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ANTONIO J. CALDERÓN, FRANCISCO J. NAVARRO, AND JOŚE M. SÁNCHEZ

ABSTRACT. Let (T, 〈·, ·, ·〉) be a triple system of arbitrary dimension, over an arbitrary
base fieldF and in which any identity on the triple product is not supposed. A basisB =
{ei}i∈I of T is called multiplicative if for anyi, j, k ∈ I we have that〈ei, ej , ek〉 ∈ Fer

for somer ∈ I. We show that ifT admits a multiplicative basis then it decomposes as
the orthogonal direct sumT =

⊕

k

Ik of well-described ideals admitting each one a mul-

tiplicative basis. Also the minimality ofT is characterized in terms of the multiplicative
basis and it is shown that, under a mild condition, the above direct sum is by means of the
family of its minimal ideals.
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1. INTRODUCTION AND PREVIOUS DEFINITIONS

Throughout this paperT will denote an arbitrary triple system in the sense that there
are not restrictions on the dimension ofT or on the base fieldF, and that any identity on
the triple product (associativity, alternativity, Lie, Jordan, etc.) is not supposed. That is,T
is just a linear space overF endowed with a trilinear map

T × T × T → T

(x, y, z) 7→ 〈x, y, z〉

called thetriple productof T .

Definition 1.1. A basisB = {ei}i∈I of T is said to bemultiplicativeif for any i, j, k ∈ I
we have either〈ei, ej , ek〉 = 0 or 0 6= 〈ei, ej , ek〉 ∈ Fer for some (unique)r ∈ I.

Remark 1.1. The definition of multiplicative basis given in Definition 1.1 is a little bit
more general than the usual one considered in the literaturefor the case of algebras ([4,
6, 7, 8, 21]). In fact, in these references, a basisB = {ei}i∈I of an algebraA is called
multiplicative if for anyi, j ∈ I we have eithereiej = 0 or 0 6= eiej = ek for somek ∈ I.

To construct examples of triple systems admitting multiplicative bases we just have to
fix an arbitrary (non-empty) set of indexesI and two arbitrary mappingsα : I×I×I → I
andβ : I × I × I → F. Then theF-linear spaceT with basisB = {ei}i∈I and product
among the element of the basis given by〈ei, ej , ek〉 = β(i, j, k)eα(i,j,k) becomes a triple
system admittingB as a multiplicative basis.

Given an algebraA, with product denoted by juxtaposition, we can endow the underly-
ing linear space ofA with a structure of triple systemTA by defining the triple product as
〈x, y, z〉 = (xy)z. We say thatTA is the triple systemassociatedto A. We have that ifA
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admits a multiplicative algebra basis (in our extended sense), that is, a basisB = {ei}i∈I

such that for anyi, j ∈ I we have eithereiej = 0 or 0 6= eiej ∈ Fer, for somer ∈ I,
thenTA becomes a triple systems admittingB as a multiplicative basis. From here, since it
is usual in the literature to describe an algebra by exhibiting a multiplicative table among
the elements of a fixed basis, we can find many classical examples of triple systems admit-
ting multiplicative bases in the categories of associativetriple systems, alternative triple
systems, Lie triple systems, Jordan triple systems, Leibniz triple systems and so on. For
instance, in the category of associative triple systems we have that the classes of triple sys-
tems associated to full matrix algebras, to group-algebras, to quiver algebras (whenF is
algebraically closed) or to finite-dimensional associative algebras of finite representation
type, ([3, 4, 5, 6, 19, 21, 23]), are examples of (associative) triple systems admitting multi-
plicative basis. In the category of Lie triple systems we cantake as examples of triple sys-
tems admitting multiplicative basis the ones associated tosemisimple finite-dimensional
Lie algebras (over algebraically closed fields of characteristic 0), to semisimple separa-
ble L∗-algebras [24], to semisimple locally finite split Lie algebras [25], to Heisenberg
algebras [22], to twisted Heisenberg algebras [1] or to the split Lie algebras studied in [9,
§3].

Consider now the associative triple systemMn×m(F) where the triple product is given
by 〈A,B,C〉 := (ABt)C, (denoting byBt the transpose ofB). Then(Mn×m(F), 〈·, ·, ·〉)
admits the standard basisB = {Ei,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} of Mn×m(F) as a
multiplicative basis. Following the terminology of [20], the class of Jordan or Lie triple
systems formed for those triple systems calledmeson triples, (by their applications in the
theory of meson fields), are also examples of triple systems admitting a multiplicative basis.
We recall that this family of triple systems are constructedas follows. Take the linear
subspaceM ⊂ M(n+1)×(n+1)(F) linearly generated by the matricesGi := Ei,n+1 −
En+1,i, i = 1, 2, ..., n, and define the nonzero triple products among the elements of
the basis as{Gi, Gj , Gk} := −δijGk − δkjGi in the Jordan case, or[[Gi, Gj ], Gk] :=
δkiGj−δkjGi in the Lie case. In the same reference [20], we can find the family of Jordan
and Lie triple systems defined as the linear subspacesN ⊂ M(n+1)×(n+1)(F) linearly
generated by the matricesXi := Ei,n+1, Yi := En+1,i and where the nonzero triple
products among the elements of the basis are defined by

{Xi, Yj , Xk} := δjkXi + δjiXk, {Yi, Xj , Yk} := δjkYi + δjiYk

in the Jordan case, or

[[Xi, Yj ], Xk] := δjkXi + δjiXk, [[Yi, Xj ], Yk] := δjkYi + δjiYk

in the Lie case. These are examples of Lie and Jordan triple systems with a multiplicative
basis.

We also have as examples of Lie triple systems with multiplicative basis the ones intro-
duced in [10, 11, 12, 15]. Finally, we observe that can also find examples of 3-Lie algebras
and Leibniz triple systems admitting a multiplicative basis in [16] and [2, Example 2.1,
Example 2.2, Example 2.3] respectively.

A subtripleS of a triple systemT is a linear subspace such that〈S, S, S〉 ⊂ S. A linear
subspaceI of T is called anideal if 〈I, T, T 〉+ 〈T, I, T 〉+ 〈T, T, I〉 ⊂ I. We also recall
that two nonzero idealsI, J of T are calledorthogonalif the condition

〈T, I,J 〉+ 〈I, T,J 〉+ 〈I,J , T 〉+ 〈T,J , I〉+ 〈J , T, I〉+ 〈J , I, T 〉 = 0
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holds. A direct sum
⊕

j∈J

Ij of non-zero ideals ofT is calledorthogonal direct sumif for

anyj, k ∈ J with j 6= k we have thatIj andIk are orthogonal ideals.

The present paper is devoted to the study of arbitrary triplesystems admitting a mul-
tiplicative basis, by focussing on its structure. The paperis organized as follows. In§2,
we develop connections techniques in the set of indexesI of the multiplicative basis, so
as to get a powerful tool for the study of this class of triple systems. By making use of
these techniques we show that any triple systemT admitting a multiplicative basis is the
orthogonal direct sumT =

⊕

k

Ik with anyIk a well described ideal ofT admitting also a

multiplicative basis. In§3 the minimality ofT is characterized in terms of the multiplica-
tive basis and it is shown that, in case the basis isµ-multiplicative, the above decomposition
of T is actually by means of the family of its minimal ideals.

2. CONNECTIONS IN THE INDEXES SET. DECOMPOSITIONS

In what followsB = {ei}i∈I denotes a multiplicative basis of a triple systemT , P(I)
the power set ofI andS3 the group of all permutations of three elements.

For eachi ∈ I, a new variablei /∈ I is introduced and we denote byI := {i : i ∈ I}
the set consisting of all these new symbols. We will also writeU := {i : i ∈ U} for any

U ∈ P(I), and(i) := i for anyi ∈ I.

For any anyσ ∈ S3 we introduce the next mappings which recover, in a sense, certain
multiplicative relations among the elements ofB :

aσ : I × I × I → P(I) andbσ : I × I × I → P(I)

defined by

aσ(i1, i2, i3) =

{

∅ if 〈ei
σ(1)

, ei
σ(2)

, ei
σ(3)

〉 = 0

{j} if 0 6= 〈ei
σ(1)

, ei
σ(2)

, ei
σ(3)

〉 ∈ Fej.

bσ(i, j2, j3) = {j1 ∈ I : aσ(j1, j2, j3) = i}.

We also introduce the map

µ : I × (I ∪̇ I)× (I ∪̇ I) −→ P(I)

given by

• µ(I, I, I) = µ(I, I, I) = ∅.

• µ(i1, i2, i3) =
⋃

σ∈S3

aσ(i1, i2, i3) in casei1, i2, i3 ∈ I.

• µ(i, j2, j3) =
⋃

σ∈S3

bσ(i, j2, j3) in casei ∈ I andj2, j3 ∈ I.

Remark 2.1. Observe thatµ(i1, i2, i3) = µ(iσ(1), iσ(2), iσ(3)) for anyσ ∈ S3 and any
i1, i2, i3 ∈ I; and thatµ(i, j2, j3) = µ(i, j3, j2) for anyi ∈ I andj2, j3 ∈ I.

Lemma 2.1. Let i, j ∈ I and x, y ∈ I ∪̇ I be. Theni ∈ µ(j, x, y) if and only if
j ∈ µ(i, x, y).

Proof. Taking into accountµ(I, I, I) = µ(I, I, I) = ∅ we just have two cases to consider.
Let i ∈ µ(j, x, y) be and supposex, y ∈ I. Then there existsσ ∈ S3 such thati =
aσ(j, x, y) and soj ∈ bσ(i, x, y) ⊂ µ(i, x, y) as wished. In casex, y ∈ I, then there is
σ ∈ S3 such thati ∈ bσ(j, x, y) and consequentlyj = aσ(i, x, y) ⊂ µ(i, x, y). �
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Finally, we also define the mapping

φ : P(I)× (I ∪̇ I)× (I ∪̇ I) −→ P(I)

as
φ(J, j, k) =

⋃

i∈J

µ(i, j, k)

for anyJ ∈ P(I) andj, k ∈ I ∪̇ I.

Lemma 2.2. Let J ∈ P(I) and j, k ∈ I ∪̇ I be. Theni ∈ φ(J, j, k) if and only if
φ({i}, j, k) ∩ J 6= ∅.

Proof. We havei ∈ φ(J, j, k) if and only if there existsx ∈ J such thati ∈ µ(x, j, k).
By Lemma 2.1, this is equivalent tox ∈ µ(i, j, k) ⊂ φ({i}, j, k) and so also equivalent to
x ∈ φ({i}, j, k) ∩ J 6= ∅. �

Definition 2.1. Let i andj be distinct elements inI. We say thati is connectedto j if there
exists a subset{i1, i2, i3, . . . , i2n+1} ⊂ I ∪̇ I for somen ≥ 1, such that the following
conditions hold:

1. i1 = i.

2. φ({i1}, i2, i3) 6= ∅,
φ(φ({i1}, i2, i3), i4, i5) 6= ∅,
...
φ(φ(. . . φ({i1}, i2, i3) . . . ), i2n−2, i2n−1) 6= ∅.

3. j ∈ φ(φ(. . . φ({i1}, i2, i3) . . . ), i2n, i2n+1).

The subset{i1, i2, i3, . . . , i2n+1} is called aconnectionfrom i to j and we accepti to be
connected to itself.

Our next goal is to show that the connection relation is an equivalence relation. Previ-
ously we show the next result.

Lemma 2.3. Let {i1, i2, i3, . . . , i2n+1} be a connection fromi to j, wheren ≥ 1 and
i, j ∈ I with i 6= j. Then the set{j, i2n+1, i2n, . . . , i3, i2} is a connection fromj to i.

Proof. Let us prove it by induction onn.
For n = 1 we have thati1 = i andj ∈ φ({i}, i2, i3). Hencej ∈ µ(i, i2, i3) and by

Lemma 2.1,i ∈ µ(j, i2, i3) ⊂ φ({j}, i2, i3) = φ({j}, i3, i2). From here{j, i3, i2} is a
connection fromj to i.

Let us suppose that the assertion holds for any connection with 2k + 1 elements and
let us show it also holds for any connection{i1, i2, . . . , i2k+1, i2k+2, i2k+3} with 2k + 3
elements.

If we denoteU := φ(φ(. . . φ({i1}, i2, i3) . . . ), i2k, i2k+1) then we have that

j ∈ φ(U, i2k+2, i2k+3).

From here, Lemma 2.2 allows us to assertφ({j}, i2k+2, i2k+3) ∩ U 6= ∅ and so we can
takeh ∈ U such that

(1) h ∈ φ({j}, i2k+2, i2k+3).
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Sinceh ∈ U we have that{i1, i2, . . . , i2k, i2k+1} is a connection fromi to h and so, by
induction hypothesis, the set{h, i2k+1, i2k, . . . , i3, i2} is a connection fromh to i. This
fact together with Equation (1) give us that

i ∈ φ(φ(. . . φ(φ({j}, i2k+3, i2k+2), i2k+1, i2k) . . . ), i3, i2).

Hence{j, i2k+3, i2k+2, . . . , i3, i2} is a connection fromj to i and the proof is complete.
�

Proposition 2.1. The relation∼ in I, defined byi ∼ j if and only ifi is connected toj, is
an equivalence relation.

Proof. The reflexive and symmetric character of∼ are given by Definition 2.1 an Lemma
2.3 respectively. To check the transitivity character, observe that if we consider a couple of
connections{i1, . . . , i2m+1} and{j1, . . . , j2n+1} from i to j and fromj to k respectively,
then the set{i1, . . . , i2m+1, j2, . . . , j2n+1} is a connection fromi to k. �

By the above Proposition we can introduce the quotient set

I/ ∼:= {[i] : i ∈ I},

becoming[i] the set of elements inI which are connected toi.

For any[i] ∈ I/ ∼ we define the linear subspace

T[i] :=
⊕

j∈[i]

Fej

Lemma 2.4. If 〈T[i], T, T[j]〉+ 〈T, T[i], T[j]〉+ 〈T[j], T, T[i]〉 6= 0 for some[i], [j] ∈ I/ ∼,
then[i] = [j] and〈T[i], T, T[j]〉+ 〈T, T[i], T[j]〉+ 〈T[j], T, T[i]〉 ⊂ T[i].

Proof. Since〈T[i], T, T[j]〉+〈T, T[i], T[j]〉+〈T[j], T, T[i]〉 6= 0, there existsu ∈ [i],w ∈ [j]
andv ∈ I such that

0 6= 〈eu, ev, ew〉 ∈ Fel or 0 6= 〈ev, eu, ew〉 ∈ Fel or 0 6= 〈ew, ev, eu〉 ∈ Fel

for somel ∈ I.
In any case, we have thatl ∈ µ(u, v, w). Hencel ∈ φ({u}, v, w) and{u, v, w} is a

connection fromu to l. From here, the transitivity of∼ gives usi ∼ l and we can deduce

〈T[i], T, T[j]〉+ 〈T, T[i], T[j]〉+ 〈T[j], T, T[i]〉 ⊂ T[i].

We also have thatl ∈ µ(w, v, u), so l ∈ φ({w}, v, u) and{w, v, u} is a connection
fromw to l. Then we have thatj ∼ l and conclude[i] = [j]. �

Definition 2.2. Let T be a triple system with multiplicative basisB. It is said that a
subtripleS of T admits a multiplicative basisBS inheritedfromB if BS is a multiplicative
basis ofS satisfyingBS ⊂ B.

Proposition 2.2. For any[i] ∈ I/ ∼, the linear subspaceT[i] is an ideal ofT admitting a
multiplicative basis inherited from the one ofT .

Proof. SinceT =
⊕

i∈I

Fei we clearly haveT =
⊕

[j]∈I/∼

T[j] and so we can write

〈T[i], T, T 〉+ 〈T, T[i], T 〉+ 〈T, T, T[i]〉 =

〈T[i], T,
⊕

[j]∈I/∼

T[j]〉+ 〈T, T[i],
⊕

[j]∈I/∼

T[j]〉+ 〈
⊕

[j]∈I/∼

T[j], T, T[i]〉 ⊂ T[i],
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being last inclusion consequence of Lemma 2.4. That is, anyT[i] is actually an ideal ofT .
Finally, observe that the set{ej : j ∈ [i]} is a multiplicative basis ofT[i] inherited from the
basisB = {ek : k ∈ I} of T . �

Theorem 2.1. LetT be a triple system admitting a multiplicative basisB. ThenT is the
orthogonal direct sum of the the ideals

T =
⊕

[i]∈I/∼

T[i],

admitting eachT[i] a multiplicative basis inherited fromB.

Proof. As in Proposition 2.2, the factT =
⊕

i∈I

Fei gives usT =
⊕

[i]∈I/∼

T[i]. Now, Propo-

sition 2.2 and Lemma 2.4 complete the proof. �

3. THE MINIMAL COMPONENTS

In this section our target is to characterize the minimalityof the ideals which give rise
to the decomposition ofT in Theorem 2.1, in terms of connectivity properties in the set of
indexesI.

Definition 3.1. An arbitrary triple systemT admitting a multiplicative basisB is called
minimal if its only nonzero ideal admitting a multiplicative basis inherited fromB is T .

Let us introduce the notion ofµ-multiplicativity in the framework of arbitrary triple sys-
tems admitting a multiplicative basis, in a similar way to the ones of closed-multiplicativity
for Lie triple systems (see [10, 12, 15]), for split 3-Lie algebras (see [16]), or for different
classes of algebras like graded associative algebras, split Leibniz algebras, split Poisson
algebras, or split Lie color algebras (see [13, 14, 17, 18] for these notions and examples).

Definition 3.2. It is said that a triple systemT admits aµ-multiplicative basisB = {ei}i∈I

if it is multiplicative and giveni, j ∈ I such thatj ∈ µ(i, x, y) for somex, y ∈ I ∪̇ I then
ej ∈ 〈ei, T, T 〉+ 〈T, ei, T 〉+ 〈T, T, ei〉.

Examples of triple systems admittingµ-multiplicative bases are those triple systems
associated to (associative) matrix algebras, to semisimple finite-dimensional Lie algebras
(over algebraically closed fields of characteristic 0), to semisimple separableL∗-algebras,
to semisimple locally finite split Lie algebras or to the split Lie algebras considered in
[9, §3]. We also can take as examples of triple systems withµ-multiplicative bases to
the associative triple systemsMn×m(F), n 6= m, (see§1), to the meson triple systems
described in§1, to the family of Jordan and Lie triple systemsN , (also described in§1), to
the Lie triple systems considered in [10, 12, 15], to the 3-Lie algebras presented in [16] or
to the Leibniz triple systems described in [2, Example 2.1].

Theorem 3.1. LetT be an arbitrary triple system admitting aµ-multiplicative basisB =
{ei}i∈I . ThenT is minimal if and only if the indexes setI has all of its elements connected.

Proof. SupposeT is minimal. By Theorem 2.1,T = T[i] for some[i] ∈ I/ ∼. Hence
[i] = I and so any couple of elements inI are connected.

Conversely, consider a nonzero idealI of T admitting a basis inherited fromB. Then,
for a certain∅ 6= II ⊂ I, we can writeI =

⊕

j∈IJ

Fej. Fix somei0 ∈ II being then

(2) 0 6= ei0 ∈ I.



ARBITRARY TRIPLE SYSTEMS ADMITTING A MULTIPLICATIVE BASIS 7

Let us show by induction onn that if {i1, . . . , i2n+1} is a connection fromi0 to some
j ∈ I, then for anyk ∈ φ(φ(· · · φ({i1}, i2, i3) . . . ), i2n, i2n+1) we have that0 6= ek ∈ I.

Indeed, in casen = 1, we getk ∈ φ({i1}, i2, i3) with i1 = i0. Hencek ∈ µ(i0, i2, i3),
so, taking into account thatI is an ideal ofT , byµ-multiplicativity of B and the Equation
(2) we obtainek ∈ I.

Suppose now the assertion holds for each connection{j1, . . . , j2h+1} from i0 to any
r ∈ I, and consider any connection{i1, . . . , i2h+1, i2h+2, i2h+3} from i0 to somej ∈ I.
We know that for eachx ∈ U , whereU := φ(φ(· · · φ({i1}, i2, i3) · · · ), i2h, i2h+1), the
element

(3) 0 6= ex ∈ I.

Taking into account that the factk ∈ φ(φ(· · · φ({i1}, i2, i3) . . . ), i2h+2, i2h+3) implies

k ∈ φ(U, i2h+2, i2h+3),

we have thatk ∈ µ(x, i2h+2, i2h+3) for somex ∈ U . From here, theµ-multiplicativity
of B and Equation (3) allow us to getek ∈ I as desired.

Now, since given anyj ∈ I we know thati0 is connected toj, we can assert by the
above observation thatFej ⊂ I. We have shown

T =
⊕

j∈I

Fej ⊂ I

and soI = T . �

Theorem 3.2. Let T be a triple system admitting aµ-multiplicative basisB. ThenT is
the orthogonal direct sum of the family of its minimal ideals

T =
⊕

k

Ik,

each one admitting aµ-multiplicative basis inherited fromB.

Proof. By Theorem 2.1 we have thatT =
⊕

[i]∈I/∼

T[i] is the orthogonal direct sum of the

idealsT[i], admitting eachT[i] a multiplicative basisB[i] = {ej : j ∈ [i]} inherited from
B.

We wish to apply Theorem 3.1 to anyT[i] so we are going to verify that the basisB[i] is
aµ-multiplicative basis and that[i] has all of its elements[i]-connected (connected through
connections contained in[i] ∪̇ [i]).

We clearly have thatT[i] admits toB[i] as aµ-multiplicative basis as consequence of
having a basis inherited fromB and the fact〈T[i], T, T[j]〉+〈T, T[i], T[j]〉+〈T, T[j], T[i]〉 =
0 when[i] 6= [j].

Finally, consider any connection fromi to j

(4) {i1, i2, . . . , i2n+1}.

Let us observe that anyk ∈ φ({i}, i2, i3) satisfiesk ∈ [i] through the connection
{i, i2, i3}. Then we have two possibilities:

• If i2, i3 ∈ I, we also have, see Remark 2.1, thatk ∈ φ({i2}, i, i3) andk ∈
φ({i3}, i, i2). From here, the sets{i2, i, i3} and{i3, i, i2} are connections from
i2 to k and fromi3 to k respectively. Hencei2, i3 ∈ [i].

• If i2, i3 ∈ I, by Lemma 2.1 we havei ∈ φ({k}, i2, i3). By arguing as above we
geti2, i3 ∈ [i] and soi2, i3 ∈ [i].
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By iterating this process we obtain that all of the elements in the connection (4) are con-
tained in[i] ∪̇ [i]. That is,[i] has all of its elements[i]-connected. From the above, we can
apply Theorem 3.1 to anyT[i] so as to concludeT[i] is minimal.

It is clear that the decompositionT =
⊕

[i]∈I/∼

T[i] satisfies the assertions of the theorem.

�
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