(a) {Hn} is related to the Stieltjes function S̃ satisfying

AS̃ ′ = C̃S̃ + D̃ , A = 1, C̃ = −2x, D̃ = 2 ; (53)
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(b) the recurrence relation coefficients of {Hn} are given by

β̃n = 0 , γ̃n+1 = (n+ 1)/2 , n ≥ 0 ; (54)

(c) H̃n =

[
Hn+1 q̃n+1/w̃
Hn q̃n/w̃

]
, with w̃ = e−x2

, satisfies the differential system

H̃ ′
n =

(
B̃n −

C̃

2
I

)
H̃n , B̃n =

[
−x n+ 1
−2 x

]
, n ≥ 1 . (55)

Proof : (53) is given in [15]. (54) follows from (37) and (38). To obtain (55)
we use the Theorem 2 (cf. (18)), where the entries of B̃n can be obtained
using (49)-(51).

Lemma 6. Let {Pn} be the SMOP related to the Stieltjes function S satis-
fying AS ′ = BS2 + CS +D , where

A = 1 , B = −2x2 + 2λx+ ρ− 1 , C = 2x , D = 0 ,

with ρ = 2γ1, λ = β0, and ρλ 6= 0. Let {Yn =

[
Pn+1 P

(1)
n

Pn P
(1)
n−1

]
} be the sequence

associated with {Pn} defined in (10). The following statements hold:
(a) the recurrence relation coefficients of {Pn} are given by

βn = 0 , γn+1 = n/2 , n ≥ 1 ; (56)

(b) Yn satisfies the matrix Sylvester equations Y ′
n = BnYn −CYn , n ≥ 0, with

B0 =

[
−x ρ
0 x

]
, Bn =

[
−x n
−2 x

]
, n ≥ 1 , C =

[
x 0
B −x

]
. (57)

(c) let x0 be an arbitrary point in the complex plane. The solution of the
initial value problem

{
L′(x) = C(x)L(x) ,

L(x0) = I ,
(58)
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with C given in (57), is

L(1,1)(x) = e−x2
0/2 ex2/2 , (59)

L(1,2)(x) ≡ 0 , (60)

L(2,1)(x) = e−x2
0/2e−x2/2

∫ x

x0

B(s)es2

ds , (61)

L(2,2)(x) = ex2
0/2 e−x2/2 , (62)

and the solution of the initial value problem{
P ′

n(x) = Bn(x)Pn(x) , n ≥ 1 ,

Pn(x0) = Yn(x0) ,
(63)

with Bn given in (57), is for n ≥ 2

Pn(x) = e−x2/2H̃n−1(x)Kn , Kn = ex2
0/2
(
H̃n−1(x0)

)−1

Yn(x0) . (64)

Proof : (56) follows from (37) and (38). To obtain the entries of Bn in (57)
use (49)-(52).

Let us solve (63). Since H̃n =

[
Hn+1 q̃n+1/w̃
Hn q̃n/w̃

]
satisfies (55),

H̃ ′
n =

(
B̃n −

C̃

2
I

)
Ỹn , B̃n =

[
−x n+ 1
−2 x

]
, C̃ = −2x , n ≥ 1 ,

then, taking into account the Lemma 2,

Pn = e−x2/2H̃n−1 (65)

satisfies P ′
n = B̃n−1Pn, n ≥ 2 , that is, P ′

n =

[
−x n
−2 x

]
Pn, n ≥ 2. Hence,

Pn defined by (65) is a fundamental matrix of the differential system in (63).
Thus, a solution of the initial value problem (63) is given by (64).

Remark 5. Taking into account (54) and (56), one has P
(1)
n = Hn, n ≥ 1.

Consequently, the matrix Kn given in (64) is such that

K(1,2)
n = ex2

0/2, K(2,2)
n = 0 . (66)

Furthermore, using Yn+1(x0) = An+1(x0)Yn(x0) (cf. (11)), we obtain

H̃n−1(x0)Kn = A−1
n+1(x0)H̃n(x0)Kn+1 , n ≥ 2 ,
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from which we get

K(1,1)
n = K(1,1)

n+1 , K(2,1)
n = K(2,1)

n+1 , n ≥ 2 . (67)

Theorem 6. Let the conditions and the notations of the two previous Lem-
mas hold. Then,
(a) the following representation holds, for all n ≥ 2:

Pn+1(x) = e−x2

(
ex2

0/2K(1,1)
n −

∫ x

x0

B(s)es2

ds

)
Hn(x)+e

x2
0/2K(2,1)

n q̃n(x) , (68)

where x0 is an arbitrary complex number ;
(b) the Stieltjes functions S and S̃ are related through

S̃ =
a+ bS

c+ dS
, (69)

where
a = −1/d , b(x) = 1/d x− λ/d , c = 0 , d = ±

√
ρ/2 . (70)

Proof : (a). Taking into account the Theorem 3, one has Yn = PnL−1, where
L,Pn, the solutions of the corresponding initial value problems (58) and (63),
are given by (59)-(62) and (64), respectively. Therefore, Yn = PnL−1 yields,
in the position (1, 1), (68), where we used (66). The position (2, 1) gives
us (68) for n − 1, where we used (67). The positions (1, 2) and (2, 2) of

Yn = PnL−1 yield P
(1)
n = Hn and P

(1)
n−1 = Hn−1, respectively.

(b). Note that S̃ satisfies (53),

AS̃ ′ = C̃S̃ + D̃ , A = 1, C̃ = −2x , D̃ = 2 .

Taking into account the Lemma 3, there holds a relation of the type (69),
where the polynomials a−d and the polynomials A, C̃, D̃ are related through
the equations (31)-(33). Thus, (70) follows.
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nomials, in “Padé Approximation and its Applications, Proc., Bad Honnef 1883”, Lect. Notes
in Math. 1071 (H. Werner e H. T. Bunger, eds.), Springer Verlag, Berlin, 1984, pp. 213-230.

[12] A. Magnus, On Freud’s equations for exponential weights, J. Approx. Theory 46 (1986) 65-99.
[13] A. Magnus, Painlevé-type differencial equations for the recurrence coefficients of semi-classical

orthogonal polynomials, J. Comp. Appl. Math. 57 (1995) 215-237.
[14] F. Marcellán, A. Ronveaux, Co-recursive orthogonal polynomials and fourth order differential

equation, J. Comp. Appl. Math. 25 (1) (1989) 105-109.
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