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ABSTRACT. We describe the fine (group) gradings on the Heisenberg algebras, on the
Heisenberg superalgebras and on the generalized Heisenberg algebras. We compute the
Weyl groups of these gradings. Also the results obtained respect to Heisenberg superalge-
bras are applied to the study of Heisenberg Lie color algebras.

2010 MSC: 17B70, 17B75, 17B40, 16W50.
Key words and phrases: Heisenberg algebra, graded algebra, Weyl group.

1. INTRODUCTION

In the last years there has been an increasing interest in the study of the group gradings
on Lie theoretic structures. In the case of Lie algebras, this study has been focussed on the
simple ones. In fact the (complex) finite-dimensional simple case has been studied, among
other authors, by Bahturin, Elduque, Havlı́ček, Kochetov, Patera, Pelantová, Shestakov,
Zaicev and Zassenhaus [5, 6, 8, 19, 24, 30] in the classical case ([19] encloses d4), while the
exceptional cases g2, f4 and d4 have been studied by Bahturin, Draper, Elduque, Kochetov,
Martı́n, Tvalavadze and Viruel [7, 15, 16, 17, 20]. The fine group gradings on the real forms
of g2 and f4, also simple algebras, have been classified by the three first authors [11]. With
respect to the group gradings on Z2-graded algebras, these have been considered by the
three first authors in the case of the Jordan superalgebra K10 [12], and by the second and
third authors together with Elduque in the case of exceptional Lie superalgebras [18]. In
relation with other Lie structures, the Lie triple systems of exceptional type have also been
considered from the viewpoint of gradings (see [13]).

In the present paper we are interested in studying the gradings on a family of non-
simple Lie algebras, superalgebras, color algebras and extended algebras, the Heisenberg
algebras (resp. superalgebras, Lie color algebras and extended ones). Since Heisenberg
(super) algebras are nilpotent and extended Heisenberg algebras are solvable we also have
to mention the recent references [3] and [4].

This family of algebraic structures was introduced by A. Kaplain in [27] and has played
an important role in Quantum Mechanics, where for instance extended Heisenberg alge-
bras appear by a quantizing process from the classical Heisenberg algebra H(4) [1], where
coherent states for power-law potentials are constructed by using generalized Heisenberg
algebras, being also shown that these coherent states are useful for describing the states of
real and ideal lasers [9] or where a deformation of a Heisenberg algebra it is used to de-
scribe the solutions of the N -particle rational Calogero model and to solve the problem of
proving the existence of supertraces [29]; and also in Geometry, where for instance the set
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of superderivations of a Heisenberg superalgebra is applied to the theory of cohomology,
[14], among other works [26, 28, 39].

The study of Weyl groups of Lie gradings was inaugurated by Patera and Zassenhaus
in [30]. Some concrete examples were developed, for instance, in [25]. Recently, Elduque
and Kochetov have determined the Weyl groups of the fine gradings on matrix, octonions,
Albert and simple Lie algebras of types A, B, C and D (see [21, 22]). The (extended)
Weyl group of a simple Lie algebra is the Weyl group of the Cartan grading on that algebra
(which is of course fine). Thus the notion of Weyl group of a grading encompasses that of
the usual Weyl group with its countless applications. This is one of the reasons motivating
the study of Weyl groups on fine Lie gradings. On the other hand, if we consider the cate-
gory of graded Lie algebras (not in the sense of Lie superalgebras), then the automorphism
group G of such an object is defined as the group of automorphisms of the algebra which
preserve the grading, and the Weyl group of the grading is an epimorphic image of G.
Thus the symmetries of a graded Lie algebra are present in the Weyl group of the grading.
Our work includes the description of the Weyl group of the fine gradings on Heisenberg
algebras, on Heisenberg superalgebras and on extended Heisenberg algebras.

We would like to mention the work [34] which contains a detailed study of the automor-
phisms on Heisenberg-type algebras. The study of gradings is always strongly related to
the notion of diagonalizable group of automorphisms. Thus the mentioned work has been
illuminating though the study of gradings goes a step further. We have also computed the
group of automorphisms in the case of Heisenberg superalgebras which is not present in
[34].

The definition of extended Heisenberg algebra is motivated by the following result,
which allows to compute the groups which can act by isometries in a Lorentzian manifold.

Theorem. [2, Theorem 11.7.3] Let M be a compact connected Lorentzian manifold
and G a connected Lie group acting isometrically and locally faithfully on M . Then its
Lie algebra g = k ⊕ a ⊕ s is a direct sum of a compact semisimple Lie algebra k, an
abelian algebra a and a Lie algebra s, which is either trivial, or isomorphic to aff(R), to a
Heisenberg algebra Hn, to a generalized Heisenberg algebra Hn(λ) with λ ∈ Q

(n−1)/2
+ ,

or to sl2(R).

Moreover, according to [2, Chapter 8], the converse of this result is also true: if G is a
connected simply connected Lie group whose Lie algebra g = k ⊕ a ⊕ s is as above, then
there is a locally faithful isometric action of G on a compact connected Lorentz manifold.
The physical meaning of this result claims that if you want a Lie group to act on a compact
connected Lorentzian manifold, then you must be ready to admit that the group may have
a Heisenberg section. More results about the relationship between extended Heisenberg
algebras and Lorentzian manifolds can be found in [23].

Finally we devote some words to the distribution of results in our work. After a back-
ground on gradings in Section 2, we study the group gradings on Heisenberg algebras
in Section 3, by showing that all of them are toral and by computing the Weyl group of
the only (up to equivalence) fine one. In Section 4 we study the fine group gradings on
Heisenberg superalgebras and calculate the Weyl group of the fine ones. In Section 5 we
discuss on the concept of Heisenberg Lie color algebra, give a description of the same and
show how the results in the previous section can be applied to classify a certain family
of Heisenberg Lie color algebras. Finally, in Section 6, we devote some attention to the
concept of extended Heisenberg algebras and also compute their fine group gradings and
their symmetries, which turn out to be very abundant.
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2. PRELIMINARIES

Throughout this work the base field will be denoted by F. Let A be an algebra over F,
a grading on A is a decomposition

Γ : A =
⊕

s∈S

As

of A into direct sum of nonzero subspaces such that for any s1, s2 ∈ S there exists s3 ∈ S
such that As1

As2
⊂ As3

. The grading Γ is said to be a group grading if there is a group G
containing S such that As1

As2
⊂ As1s2

(multiplication of indices in the group G) for any
s1, s2 ∈ S. Then we can write

Γ : A =
⊕

g∈G

Ag,

by setting Ag = 0 if g ∈ G \ S. In this paper all the gradings we consider will be group
gradings where G is a finitely generated abelian group and G is generated by the set of all
the elements g ∈ G such that Ag 6= 0, usually called the support of the grading (the above
S).

Given two gradings A = ⊕g∈GUg and A = ⊕h∈HVh, we shall say that they are
isomorphic if there is a group isomorphism σ : G → H and an (algebra) automorphism
ϕ : A → A such that ϕ(Ug) = Vσ(g) for all g ∈ G. The above two gradings are said to be
equivalent if there are a bijection σ : S → S ′ between the supports of the first and second
gradings respectively and an algebra automorphism ϕ of A such that ϕ(Ug) = Vσ(g) for
any g ∈ S.

Let Γ and Γ′ be two gradings on A. The grading Γ is said to be a refinement of Γ′ (or
Γ′ a coarsening of Γ) if each homogeneous component of Γ′ is a (direct) sum of some
homogeneous components of Γ. A grading is called fine if it admits no proper refinements.
A fundamental concept to obtain the coarsenings of a given grading is the one of universal
grading group. Given a grading Γ : A = ⊕g∈GAg , one may consider the abelian group G̃
generated by the support of Γ subject only to the relations g1g2 = g3 if 0 6= [Ag1

, Ag2
] ⊂

Ag3
. Then A is graded over G̃; that is Γ̃ : A = ⊕g̃∈G̃Ag̃ , where Ag̃ is the sum of the

homogeneous components Ag of Γ such that the class of g in G̃ is g̃. Note that there is at
most one such homogeneous component and that this G̃-grading Γ̃ is equivalent to Γ, since
G ↪→ G̃, g 7→ g̃ is an injective map (not homomorphism). This group G̃ has the following
universal property: given any coarsening A = ⊕h∈HA′

h of Γ̃, there exists a unique group
epimorphism α : G̃ → H such that

A′
h =

⊕

g̃∈α−1(h)

Ag̃.

The group G̃ is called the universal grading group of Γ. Since we always consider abelian
group gradings, the general principle for nontorality of gradings can be recalled in the
following terms: if G is the universal grading group of a fine grading and G is not torsion-
free, then the grading is nontoral. Throughout this paper, the gradings will be considered
over their universal grading groups.

It is also well-known that any grading on A is induced by a finitely generated abelian
subgroup of diagonalizable automorphisms of Aut(A), the automorphism group of the al-
gebra. A special kind of gradings arises when we consider the inducing automorphisms in
a torus. Indeed, a grading of an algebra A is said to be toral if it is produced by automor-
phisms within a torus of the automorphism group of the algebra.
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For a grading Γ : A = ⊕g∈GAg , the automorphism group of Γ, denoted Aut(Γ), con-
sists of all self-equivalences of Γ, i.e., automorphisms of A that permute the components
of Γ. The stabilizer of Γ, denoted Stab(Γ), consists of all automorphisms of the graded al-
gebra A, i.e., automorphisms of A that leave each component of Γ invariant. The quotient
group Aut(Γ)/ Stab(Γ) will be called the Weyl group of Γ and denoted by W(Γ).

Next, we recall that if L = L0 ⊕L1 is a Lie superalgebra over F and G a finitely gener-
ated abelian group. A G-grading on L is a decomposition Γ : L =

⊕

g∈G

(

(L0)g⊕(L1)g

)

where any (Li)g is a linear subspace of Li and where [(Li)g1
, (Lj)g2

] ⊂ (Li+j)g1g2
holds

for any g1, g2 ∈ G and any i, j ∈ {0, 1} (sum modulo 2). Here the support of Γ is
{g ∈ G : (Li)g 6= 0 for some i} and everything works analogously to the case of a Lie
algebra with a grading. Note only a subtle difference: assuming that L is non-abelian, the
trivial grading, L = L0 ⊕ L1, has as universal grading group Z2, while the trivial grading
on L as a Lie algebra has the trivial group as the universal grading group.

We will have the occasion to use basic terminology of finite groups: Zn for the cyclic
group of order n, Sn for the permutation group of n elements and Dn for the dihedral
group of order 2n.

Finally we give two fundamental lemmas of purely geometrical nature that will be ap-
plied in future sections. Recall that a symplectic space V is a linear space provided with an
alternative nondegenerate bilinear form 〈·, ·〉, and that in the finite-dimensional case a stan-
dard result states the existence of a “symplectic basis”, that is, a basis: {u1, u

′
1, . . . , un, u′

n}
such that 〈ui, u

′
i〉 = 1 while any other inner product is zero.

Lemma 1. Let (V, 〈·, ·〉) be a finite-dimensional symplectic space and assume that V is
the direct sum of linear subspaces V = ⊕i∈IVi where for any i ∈ I there is a unique j ∈ I
such that 〈Vi, Vj〉 6= 0. Then there is a basis {u1, u

′
1, . . . , un, u′

n} of V such that:
• The basis is contained in ∪iVi.
• For any i, j we have 〈ui, uj〉 = 〈u′

i, u
′
j〉 = 0.

• For each i and j we have 〈ui, u
′
j〉 = δi,j (Kronecker’s delta).

Proof. First we split I into a disjoint union I = I1 ∪ I2 such that I1 is the set of all i ∈ I
such that 〈Vi, Vi〉 6= 0 and in I2 we have all the indices i such that there is a j 6= i with
〈Vi, Vj〉 6= 0. Now for each i ∈ I1 the space Vi is symplectic with relation to the restriction
of 〈·, ·〉 to Vi. So we fix in such Vi a symplectic basis. Take now i ∈ B and let j ∈ I be
the unique index such that 〈Vi, Vj〉 6= 0. Consider now the restriction 〈·, ·〉 : Vi × Vj → F.
This map is nondegenerate in the obvious sense (which implies dim(Vi) = dim(Vj)). If
we fix a basis {e1, . . . , eq} of Vi, then by standard linear algebra arguments we get that
there is basis {f1, . . . fq} in Vj such that 〈ei, fi〉 = 1 being the remaining inner products
among basic elements zero. Thus, putting together these basis suitable reordered we get
the symplectic basis whose existence is claimed in the Lemma. �

Since all the elements in the basis constructed above are in some component Vi we will
refer to this basis as a “homogeneous basis” of V .

Lemma 2. Let (V, 〈·, ·〉) be a finite-dimensional linear space V with a symmetric non-
degenerate bilinear form 〈·, ·〉 : V × V → F where F is of characteristic other than
2. Assume that V = ⊕i∈IVi is the direct sum of linear subspaces in such a way that
for each i ∈ I there is a unique j ∈ I such that 〈Vi, Vj〉 6= 0. Then there is a basis
B = {u1, v1, . . . , ur, vr, z1, . . . zq} of V such that

• B ⊂ ∪iVi.
• 〈zi, zi〉 6= 0, 〈ui, vi〉 = 1.
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• Any other inner product of elements in B is zero.

Proof. Let I1 be the subset of I such that for any i ∈ I1 we have 〈Vi, Vi〉 6= 0 and I2

the complementary I2 := I \ I1. Thus, for any i ∈ I1 there is unique j 6= i such that
〈Vi, Vj〉 6= 0. Now each Vi (with i ∈ I1) has an orthogonal basis and for any i ∈ I2

consider the unique j 6= i such that 〈Vi, Vj〉 6= 0. The couple (Vi, Vj) gives a dual pair
〈·, ·〉 : Vi × Vj → F (implying dim(Vi) = dim(Vj)) and for any basis {ek} of Vi, there is
a dual basis {fh} in Vj such that 〈ek, fh〉 = δk,h (Kronecker’s delta). So putting together
all these bases (suitably ordered) the required base on V is getting. �

Observe that if F is algebraically closed the inner products 〈zi, zi〉 in Lemma 2 may be
chosen to be 1. The basis constructed in Lemma 2 will be also termed an “homogeneous
basis”.

3. GRADINGS ON HEISENBERG ALGEBRAS

A Lie algebra H is called a Heisenberg algebra if it is nilpotent in two steps (that is, not
abelian and [[H,H], H] = 0) with one-dimensional center Z(H) := {x ∈ H : [x,H] =
0}. If z 6= 0 is a fixed element in Z(H) and we take P any complementary subspace of Fz,
then the map 〈·, ·〉 : P × P → F given by 〈v, v′〉z = [v, v′] is a nondegenerate skewsym-
metric bilinear form, or, in other words, (P, 〈·, ·〉) is a symplectic space. Of course, any
Lie algebra constructed from a symplectic space (P, 〈·, ·〉) as H = P ⊕Fz with z ∈ Z(H)
and [v, v′] = 〈v, v′〉z for all v, v′ ∈ P , is a Heisenberg algebra. Recall that the dimension
of P is necessarily even.

In particular, there is one Heisenberg algebra up to isomorphism for each odd dimension
n = 2k + 1, which we will denote Hn, characterized by the existence of a basis

(1) B = {e1, ê1, . . . , ek, êk, z}
in which the nonzero products are [ei, êi] = −[êi, ei] = z for 1 ≤ i ≤ k.

A fine grading on Hn is obviously provided by this basis as:

(2) Hn = 〈e1〉 ⊕ · · · ⊕ 〈ek〉 ⊕ 〈ê1〉 ⊕ · · · ⊕ 〈êk〉 ⊕ 〈z〉.
This grading is also a group grading. For instance, it can be considered as a Z-grading by

letting Hn =
k

⊕

i=−k

(Hn)i for

(Hn)−i = 〈êi〉, (Hn)0 = 〈z〉, (Hn)i = 〈ei〉, i = 1, . . . , k.

Moreover, this grading on Hn is toral. It is enough to observe that the group of automor-
phisms T which are represented by scalar matrices relative to the basis B is a torus. In fact,
it is a maximal torus of dimension k + 1. Indeed, an element f ∈ T will be determined by
the nonzero scalars (λ1, . . . , λk, λ) ∈ Fk+1 such that f(z) = λz and f(ei) = λiei, being
then f(êi) = λ

λi
êi. If we denote such an automorphism by t(λ1,...,λk;λ), it is straightfor-

ward that t(λ1,...,λk;λ)t(λ′

1,...,λ′

k
;λ′) = t(λ1λ′

1,...,λkλ′

k
;λλ′) and that any automorphism com-

muting with every element in T preserves the common diagonalization produced by T ,
which is precisely the one given by (2). All this in particular implies that this fine toral
grading can be naturally considered as a grading over the group Zk+1, which is its univer-
sal grading group:

(3)
Γ : (Hn)(0,...,0;2) = 〈z〉,

(Hn)(0,...,1,...,0;1) = 〈ei〉, (1 in the i-th slot)
(Hn)(0,...,−1,...,0;1) = 〈êi〉,
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if i = 1, . . . , k.
Our first aim is to prove that, essentially, this is the unique fine grading.

Theorem 1. For any group grading of Hn there is a basis B = {z, u1, u
′
1, . . . , un, u′

n} of
homogeneous elements of Hn such that [ui, u

′
i] = z and the remaining possible brackets

among elements of B are zero. In particular, any group grading on Hn is toral.

Proof. As before we will consider the bilinear alternate form 〈·, ·〉 : Hn ×Hn → F. In any
(group) graded Lie algebra the center admits a basis of homogeneous elements so if Hn

is graded by a group G, there is some g0 ∈ G such that z ∈ (Hn)g0
. Thus, denoting by

Z(Hn) = Fz the center of Hn, the quotient Lie algebra P := Hn/Z(Hn) is a symplectic
space relative to 〈x+Z(Hn), y+Z(Hn)〉 := 〈x, y〉. Denote by π : Hn → P the canonical
projection. By defining for each g ∈ G the subspaces Pg := π((Hn)g), it is easy to check
that P = ⊕g∈GPg and that for any g ∈ G there is a unique h, (h = −g + g0), such
that 〈Pg, Ph〉 6= 0. Then Lemma 1 provides a symplectic basis of P of homogeneous
elements. Let {u1 +Z(Hn), u′

1 +Z(Hn), . . . , un +Z(Hn), u′
n +Z(Hn)} be such basis

(observe that each ui and u′
j may be chosen is some homogeneous component of Hn being

ui, u
′
j /∈ Fz). Then B := {z, u1, u

′
1, . . . , un, u′

n} is a basis of homogeneous elements of
Hn such that [ui, u

′
i] = z and the remaining possible brackets among basis elements being

zero. To finish the proof we can consider the maximal torus of Aut(Hn) diagonalizing the
basis B. Up to conjugations, this torus is formed by all the automorphisms t(λ1,...,λk;λ)

constructed above. Since B is diagonalized by any of these elements, the grading is toral
and in fact a coarsening of the fine toral grading described above. �

Corollary 1. Up to equivalence, the unique fine grading of Hn is the Zk+1-grading given
by (3).

In order to work on the group of symmetries of this grading, the Weyl group, we
compute first the automorphism group of the Heisenberg algebra, Aut(Hn). For any
f ∈ Aut(Hn) we have f(z) ∈ Z(Hn) and so f(z) = λfz for some λf ∈ F×. If
we denote by i : P → Hn the inclusion map, by π : Hn → P the projection map and
define f̄ := π ◦ f ◦ i, we easily get that f̄ is a linear automorphism of P satisfying
〈f̄(xP ), f̄(yP )〉 = λf 〈xP , yP 〉 for any xP , yP ∈ P . Indeed, given any x = xP + λz, and
y = yP + µz in Hn, λ, µ ∈ F, we have, taking into account [z,Hn] = 0, that

f([x, y]) = f([xP , yP ]) = f(〈xP , yP 〉z) = 〈xP , yP 〉f(z) = 〈xP , yP 〉λfz

and
[f(x), f(y)] = [f̄(xP ), f̄(yP )] = 〈f̄(xP ), f̄(yP )〉z.

Hence f̄ belongs to GSp(P ) := {g ∈ End(P ) : there is λg ∈ F× with 〈g(x), g(y)〉 =
λg〈x, y〉 ∀x, y ∈ P}, the similitude group of (P, 〈·, ·〉).

As a consequence, an arbitrary f ∈ Aut(Hn) has as associated matrix relative to the
basis B in Equation (1),

MB(f) =
(

MBP
(f̄) 0

λ λf

)

for f̄ = π ◦ f ◦ i ∈ GSp(P ) and for the vector λ = (λ1, ..., λ2k) ∈ F2k given by
λ2i−1z = (f − f̄)(ei) and λ2iz = (f − f̄)(êi) if i ≤ k. Moreover, if we define in the set
GSp(P ) × F2n the (semidirect) product

(f̄ , λ)(ḡ, η) := (fg, λMBP
(ḡ) + λf η),
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it is straightforward to verify that the mapping

Ω: Aut(Hn) → GSp(P ) n F2k

given by Ω(f) = (f̄ , λ) is a group isomorphism.
Take, for each permutation σ ∈ Sk, the map σ̃ : Hn → Hn given by σ̃(ei) = eσ(i),

σ̃(êi) = êσ(i) and σ̃(z) = z. It is clear that σ̃ is an automorphism permuting the homoge-
neous component of Γ, the grading in (3), that is, σ̃ ∈ Aut(Γ).

Other remarkable elements in the automorphism group of the grading are the follow-
ing ones: for each index i ≤ k, take µi : Hn → Hn given by µi(ei) = êi, µi(êi) =
−ei, µi(ej) = ej , µi(êj) = êj (for j 6= i) and µi(z) = z.

Denote by [f ] the class of an automorphism f ∈ Aut(Γ) in the quotient W(Γ) =
Aut(Γ)/ Stab(Γ).

Proposition 1. The Weyl group W(Γ) is generated by {[σ̃] : σ ∈ Sk} and [µ1].

Proof. Let f be an arbitrary element in Aut(Γ). The elements in Aut(Γ) permute the ho-
mogeneous components of the grading Γ, but Fz remains always invariant. Thus f(e1)
belongs to some homogeneous component different from Fz, and there is an index i ≤ k
such that either f(e1) ∈ F×ei or f(e1) ∈ F×êi. We can assume that f(e1) ∈ F×ei

by replacing, if necessary, f with µif . Now, take the permutation σ = (1, i) which in-
terchanges 1 and i, so that f ′ = σ̃f maps e1 into αe1 for some α ∈ F×. Note that
α[e1, f

′(ê1)] = [f ′(e1), f
′(ê1)] = f ′([e1, ê1]) = f ′(z) is a nonzero multiple of z, hence

f ′(ê1) /∈ {x ∈ Hn : [x, e1] = 0} = 〈z, e1, ei, êi | 2 ≤ i ≤ k〉. But f ′ ∈ Aut(Γ), so
f ′(ê1) ∈ 〈ê1〉. In a similar manner the automorphism f ′ sends e2 to some 〈ej〉 or some
〈êj〉 for j 6= 1, hence we can replace f ′ by f ′′ ∈ {(̃2, j)f ′, (̃2, j)µjf

′} such that f ′′ pre-
serves the homogeneous components 〈e1〉, 〈ê1〉, 〈e2〉, 〈ê2〉 and 〈z〉. By arguing as above,
we can multiply f by an element in the subgroup generated by µj and σ̃ for 1 ≤ j ≤ k and
σ ∈ Sk such that the product stabilizes all the components, so that it belongs to Stab(Γ).
The proof finishes if we observe that σ̃µi = µσ(i)σ̃ for all i ≤ k, so that all µi’s belong to
the noncommutative group generated by {[σ̃] : σ ∈ Sk} and [µ1]. �

Hence W(Γ) = {[µi1 . . . µis
σ̃] : σ ∈ Sk, 1 ≤ i1 ≤ · · · ≤ is ≤ k} has 2kk! elements.

Observe that, although any µi has order 4, its class [µi] has order 2. Besides µi and µj

commute, so we can identify W(Γ) with the group P(K) o Sk with the product given by
(A, σ)(B, η) = (A 4 σ(B), ση) if A,B ⊂ K = {1, . . . , k}, σ, η ∈ Sk, and where the
elements in P(K) are the subsets of {1, . . . , k} and 4 denotes the symmetric difference.
Thus

W(Γ) ∼= Zk
2 o Sk.

4. GRADINGS ON HEISENBERG SUPERALGEBRAS

In this section we will assume the ground field F to be algebraically closed and of
characteristic other than 2. A Heisenberg superalgebra H = H0 ⊕ H1 is a nilpotent
in two steps Lie superalgebra with one-dimensional center such that [H0,H1] = 0. In
particular this implies that the even part is a Heisenberg algebra, so that it is determined
up to isomorphism by its dimension. Note that, if x, y ∈ H1, then [x, y] = [y, x] ∈
Fz = Z(H), so there is a nondegenerate symmetric bilinear form 〈·, ·〉 : H1 × H1 → F
such that [x, y] = 〈x, y〉z for all x, y ∈ H1. Hence there is a basis of H1 in which the
matrix of 〈·, ·〉 is the identity matrix. If B1 = {w1, ..., wm} denotes such a basis, and
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B0 = {z, e1, ê1, ..., ek, êk} denotes the basis of H0 as in Section 3, then the product is
given by

[ei, êi] = −[êi, ei] = z, 1 ≤ i ≤ k,
[wj , wj ] = z, 1 ≤ j ≤ m,

with all other products being zero. As this algebra is completely determined by n = 2k+1
and m, the dimensions of the even and odd part respectively, we denote it by Hn,m.

If we denote by
◦ : (Hn,m)1 × (Hn,m)1 → (Hn,m)0

the bilinear mapping x1 ◦ y1 := [x1, y1], we get that the product in Hn,m can be expressed
by

[(x0, x1), (y0, y1)] = [x0, y0] + x1 ◦ y1,

for all xi, yi ∈ (Hn,m)i.

Let us compute the group Aut(Hn,m) of automorphisms of Hn,m. Recall that Aut(Hn,m)
is formed by the linear automorphisms f : Hn,m → Hn,m such that f([x, y]) = [f(x), f(y)]
for all x, y ∈ Hn,m and f((Hn,m)i) = (Hn,m)i for i ∈ {0, 1}.

If we identify (Hn,m)1 with the underlying vector space endowed with the inner product
〈 , 〉 then we can consider the group GO((Hn,m)1) = {g ∈ End((Hn,m)1) : 〈g(x), g(y)〉 =
λ〈x, y〉 ∀x, y ∈ (Hn,m)1 for some λ ∈ F×}, and the group homomorphism π : Aut(Hn,m) →
GO((Hn,m)1) such that π(f) = f |(Hn,m)1 . We prove next that π is an epimorphism. Given
f ∈ GO((Hn,m)1) we know that there is λf ∈ F× such that 〈f(x), f(y)〉 = λf 〈x, y〉.
Then we can define the linear map f̂ : Hn,m → Hn,m such that f̂ restricted to (Hn,m)1 is
f and f̂(z) := λfz, f̂(ei) := λfei and f̂(êi) := êi for any i. Then f̂ ∈ aut(Hn,m) and
π(f̂) = f . Furthermore ker(π) ∼= Sp(P ) × F2k, taking into account the results in Sec-
tion 3 and that any f ∈ aut(Hn,m) such that π(f) = f |(Hn,m)1 = 1 satisfies that f(z) = z.
Therefore we have a short exact sequence

1 → Sp(P ) × F2k i−→ Aut(Hn,m)
π−→ GO((Hn,m)1) → 1

which is split since j : GO((Hn,m)1) → Aut(Hn,m) defined by j(f) := f̂ satisfies πj =
1. Then Aut(Hn,m) is the semidirect product

Aut(Hn,m) ∼= (Sp(P ) × F2k) o GO((Hn,m)1).

Assume now that Hn,m is a graded superalgebra and G is the grading group. Then the
even part (Hn,m)0 admits a basis {z, e1, ê1, . . . ek, êk} of homogeneous elements as has
been proved in the previous section. On the other hand the product in (Hn,m)1 is of the
form x ◦ y = 〈x, y〉z for any x, y ∈ (Hn,m)1 and where 〈·, ·〉 : (Hn,m)1 × (Hn,m)1 → F
is a symmetric nondegenerate bilinear form. Furthermore, for any g ∈ G, denote by Lg

the subspace Lg := (Hn,m)1 ∩ (Hn,m)g (that is the odd part of the homogeneous com-
ponent of degree g of Hn,m). Then (Hn,m)1 = ⊕g∈GLg is a decomposition on linear
subspaces and for any g ∈ G there is a unique h ∈ G such that 〈Lg,Lh〉 6= 0: indeed,
assume 〈Lg,Lh〉 6= 0. Then 0 6= Lg ◦ Lh ∈ Fz and this implies that g + h = g0 where
g0 is the degree of z. Thus h = g0 − g is unique. Next we apply Lemma 2 to get a basis
{z, e1, ê1, . . . ek, êk, u1, v1, . . . , ur, vr, z1, . . . , zq} of Hn,m (of homogeneous elements)
such that z, ei, êi generate the even part of Hn,m while u1, v1, . . . , ur, vr, z1, . . . , zq gen-
erate the odd part and the nonzero products are:

(4) [ei, êi] = [uj , vj ] = [zl, zl] = z.

for i ∈ {1, . . . , k}, j ∈ {1, . . . , r} and l ∈ {1, . . . q}.
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This basis provides a Z1+k+r × Zm−2r
2 -grading on Hn,m given by

(5)

Γr : (Hn,m)(2;0,...,0;0,...,0;0̄,...,0̄) = 〈z〉,
(Hn,m)(1;0,...,1,...,0;0,...,0;0̄,...,0̄) = 〈ei〉,
(Hn,m)(1;0,...,−1,...,0;0,...,0;0̄,...,0̄) = 〈êi〉,
(Hn,m)(1;0,...,0;0,...,1,...,0;0̄,...,0̄) = 〈uj〉,
(Hn,m)(1;0,...,0;0,...,−1,...,0;0̄,...,0̄) = 〈vj〉,
(Hn,m)(1;0,...,0;0,...,0;0̄,...,1̄,...,0̄) = 〈zl〉,

if i ≤ k, j ≤ r, l ≤ q. This grading is a refinement of the original G-grading of the algebra.
Observe that for each r such that 0 ≤ 2r ≤ m, there exists a basis of Hn,m satisfying

the relations (4) by taking for j ≤ r, l ≤ m − 2r,

uj := 1√
2
(w2j−1 + iw2j),

vj := 1√
2
(w2j−1 − iw2j),

zl := wl+2r,

if i ∈ F is a primitive square root of the unit. If the starting G-grading is fine, then it is
equivalent to the Z1+k+r × Zm−2r

2 -grading Γr provided by the above basis. Therefore we
have proved the following result.

Theorem 2. Up to equivalence, there are m
2 + 1 fine gradings on Hn,m if m is even and

m+1
2 in case m is odd, namely, {Γr : 2r ≤ m}. All of these are inequivalent, and only one

is toral, Γm/2 when m is even.

In order to compute the Weyl groups of these fine gradings, consider, as in Section 3,
the maps σ̃, µi ∈ Aut((Hn,m)0) if σ ∈ Sk, i ≤ k, and extend to automorphisms of Hn,m

by setting σ̃|(Hn,m)1 = µi|(Hn,m)1 = id. Thus, σ̃, µi ∈ Aut(Γr), for Γr the grading in (5).
Take too, for each permutation σ ∈ Sr, the map σ̄ : Hn,m → Hn,m given by σ̄|(Hn,m)0 =
id, σ̄(ui) = uσ(i), σ̄(vi) = vσ(i) and σ̄(zl) = zl. Also consider for each permutation
ρ ∈ Sq , the map ρ̂ : Hn,m → Hn,m given by ρ̂|(Hn,m)0 = id, ρ̂(ui) = ui, ρ̂(vi) = vi and
ρ̂(zl) = zρ(l). Finally consider for each index i ≤ r, the map µ′

i : Hn,m → Hn,m given
by µ′

i|(Hn,m)0 = id, µ′
i(ui) = vi, µ

′
i(vi) = −ui, µ

′
i(uk) = uk, µ′

i(vk) = vk for k 6= i and
µ′

i(zl) = zl. It is clear that σ̄, ρ̂, µ′
i ∈ Aut(Γr) in any case.

Proposition 2. The Weyl group W(Γr) is generated by [µ1], [µ′
1], {[σ̃] : σ ∈ Sk}, {[σ̄] :

σ ∈ Sr} and {[σ̂] : σ ∈ Sq}, with k = (n − 1)/2, q = m − 2r.

Proof. We have by Section 3 that the subgroup W of W(Γr) generated by the classes of
the elements fixing all the homogeneous components of (H(n,m))1 is {[µi1 . . . µis

σ̃] : σ ∈
Sk, 1 ≤ i1 ≤ · · · ≤ is ≤ k}.

Let f be an arbitrary element in Aut(Γr). As f |(H(n,m))0 preserves the grading Γ in
Equation (3), then we can compose f with an element in W to assume that f preserves all
the homogeneous components of (H(n,m))0.

Then the element f(u1) belongs to some homogeneous component of (H(n,m))1, but it
does not happen that there is j ≤ q such that f(u1) ∈ Fzj , since then 0 = f([u1, u1]) =
zj ◦ zj = z. So there is an index i ≤ r such that either f(u1) ∈ Fui or f(u1) ∈
Fvi. The same arguments as in the proof of Proposition 1 show that we can replace f
by µ′

j1
. . . µ′

js
σ̄f for 1 ≤ j1 ≤ · · · ≤ js ≤ r and σ ∈ Sr to get that f(ui) ∈ Fui and

f(vi) ∈ Fvi for all i ≤ r.
Now it is clear that f(z1) ∈ Fzl for some 1 ≤ l ≤ q. If l 6= 1, we can replace f with

ρ̂f , for ρ = (1, l), so that we can assume f(z1) ∈ Fz1. And, in the same way, we can
assume that f(zl) ∈ Fzl for 1 ≤ l ≤ q. Our new f belongs to Stab(Γr).
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The proof finishes if we observe that σ̄µ′
i = µ′

σ(i)σ̄ for all i ≤ r and σ ∈ Sr, and that σ̄

as well as µ′
i commute with ρ̂ for all ρ ∈ Sq. �

Hence, an arbitrary element in W(Γr) is

[µi1 . . . µis
σ̃µ′

j1 . . . µ′
jt

η̄ρ̂]

for 1 ≤ i1 ≤ · · · ≤ is ≤ k, 1 ≤ j1 ≤ · · · ≤ jt ≤ r, σ̃ ∈ Sk, η̄ ∈ Sr, ρ̂ ∈ Sq , so that
W(Γr) is isomorphic to

(P({1, . . . , k}) o Sk) × (P({1, . . . , r}) o Sr) × Sq

with the product as in Section 3, and in a more concise form,

W(Γr) ∼= Zr+k
2 o (Sk × Sr × Sq).

5. AN APPLICATION TO HEISENBERG LIE COLOR ALGEBRAS

As in §4, the base field F will be supposed throughout this section algebraically closed
and of characteristic other that 2. Lie color algebras were introduced in [33] as a general-
ization of Lie superalgebras and hence of Lie algebras. This kind of algebras has attracted
the interest of several authors in the last years, (see [10, 31, 32, 37, 38]), being also remark-
able the important role they play in theoretical physic, specially in conformal field theory
and supersymmetries ([35, 36]).

Definition 1. Let G be an abelian group. A skew-symmetric bicharacter of G is a map
ε : G × G −→ F× satisfying

ε(g1, g2) = ε(g2, g1)
−1,

ε(g1, g2 + g3) = ε(g1, g2)ε(g1, g3),

for any g1, g2, g3 ∈ G.

Observe that ε(g, 0) = 1 for any g ∈ G, where 0 denotes the identity element of G.

Definition 2. Let L =
⊕

g∈G

Lg be a G-graded F-vector space. For a nonzero homogeneous

element v ∈ L, denote by deg v the unique element in G such that v ∈ Ldeg v . We shall say
that L is a Lie color algebra if it is endowed with a F-bilinear map (the Lie color bracket)

[·, ·] : L × L −→ L

satisfying [Lg, Lh] ⊂ Lg+h for all g, h ∈ G and

[v, w] = −ε(deg v,deg w)[w, v], (color skew-symmetry)

[v, [w, t]] = [[v, w], t] + ε(deg v,deg w)[w, [v, t]], (Jacobi color identity)

for all homogeneous elements v, w, t ∈ L and for some skew-symmetric bicharacter ε.

Two Lie color algebras are isomorphic if they are isomorphic as graded algebras.
Clearly any Lie algebra is a Lie color algebra and also Lie superalgebras are examples

of Lie color algebras, (take G = Z2 and ε(i, j) = (−1)ij , for any i, j ∈ Z2).
Heisenberg Lie color algebras have been previously considered in the literature (see

[26]). Fixed a skew-symmetric bicharacter ε : G × G −→ F×, a Heisenberg Lie color
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algebra H is defined in [26] as a G-graded vector space, where G is a torsion-free abelian
group with a basis {ε1, ε2, ..., εn}, in the form

H =
n

⊕

i=1

Fpi ⊕
n

⊕

j=1

Fqj ⊕ Fc

where pi ∈ Hεi
, qj ∈ H−εj

, and c ∈ H0; and where the Lie color bracket is given by
[pi, qi] = δijc and [pi, pj ] = [qi, qj ] = [pi, c] = [c, pi] = [qj , c] = [c, qj ] = 0.

Observe that, following this definition, the class of Heisenberg superalgebras is not con-
tained in the one of Heisenberg Lie color algebras. Hence, this definition seems to us very
restrictive. So let us briefly discuss about the concept of Heisenberg Lie color algebras.
Any Heisenberg algebra (respectively Heisenberg superalgebra) H is characterized among
the Lie algebras (respectively among the Lie superalgebras) for satisfying [H,H] = Z(H)
and dim(Z(H)) = 1. Hence, it is natural to introduce the following definition.

Definition 3. A Heisenberg Lie color algebra is a Lie color algebra L such that [L,L] =
Z(L) and dim(Z(L)) = 1.

Examples.
1. The above so called Heisenberg Lie color algebras, given in [26], satisfy these condi-

tions and so can be seen as a particular case of the ones given by Definition 3. As examples
of Heisenberg Lie color algebras we also have the Heisenberg algebras (G = {0}) and the
Heisenberg superalgebras (G = {Z2}). We can also consider any Heisenberg G-graded
algebra as a Heisenberg Lie color algebra for the group G and the trivial bicharacter given
by ε(g, h) = 1 for all g, h ∈ G.

2. Any G-graded L = ⊕g∈GMg Heisenberg superalgebra L = L0 ⊕ L1 gives rise to a
Heisenberg Lie color algebra relative to the group G×Z2 and an adequate skew-symmetric
bicharacter ε. In fact, we just have to (G × Z2)-graduate L as L = ⊕(g,i)∈G×Z2

M(g,i)

where M(g,i) = Mg with M(g,i) ⊂ Li, and define ε : (G × Z2) × (G × Z2) → F× as
ε((g, i), (h, j)) := (−1)ij . Observe that both gradings on L are equivalent.

3. Consider some g0 ∈ G, a graded vector space V =
⊕

g∈G

Vg such that dim(Vg) =

dim(V−g+g0
) for any g /∈ {g0, 0} and dim(Vg0

) = dim(V0) + 1 in case g0 6= 0; and any
skew-symmetric bicharacter ε : G × G −→ F× satisfying ε(g, g) = −1 for any g ∈ G
such that 2g = g0 and Vg 6= 0. Fix bases {z, ug0,1, ..., ug0,ng0

} and {ûg0,1, ..., ûg0,ng0
}

of Vg0
and V0 respectively when g0 6= 0 or {z, ug0,1, ..., ug0,ng0

, ûg0,1, ..., ûg0,ng0
} when

g0 = 0. For any subset {g,−g + g0} 6= {g0, 0} of G, fix also basis {ug,1, ..., ug,ng
} and

{ûg,1, ..., ûg,ng
} of Vg and V−g+g0

in case 2g 6= g0 and {ug,1, ..., ug,ng
} basis of Vg in

case 2g = g0. Then by defining a product on V given by [ug,i, ûg,i] = z, [ûg,i, ug,i] =
−ε(−g + g0, g)z in the cases g = 0 or 2g 6= g0, [ug,i, ug,i] = z in the cases 2g = g0 with
g 6= 0, and the remaining brackets zero, for any subset {g,−g + g0} of G, we get that V
becomes a Heisenberg Lie color algebra that we call of type (G, g0, ε). We note that for
an easier notation we allow empty basis in the above definition which correspond to trivial
subspaces {0}.

Lemma 3. A Heisenberg Lie color algebra L of type (G, g0, ε) is a grading of a Heisen-
berg superalgebra if and only if ε(g,−g + g0) ∈ {±1} for any g ∈ G such that Lg 6= 0.

Proof. Suppose L is a grading of a Heisenberg superalgebra L = L0 ⊕ L1 and there
exists g ∈ G with Lg 6= 0 and such that ε(g,−g + g0) /∈ {±1}. Since [L0, L1] = 0,
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Lg + L−g+g0
⊂ Li for some i ∈ Z2. By taking either ug ∈ Lg and ûg ∈ L−g+g0

in
the cases g = 0 or 2g 6= g0; or ug ∈ Lg in the case 2g = g0 with g 6= 0, elements of
the standard basis of (G, g0, ε) described in Example 3, we have either 0 6= [ug, ûg] =
−ε(g,−g + g0)[ûg, ug] if 2g 6= g0 or 0 6= [ug, ug] = −ε(g,−g + g0)[ug, ug] if 2g = g0,
being ε(g,−g + g0) 6= ±1, which contradicts the identities of a Lie superalgebra.

Conversely, if ε(g,−g + g0) ∈ {±1} for any g ∈ G with Lg 6= 0, we can Z2-graduate
L as

L = (
⊕

{g∈supp(G):ε(g,−g+g0)=1}
Lg) ⊕ (

⊕

{h∈supp(G):ε(h,−h+g0)=−1}
Lh),

this one becoming a Heisenberg Lie superalgebra, graded by the group generated by the
support supp(G) := {g ∈ G : Lg 6= 0}. �

Proposition 3. Any Heisenberg Lie color algebra is isomorphic to a Heisenberg Lie color
algebra of type (G, g0, ε).

Proof. Consider a Heisenberg Lie color algebra L =
⊕

g∈G

Lg . Since dim(Z(L)) = 1, we

can write Z(L) = 〈z〉, being z =
∑n

i=1 xgi
, with any 0 6= xgi

∈ Lgi
and gi 6= gj if i 6= j.

If n 6= 1, then [xgi
, Lh] ⊂ Lgi+h ∩ 〈z〉 = 0 for any h ∈ G and i ∈ {1, .., n}. Hence

any xgi
∈ Z(L) = 〈z〉, a contradiction. Thus z ∈ Lg0

for some g0 ∈ G. Now the fact
[L,L] ⊂ Z(L) gives us that for any g ∈ G, [Lg, Lh] = 0 if g + h 6= g0, and consequently
[Lg, L−g+g0

] 6= 0 if g 6= g0.
Since for any skew-symmetric bicharacter ε : G × G −→ F× and g ∈ G we have

ε(g, g) ∈ {±1}, we can Z2-graduate L as

L = (
⊕

{g∈G:ε(g,g)=1}
Lg) ⊕ (

⊕

{h∈G:ε(h,h)=−1}
Lh).

This is a grading of the algebra L since ε(g + h, g + h) = ε(g, g)ε(g, h)ε(h, g)ε(h, h) =
ε(g, g)ε(h, h).

Let us distinguish two cases, according to g0 is the identity element or not.
First, assume g0 = 0. For any g ∈ G it is easy to check that ε(g, g) = ε(−g,−g) =

ε(g,−g) = ε(−g, g) ∈ {±1}. This fact together with the observations in the previous
paragraph tell us that L = (

⊕

{g∈G:ε(g,g)=1}
Lg) ⊕ (

⊕

{h∈G:ε(h,h)=−1}
Lh) is actually a Lie

superalgebra, satisfying [L,L] = Z(L) and dim(Z(L)) = 1, and being the initial Lie
color grading a refinement of the Z2-grading as superalgebra. By arguing as in [14] we
easily get that L is of type (G, 0, ε), being also a grading of a Heisenberg superalgebra.

Second, assume that g0 6= 0. Since [L,L] ⊂ 〈z〉 ⊂ Lg0
, then [Lg0

, Lg0
] ⊂ L2g0

∩Lg0
=

0, so that L′ := Lg0
⊕ L0 is a Lie algebra (take into consideration ε(g0, 0) = ε(0, 0) = 1).

If L0 = 0, then L′ = 〈z〉 and otherwise [L′, L′] = Z(L′) with dim(Z(L′)) = 1. In
the second situation, we have that L′ = Lg0

⊕ L0 is a Heisenberg algebra, so that taking
into account Section 3, the grading is toral and there exist basis {z, ug0,1, ..., ug0,ng0

} and
{ûg0,1, ..., ûg0,ng0

} of Lg0
and L0 respectively such that [ug0,i, ûg0,i] = z, [ûg0,i, ug0,i] =

− z and such that the remaining products in L′ are zero. Consider now any subset {g,−g+
g0} 6= {g0, 0} of G. In case Lg 6= 0, then necessarily L−g+g0

6= 0 and we can distinguish
two possibilities. First, if 2g 6= g0, the facts [Lg, Lh] = 0 if g+h 6= g0 and [Lg, L−g+g0

] =
〈z〉 allow us to apply standard linear algebra arguments to obtain basis {ug,1, ..., ug,ng

}
and {ûg,1, ..., ûg,ng

} of Lg and L−g+g0
such that [ug,i, ûg,i] = z, [ûg,i, ug,i] = −ε(−g +

g0, g)z and being null the rest of the products among the elements of the basis. Second,
in the case 2g = g0, a similar argument gives us {ug,1, ..., ug,ng

} a basis of Lg such that
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[ug,i, ug,i] = z with the remaining brackets zero. Also observe that necessarily ε(g, g) =
−1 for any g ∈ G such that 2g = g0 and Lg 6= 0 because in the opposite case ε(g, g) = 1
and then 0 6= Lg ⊂ Z(L) ⊂ Lg0

, a contradiction. Summarizing, we have showed that L
is isomorphic to a Heisenberg Lie color algebra of type (G, g0, ε) with g0 6= 0. �

We finish this section by showing how the results in Section 4 can be applied to the
classification of Heisenberg Lie color algebras. Following Lemma 3 and the arguments in
the proof of Proposition 3, any Heisenberg Lie color algebra L = ⊕g∈GLg is isomorphic to
a grading of a Heisenberg superalgebra if and only if either Z(L) ⊂ L0 or L is of the type
(G, g0, ε) with ε(g,−g + g0) ∈ {±1} for any g ∈ G such that Lg 6= 0. In particular, this is
the case of the Heisenberg Lie color algebras considered in [26]. Hence, L is isomorphic
to a coarsening of a fine grading Hn,m = ⊕k∈K(Hn,m)k of a Heisenberg superalgebra.
Since it is known the procedure to compute all of the coarsenigs of a given grading when
this is given by its universal group grading (see Section 2 and [17]), we can apply Theorem
2 to get the list of all of these Heisenberg Lie color algebras L, in the moment G and K are
generated by their supports and K is the universal grading group. Of course this procedure
does not hold for an Heisenberg Lie color algebra which is not a grading of a Heisenberg
superalgebra.

6. GRADINGS ON EXTENDED HEISENBERG ALGEBRAS

In this final section we consider the so called extended Heisenberg algebras. As men-
tioned in the introduction, these algebras appear naturally as some of the direct summands
of the Lie algebras of connected Lie groups acting isometrically and locally faithfully on
compact connected Lorentzian manifolds.

6.1. Definition of extended Heisenberg algebra. Consider the Heisenberg algebra Hn

over the field F and take d to be any derivation of Hn. Then one can define in F × Hn the
product

[(λ, a), (µ, b)] := (0, λd(b) − µd(a) + [a, b]).

This defines a Lie algebra structure in F × Hn and we will denote this Lie algebra by Hd
n.

There is a particular derivation of Hn given in terms of the basis {z, e1, ê1, ..., ek, êk} of
Hn (n = 2k + 1) by d(z) = 0, d(ei) = λiêi and d(êi) = −λiei for a fixed k-tuple
λ := (λ1, . . . , λk) ∈ (F×)k. This Lie algebra will be denoted Hn(λ). Returning to the
general case Hd

n, if we define u = (1, 0), then Hd
n = Fu ⊕ Hn and its product can be

rewritten as [λu + a, µu + b] = λ[u, b]− µ[u, a] + [a, b]. In this case d = ad(u)|Hn
. Thus

for instance in Hλ
n we have [u, ei] = λiêi while [u, êi] = −λiei. We will take as our

“official”definition of extended Heisenberg Lie algebra the following:

Definition 4. Let λ = (λ1, . . . , λk) ∈ (F×)k, k > 0. The corresponding extended Heisen-
berg algebra Hn(λ) of dimension n = 2k + 2 is the Lie algebra spanned by the elements

(6) {z, u, e1, ê1, ..., ek, êk},
and the nonvanishing Lie brackets are given by

[ei, êi] = λiz , [u, ei] = λiêi and [u, êi] = −λiei,

for any i = 1, . . . , k.

As before, Hn(λ) = Fu⊕Hn where Hn can be identified with the subalgebra spanned
by {z, e1, ê1, ..., ek, êk} (by scaling the basis). This algebra is not nilpotent, but it is solv-
able, since [Hn(λ), Hn(λ)] = Hn.
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The above definition of the extended Heisenberg algebra depends heavily on the basis
{z, u, e1, ê1, ..., ek, êk}. On the other hand the definition of Hd

n, though being less basis-
dependent, still relies on the derivation d : Hn → Hn. There is a more intrinsic definition
of this kind of algebras which is equivalent to that of Hd

n. On the one hand, the Lie algebra
Hd

n fits in a split exact sequence

0 → Hn
i→ Hd

n
p→ F → 0

where i is the inclusion map and p(λ, a) = λ for any a ∈ Hn. The sequence is split
because we can define j : F → Hd

n by j(1) = (1, 0) and then pj = 1F. On the other hand
if we consider any algebra A which is a split extension of the type

0 → Hn → A
p→ F → 0,

then A is isomorphic to some Hd
n for a suitable derivation d of Hn. Indeed: since the

extension is split there is a monomorphism j : F → A such that pj = 1F. If we take
u := j(1), then A = Im(j)⊕Hn (we identify Hn with its image under the monomorphism
Hn → A). Since Im(j) = Fu we already have a decomposition A = Fu ⊕ Hn. So the
product in A is given by [λu + a, µu + b] = λ[u, a] − µ[u, b] + [a, b]. Next we prove that
ad(u)(Hn) ⊂ Hn. It suffices to prove that p([u, a]) = 0 for any a ∈ Hn. But p([u, a]) =
[p(u), p(a)] = [1, p(a)] = 0 since F is abelian. Thus we can take d := ad(u)|Hn

and
A ∼= Hd

n.

In spite of the possibility of considering extended Heisenberg algebras as split exten-
sions as previously mentioned, we adhere to the official definition Hn(λ) because of our
necessity of making explicit computations when dealing with fine gradings. Since we are
working under the hypothesis that the ground field is algebraically closed (and of charac-
teristic zero) we can modify slightly the definition for our convenience. We call a extended
Heisenberg algebra Hλ

n over a field F, a Lie algebra such that there is a basis

(7) {z, u, e1, ê1, ..., ek, êk},
and the nonvanishing Lie brackets are given by

[ei, êi] = λiz , [u, ei] = λiêi and [u, êi] = λiei,

for any i = 1, . . . , k. Under our assumptions on the field, we can replace e1, . . . , ek in
Equation (6) by ie1, . . . , iek (where i =

√
−1) to check that Hn(λ) = H iλ

n .

6.2. Torality and basic examples. We are now dealing with two fine gradings on Hλ
n

which will be relevant to our work. One of them is toral while the other is not.

A fine grading on Hλ
n is obviously provided by our basis in Equation (7):

Hλ
n = 〈z〉 ⊕ 〈u〉 ⊕ (⊕k

i=1〈ei〉) ⊕ (⊕k
i=1〈êi〉).

Again it is also a group grading. In order to find G0 the universal grading group, note that
necessarily (we denote deg x = g when x ∈ (Hλ

n)g) the following assertions about the
degrees are verified:

deg ei + deg êi = deg z,
deg ei + deg u = deg êi,
deg êi + deg u = deg ei.

Hence deg u ∈ G0 has order 1 or 2 and 2 deg ei = deg z + deg u, so that deg z can
be chosen with freedom and 2(deg ei − deg êi) = 0 (providing k − 1 more order two
elements). The universal grading group G0 is the free abelian group with generators deg u,
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deg z, deg ei, deg êi and relations above. It can be computed to be G0 = Z × Z2 × Zk−1
2

and the grading is given as follows:

Γ1 : (Hλ
n)(2;1̄;0̄,...,0̄,...,0̄) = 〈z〉,

(Hλ
n)(0;1̄;0̄,...,0̄,...,0̄) = 〈u〉,

(Hλ
n)(1;1̄;0̄,...,1̄,...,0̄) = 〈ei〉 (1̄ in the i-th slot when i 6= k),

(Hλ
n)(1;0̄;0̄,...,1̄,...,0̄) = 〈êi〉,

(Hλ
n)(1;1̄;0̄,...,0̄,...,0̄) = 〈ek〉,

(Hλ
n)(1;0̄;0̄,...,0̄,...,0̄) = 〈êk〉.

The general principle of nontorality, (see §2), implies that this fine grading is nontoral.
Now we will find a toral fine grading. First note that, for

(8)
ui := ei + êi,
vi := ei − êi,

the following relations are satisfied:

[u, ui] = λiui,
[u, vi] = −λivi,
[ui, vi] = −2λiz.

Proposition 4.
a) The group of automorphisms of Hλ

n which diagonalizes the basis B := {u, z} ∪
{ui, vi | i = 1, . . . , k} is a maximal torus. It is given by the linear group whose
elements are the matrices diag(1, γ, . . . , αi, γα−1

i , . . .).
b) In any toral grading Γ of Hλ

n the identity element of the grading group is in the
support of Γ.

Proof. Denote by T the group of automorphisms of Hλ
n diagonalizing the above mentioned

basis. Let f ∈ T and write f(u) = ηu, f(z) = γz, f(ui) = αiui and f(vi) = βivi with
η, γ, αi, βi ∈ F×. Applying f to [u, ui] = λiui we get ηαi = αi, hence η = 1. Moreover,
since [ui, vi] = −2λiz, again applying f we get αiβi = γ, hence βi = γα−1

i . We observe
that T ∼= (F×)k+1 is a torus. To prove its maximality take an automorphism g commuting
with each element in T . Then it must preserve the simultaneous eigenspaces relative to the
elements in T . Given that F is algebraically closed, these simultaneous eigenspaces are
Fu, Fz, and all the spaces Fui and Fvi. Thus g must diagonalize B and so g ∈ T .

Finally take a toral grading Γ of Hλ
n with grading group G. Consider the associated

action ρ : χ(G) → Aut(Hλ
n) where χ(G) := hom(G, F×) is the character group. The

torality of Γ implies that Im(ρ) is contained in a maximal torus of Aut(Hλ
n). Since any

two maximal tori are conjugated, we may assume that Im(ρ) ⊂ T . Hence u is fixed by any
element in Im(ρ) and so it is in the zero homogeneous component (Hλ

n)0. �

Thus we obtain a toral fine Z1+k-grading given by

(9)

Γ2 : (Hλ
n)(0;0,...,0) = 〈u〉,

(Hλ
n)(2;0,...,0) = 〈z〉,

(Hλ
n)(1;0,...,1,...,0) = 〈ui〉,

(Hλ
n)(1;0,...,−1,...,0) = 〈vi〉,

if i = 1, . . . , k.
Observe that the zero homogeneous component of the grading Γ1 is zero, so apply-

ing the last assertion in the previous proposition we recover the result that this grading is
nontoral.
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Our first aim is to prove that under suitable conditions on the vector λ, Γ1 and Γ2 are
the unique fine gradings up to equivalence. For that, it is useful to note a more general fact:
u (or at least an element whose behavior is that one of u) is homogeneous in any grading.
Let us prove it.

Let Γ: L = ⊕g∈GLg be any group grading on L = Hλ
n . As any automorphism

leaves invariant [L,L] = Hn and Z(L) = 〈z〉, this implies that z is homogeneous in
any grading, and Hn is graded (the homogeneous components of any element in Hn are
again elements in Hn). Arguing as in Section 3, there is a basis of homogeneous ele-
ments {x1, y1, . . . , xk, yk} of [u, L] such that [xi, yi] = z and the remaining brackets are
zero. We know (scaling if necessary) that there is a homogeneous element u′ such that
u′ − u ∈ [L,L]. Thus u′ = u + αz +

∑

αiui +
∑

βivi for some choice of scalars
αi, βi ∈ F. If we take u′

i = ui + 2βiz and v′
i = vi + 2αiz, then the map f : L → L

such that f(u′) = u, f(z) = z, f(u′
i) = ui and f(v′

i) = vi is a Lie algebra isomorphism.
Consequently, there is not loss of generality in supposing that u is homogeneous.

Let us denote by h ∈ G the degree of u in Γ. Our next aim is to show that h is necessarily
of finite order. From now on we are going to denote by ϕ be the inner derivation

ϕ := ad(u) : Hλ
n → Hλ

n , x 7→ [u, x],

which is going to be a key tool in the study of the group gradings of Hλ
n . If 0 6= x ∈ Hn

is a homogeneous element, then there is g ∈ G such that x =
∑

i(ciui + divi) ∈ Lg for
some scalars ci, di ∈ F, so that ϕt(x) =

∑

i(ciui + (−1)tdivi)λ
t
i ∈ Lg+th is not zero for

all t ∈ N, but at most there are 2k independent elements in the set

{
k

∑

i=1

(ciui + (−1)tdivi)λ
t
i : t = 0, 1, 2, . . . } ⊂ 〈u1, v1, . . . , uk, vk〉,

so that there is r ≤ 2k with ϕr(x) ∈ 〈ϕt(x) | t < r〉. Let r be the minimum positive
integer satisfying such condition. So ϕr(x) ∈ Lg+rh ∩ (

∑

t<r Lg+th) and necessarily
g + rh = g + th for some t < r, so that (r − t)h = 0, as we wanted to show.

Let us denote by l the order of h in G. Recall that the set of eigenvalues of ϕ is
{λ1,−λ1, . . . , λk,−λk, 0, 0} with respective eigenvectors {u1, v1, . . . , uk, vk, u, z} given
by (8), so that the set of eigenvalues of ϕ|[u,L] is

{λ1,−λ1, . . . , λk,−λk} = Spec(ad(u)|[u,L]) =: Spec(u).

Fix some λi ∈ Spec(u), consider the eigenspace of ϕ given by Vλi
:= {x ∈ L : ϕ(x) =

λix} and denote by
V l

λi
:= {x ∈ L : ϕl(x) = λl

ix}.
It is obviously nonzero, because ui ∈ Vλi

⊂ V l
λi

. Moreover, as V l
λi

is invariant under ϕ,
we have that ϕ|V l

λi

is diagonalizable and

(10) V l
λi

=

l−1
⊕

j=0

Vξjλi

for ξ any primitive lth root of the unit. Note that if x ∈ V l
λi

, then
∑l−1

k=0(ξ
−jλ−1

i )kϕk(x) ∈
Vξjλi

.
Recall that if f ∈ End(L) satisfies f(Lg) ⊂ Lg for all g ∈ G, then for each α ∈ F, the

eigenspace {x ∈ L | f(x) = αx} is graded. This can be applied to V l
λi

, since ϕl(Lg) ⊂
Lg+lh = Lg , so that V l

λi
is a graded subspace of L. Thus we can take 0 6= x ∈ V l

λi
∩ Lg

for some g ∈ G. Then 0 6= ∑l−1
k=0(ξ

l−jλ−1
i )kϕk(x) ∈ ∑l−1

k=0 Lg+kh, where the involved
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homogeneous pieces are different, since g + kh = g + ph implies (k − p)h = 0. In
particular Vξjλi

6= 0 for all j, so that

(11) {ξjλi : j = 0, 1, ..., l − 1} ⊂ Spec(u)

for any λi ∈ Spec(u), and hence Spec(u) = {±ξjλi : j < l, i ≤ k}.

Proposition 5. Assume that λi/λj is not a lth root of unit for any l ≥ 1, if i 6= j. Then
the unique fine (group) gradings on Hλ

n (up to equivalence) are Γ1 and Γ2. Moreover, the
Weyl groups of these fine gradings are W(Γ1) ∼= Zk

2 and W(Γ2) ∼= Z2.

Proof. Let Γ: L = ⊕g∈GLg be a grading on L = Hλ
n . By the above discussion we can

suppose u is homogeneous with degree h ∈ G of finite order l. Let us show that either
l = 1 or l = 2. Otherwise, take ξ a primitive lth root of unit. As ξλ1 ∈ Spec(u) by

Equation (11), then there is 1 6= i ≤ k such that ξλ1 ∈ {±λi} and hence either
(

λi

λ1

)l

= 1

or
(

λi

λ1

)2l

= 1, what is a contradiction. Hence, we can distinguish two cases.
First consider h = e ∈ G. Thus ϕ(Lg) ⊂ Lg for any g. Restrict ϕ : [u, L] → [u, L]. We

can take a basis of homogeneous elements which are eigenvectors for ϕ. Recall that the
spectrum of ϕ|[u,L] consists of {±λ1, . . . ,±λk}. Take x1 6= 0 some homogeneous element
in Vλ1

. As [x1, V−λ1
] 6= 0, there is some element y1 ∈ V−λ1

in the above basis such that
[x1, y1] = −2λ1z. Now [u, L] = W ⊕ Z[u,L](W ) for W := 〈x1, y1〉, where W as well
as its centralizer Z[u,L](W ) are graded and ϕ-invariant. We continue by induction until
finding a basis of homogeneous elements {x1, y1, . . . , xk, yk} of [u, L] such that [xi, yi] =
−2λiz, [u, xi] = ϕ(xi) = λixi and [u, yi] = ϕ(yi) = −λiyi. Since

L = 〈z〉 ⊕ 〈u〉 ⊕ [u, L],

we have that the map u 7→ u, z 7→ z, xi 7→ ui and yi 7→ vi is a Lie algebra isomorphism
which applies Γ into a coarsening of Γ2.

Second consider the case when 2h = e but h 6= e. Thus ϕ2 preserves the grading
Γ and it is diagonalizable with eigenvalues {0, 0, λ2

1, λ
2
1, . . . , λ

2
k, λ2

k} (counting each with
multiplicity 1). Observe that ϕ applies {x ∈ L : ϕ2(x) = λ2

i x} = V 2
λi

in itself. Moreover
these sets are graded, because ϕ2 preserves the grading. For any 0 6= x1 ∈ V 2

λ1
∩ Lg a

homogeneous element of the grading, ϕ(x1) is independent with x1 (otherwise ϕ(x1) ∈
Lg ∩ Lg+h but h 6= e and ϕ(x1) 6= 0). Take y1 = 1

λ1
ϕ(x1), which verifies ϕ(y1) =

λ1x1. Since our ground field is algebraically closed, if [x1, y1] 6= 0, we can scale to get
[x1, y1] = λ1z, and now we can continue because, as before, [u, L] = W ⊕ Z[u,L](W )
for W := 〈x1, y1〉, where both W and its centralizer are graded and ϕ-invariant. The
case [x1, y1] = 0 does not occur under the hypothesis of the theorem, since λ2

i 6= λ2
j

if i 6= j, so that dim V 2
λi

= 2 for all i. As [Vα, Vβ ] = 0 if α + β 6= 0, this implies
that there is y ∈ V 2

λ1
with [x1, y] 6= 0 but V 2

λ1
= 〈x1, y1〉. To summarize, if h has

order 2 and λi/λj /∈ {±1}, we find a basis of homogeneous elements {x1, y1, . . . , xk, yk}
of [u, L] such that [xi, yi] = λiz, [u, xi] = λiyi and [u, yi] = λixi, so that the map
u 7→ u, z 7→ z, xi 7→ ei and yi 7→ êi is a Lie algebra isomorphism which applies Γ into a
coarsening of Γ1.

In order to compute the Weyl groups of these fine gradings, recall that any f ∈ Aut(L)
verifies 0 6= f(z) ∈ 〈z〉. If besides f ∈ Aut(Γ1), then f(u) ∈ 〈u〉. Otherwise, there
would exist some i ≤ k such that either f(ei) ∈ 〈u〉 or f(êi) ∈ 〈u〉, so that 0 6= f(λiz) =
[f(ei), f(êi)] ∈ [u, L] ∩ 〈z〉 = 0. Consider for each index i ≤ k, the element in Aut(Γ1)
defined by µi(ei) = iêi, µi(êi) = iei, µi(ej) = ej , µi(êj) = êj for each j 6= i, µi(z) = z
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and µi(u) = u. Note that if r = 1, ..., k, there are not any i, j ≤ k such that f(ei) ∈ 〈er〉
and f(ej) ∈ 〈êr〉. Hence we can compose f with some µi’s if necessary to obtain that
f ′ := µi1 · · ·µis

f satisfies

f ′(ei) ∈ 〈e1〉 ∪ 〈e2〉 ∪ · · · ∪ 〈ek〉
for each i = 1, ..., k. Thus, there is σ ∈ Sk such that f ′(z) = µz, f ′(u) = βu, f ′(ei) =
γieσ(i) and f ′(êi) = γ′

iêσ(i) for any i = 1, ..., k, with µ, β, γi, γ
′
i ∈ F×. From here, the

equality f ′([u, ei]) = [f ′(u), f ′(ei)] implies

(12) γ′
iλi = βγiλσ(i),

and finally the condition f ′([u, êi]) = [f ′(u), f ′(êi)] allows us to assert

(13) γiλi = βγ′
iλσ(i).

From Equations (12) and (13) we easily get λσ(i) ∈ ±β−1λi for any i = 1, ..., k. By
multiplying, Πk

i=1λσ(i) ∈ ±β−kΠk
i=1λi so that β2k = 1. As λσ(i)/λi is not a root of unit

if σ(i) 6= i, we conclude that σ = id, so that f ′ ∈ Stab(Γ1). In other words,

W(Γ1) = {[µi1 . . . µis
] : 1 ≤ i1 ≤ · · · ≤ is ≤ k} ∼= Zk

2 ,

since µiµj = µjµi.
For the other case, define the automorphism µ ∈ Aut(Γ2) by means of µ(ui) = ivi

and µ(vi) = iui for all i, µ(z) = z and µ(u) = −u. Consider f ∈ Aut(Γ2), and note
that again there is β ∈ F× such that f(u) = βu. If f(ui) is a multiple of either uj or
vj for some j, this clearly implies that f(vi) also is, so that there is σ ∈ Sk such that
f(ui) ∈ 〈uσ(i)〉 ∪ 〈vσ(i)〉 for all i ≤ k. As β[u, f(ui)] = λif(ui), then λi ∈ {±βλσ(i)},
and, as before, β is a root of unit, and, by hypothesis, σ = id. By composing with µ if
necessary, we can assume that f(u1) ∈ 〈u1〉, which implies β = 1. If f(ui) ∈ 〈vi〉 for
some i, then β = −1, which is a contradiction, so that f(ui) ∈ 〈ui〉 for all i and f belongs
to Stab(Γ2). We have then proved that

W(Γ2) = 〈µ〉 ∼= Z2.

�

6.3. Fine gradings on extended Heisenberg algebras. In the general case (possible roots
of the unit among the fractions of λi’s), the situation is much more involved. On one hand,
a lot of different fine gradings arise, and on the other hand even the Weyl groups of Γ1 and
Γ2 change. There is a lot of symmetry in the related extended Lie algebra, and their fine
gradings are also symmetric. In order to figure out what is happening, we previously need
to show a couple of key examples.

First, for ξ a primitive lth root of the unit and α a nonzero scalar we consider the
extended Heisenberg algebra Hλ

2l+2 corresponding to

λ = (λ1, . . . , λl) = (ξα, ξ2α, . . . , ξl−1α, α).

Thus [u, ui] = ξiαui, [u, vi] = −ξiαvi and [ui, vi] = −2ξiαz for i = 1, . . . , l, with the
definition of ui’s and vi’s as in Equation (8). Take now

(14)
xj =

∑l
i=1 ξjiui,

yj = − 1
2l

∑l
i=1(−1)jξ(j−1)ivi,

if j = 1, ..., l. These vectors verify [u, xj ] = αxj+1 and [u, yj ] = αyj+1 for all j ≤ l − 1.
Besides [xi, yj ] = (−1)j α

l (
∑l

r=1 ξr(i+j))z is not zero if and only if i + j = l, 2l, and in
such a case [xl, yl] = (−1)lαz and [xi, yl−i] = (−1)l−iαz for i = 1, ..., l − 1. Note that
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obviously {x1, y1 . . . , xl, yl} is a family of independent vectors such that [xi, xj ] = 0 =
[yi, yj ] for all i, j.

Therefore we have a fine grading on L = Hλ
n over the group

G = Z2 × Zl,

given by

(15)

L(0,0,1̄) = 〈u〉,
L(1,1,0̄) = 〈z〉,
L(1,0,i) = 〈xi〉,
L(0,1,i) = 〈yi〉,

for all i = 1, ..., l.
Take γ ∈ F such that γl = (−1)l, and consider θ, ϑ ∈ Aut(L) defined by

θ(xi) = xi+1, θ(yi) = yi−1, θ(z) = −z, θ(u) = u;
ϑ(xi) = γiyi, ϑ(yi) = −γixi, ϑ(z) = z, ϑ(u) = γu;

where the indices are taken modulo 2l. It is not difficult to check that the Weyl group of
the grading described in Equation (15) is generated by the classes [θ] and [ϑ], elements of
order l and 2 respectively which do not commute, so that the Weyl group is the Dihedral
group Dl.

This example motivates the following definition.

Definition 5. Let L be any Lie algebra, z ∈ L a fixed element, u an arbitrary element and
α ∈ F×. A set BI

l(u, α), which will be referred as a block of type I, is given by a family of
2l independent elements in L,

BI
l(u, α) = {x1, y1, . . . , xl, yl},

satisfying that the only non-vanishing products among them are the following:

[u, xi] = αxi+1 ∀i = 1, . . . , l − 1,
[u, xl] = αx1,
[u, yi] = αyi+1 ∀i = 1, . . . , l − 1,
[u, yl] = (−1)lαy1,
[xi, yl−i] = (−1)l−iαz ∀i = 1, . . . , l − 1,
[xl, yl] = (−1)lαz.

As a second example, fix ξ a primitive 2lth root of the unit and α a nonzero scalar.
Consider now the extended Heisenberg algebra Hλ

2l+2 corresponding to

λ = (λ1, . . . , λl) = (ξα, ξ2α, . . . , ξl−1α,−α).

Again [u, ui] = ξiαui, [u, vi] = −ξiαvi and [ui, vi] = −2ξiαz for i = 1, . . . , l. Take now

(16) xj =
i

2
√

l

l
∑

i=1

(ui + (−1)j−1vi)ξ
(j−1)i

for each integer j. Observe that {x1, . . . , x2l} is a family of independent vectors satisfying
[u, xj ] = αxj+1 for any j = 1, ..., 2l − 1 and [u, x2l] = αx1. A direct computation gives

(17) [xi, xj ] =
1

2l
α((−1)i + (−1)j−1)(

l
∑

k=1

ξ(i+j−1)k)z
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for any i and j. If i + j − 1 = 2l, then i and j − 1 are either both odd or both even and
[xi, x2l+1−i] = (−1)iαz 6= 0. Hence,

[x1, x2l] = −[x2, x2l−1] = · · · = (−1)l−1[xl, xl+1].

Again Equation (17) tells us that the remaining brackets are zero: if r = i + j − 1 is odd,
then (−1)i + (−1)j−1 = 0, and, if r is even (different from 0 and 2l), then

∑l
k=1 ξrk = 0

since (ξ2)l = 1.
We note that this provides a fine grading on Hλ

2l+2 over the group

G = Z × Z2l,

given by:
L(0,1) = 〈u〉,
L(2,1̄) = 〈z〉,
L(1,i) = 〈xi〉,

for i = 1, ..., 2l.
Take ρ ∈ Aut(L) defined by

ρ(xi) = xl+i, ρ(z) = (−1)lz, ρ(u) = u,

for all i = 1, . . . , 2l (mod 2l). This time the Weyl group of the grading is isomorphic to
Z2, since it is easily proved to be generated by the class [ρ].

This example gives rise to the next concept.

Definition 6. Let L be any Lie algebra, z ∈ L a fixed element, u ∈ L an arbitrary element
and α ∈ F×. A set BII

l (u, α), which will be referred as a block of type II, is given by a
family of 2l independent elements in L,

BII
l (u, α) = {x1, . . . , x2l},

satisfying that the only non-vanishing products among them are the following:

[u, xi] = αxi+1 ∀i = 1, . . . , 2l (mod 2l),
[xi, x2l−i+1] = (−1)iαz ∀i = 1, . . . , 2l.

In fact, all of the fine gradings of a extended Heisenberg algebra can be described with
blocks of types I and II, according to the following theorem.

Theorem 3. Let Γ be a fine G-grading on L = Hλ
n . Let 〈z〉 be the center of L. Then there

exist u ∈ L, positive integers l, r, s such that l(r + 2s) = 2k = n − 2 (r = 0 when l is
odd) and scalars β1, . . . , βs, α1, . . . , αr ∈ {±λ1, . . . ,±λk} such that

{z, u} ∪ (

s
⋃

j=1

BI
l(u, βj)) ∪ (

r
⋃

i=1

BII
l
2
(u, αi))

is a basis of homogeneous elements of Γ, being zero the bracket of any two elements
belonging to different blocks.

Proof. Recall that z is always a homogeneous element and that we can assume that u is
also homogeneous of degree h ∈ G, necessarily of finite order. Let l ∈ Z≥0 be the order
of h. Take ϕ = ad(u) and consider again Vλi

and V l
λi

. Recall that V l
λi

is a ϕ-invariant
graded subspace for all λi ∈ Spec(u).

Let us discuss first the case that l is odd. Fix any 0 6= x ∈ V l
λ1

∩ Lg for some g ∈ G.
Since each ϕi(x) ∈ Lg+ih we have that

{x, ϕ(x), ..., ϕl−1(x)}
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is a family of linearly independent elements of L. Now observe that Equation (10), together
with the fact l is odd, say that [V l

λ1
, V l

λ1
] = 0 and [V l

λ1
, V l

−λ1
] 6= 0. From here,

(18) [ϕi(x), ϕj(x)] = 0 for any i, j = 0, 1, ..., l − 1,

and we can take a nonzero homogeneous element 0 6= y ∈ V l
−λ1

∩Lp such that [x, y] 6= 0.
By scaling if necessary we can suppose [x, y] = λ1z, being then deg z = g + p. As above,
we also have that

{y, ϕ(y), ..., ϕl−1(y)}
is a family of linearly independent elements of L satisfying

(19) [ϕi(y), ϕj(y)] = 0 for any i, j = 0, 1, ..., l − 1.

Taking into account ϕi(x) ∈ Lg+ih and ϕj(y) ∈ Lp+jh, we get that in case [ϕi(x), ϕj(y)] 6=
0, then g + k + (i + j)h = deg z = g + k, which is only possible if i + j is a multiple of
l. That is, for each 0 ≤ i, j < l,

(20) [ϕi(x), ϕj(y)] = 0 if i + j 6= 0, l.

Also note that

(21) [ϕi(x), ϕl−i(y)] = (−1)l−iλl
1[x, y] 6= 0.

Indeed, take ξ a primitive lth root of the unit and write x =
∑l−1

j=0 aj and y =
∑l−1

j=0 bj for
aj ∈ Vξjλ1

and bj ∈ V−ξjλ1
, taking into consideration Equation (10). Then

[ϕi(x), ϕl−i(y)] =
∑

j,k[(ξ)jiλi
1aj , (−ξk)l−iλl−i

1 bk] =

= λl
1(−1)l−i

∑

j(ξ)
ji(ξ)j(l−i)[aj , bj ] = (−1)l−iλl

1[x, y].

Finally note that the family {x, ϕ(x), ..., ϕl−1(x), y, ϕ(y), ..., ϕl−1(y)} is linearly inde-
pendent. Indeed, in the opposite case some ϕi(y) = βϕj(x), β ∈ F×, because we are deal-
ing with a family of homogeneous elements, and then [ϕi(y), ϕl−j(y)] = β[ϕj(x), ϕl−j(y)] 6=
0, what contradicts Equation (19).

Taking into account Equations (18), (19), (20) and (21), we have that

{ϕ(x)

λ1
,
ϕ(y)

λ1
, ...,

ϕi(x)

λi
1

,
ϕi(y)

λi
1

, ...,
ϕl(x)

λl
1

= x,
ϕl(y)

λl
1

= (−1)ly}

is a block BI
l(u, λ1) of type I.

Now [u, L] = W ⊕ Z[u,L](W ) for W := 〈BI
l(u, λ1)〉, where W as well as its central-

izer are graded and ϕ-invariant. We continue by iterating this process on Z[u,L](W ) until
finding a basis of [u, L] formed by s = k

l blocks of type I of homogeneous elements.

Now consider the case with l even. If we fix as above the linear subspace 0 6= V l
λ1

, we
have two different cases to distinguish.

Assume first that for any g ∈ G and any x ∈ V l
λ1

∩ Lg we have [x, ϕ(x)] = 0. Fix
0 6= x ∈ V l

λ1
∩ Lg for some g ∈ G, being then {x, ϕ(x), ..., ϕl−1(x)} a family of linearly

independent elements of L. By induction on n it is easy to verify, taking into account
that ϕ is a derivation, that for any i = 0, ..., l − 1, we have [ϕi(x), ϕi+n(x)] = 0 for any
n = 1, ..., l. That is, [ϕi(x), ϕj(x)] = 0 for any i, j = 0, ..., l − 1.

Since the fact that l is even implies V l
λ1

= V l
−λ1

, we can choose a homogeneous element
0 6= y ∈ V l

λ1
∩ Lp, for some p ∈ G, such that 0 6= [x, y] = λ1z. The same arguments that

in the odd case say that again

{ϕ(x)

λ1
,
ϕ(y)

λ1
, ...,

ϕi(x)

λi
1

,
ϕi(y)

λi
1

, ...,
ϕl(x)

λl
1

,
ϕl(y)

λl
1

}
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is a block BI
l(u, λ1) of type I. Now we can write

(22) [u, L] = W ⊕Z[u,L](W )

for W := 〈BI
l(u, λ1)〉, where W as well as its centralizer are graded and ϕ-invariant.

Second, assume that there exist g ∈ G and 0 6= x ∈ V l
λ1

∩ Lg such that [x, ϕ(x)] 6=
0. By scaling if necessary we can assume [x, ϕ(x)] = λ2

1z. We have as above that
{x, ϕ(x), ..., ϕl−1(x)} is a family of homogeneous linearly independent elements of L
satisfying [ϕi(x), ϕj(x)] = 0 if i + j 6= 1, l + 1 (take into account that deg z = 2g + h).
Besides Equation (10) allows us to get in a straightforward way that

[ϕi(x), ϕl−i+1(x)] = (−1)iλl
1[x, ϕ(x)] 6= 0

for any i = 1, . . . , l. Thus the set

{ϕ(x)

λ1
, ...,

ϕi(x)

λi
1

, ...,
ϕl(x)

λl
1

= x}

is a block BII
l
2

(u, λ1) of type II. Now we can write

(23) [u, L] = W ⊕Z[u,L](W )

for W the vector space spanned by the above block B II
l
2

(u, λ1), where W as well as its
centralizer Z[u,L](W ) are graded and ϕ-invariant.

Taking into account Equations (22) and (23), we can iterate this process on Z[u,L](W )
until finding the required basis of [u, L] formed by s blocks of type I and r blocks of type
II. �

Remark. Note that our gradings Γ1 and Γ2 should be particular cases of the above situa-
tion. Indeed, Γ1 corresponds to the situation l = 2, s = 0 and r = k, and Γ2 corresponds
to the situation l = 1, s = k and r = 0. Take into consideration that {ui, vi} = BI

1(u, λi)
and that {ei, êi} = BII

1 (u, λi).

Note that this implies that, for ξ a primitive lth root of the unit,

(24) Spec(u) =

{ξtαi : i = 1, . . . , r, t = 0, . . . , l − 1} ∪ {ξtβj ,−ξtβj : j = 1, . . . , s, t = 0, . . . , l − 1}.
Conversely we have:

Theorem 4. Assume there are l, r, s ∈ Z≥0 (l > 0) such that l(r+2s) = 2k = n−2 (6= 0)
and scalars α1, . . . , αr, β1, . . . , βs ∈ {±λ1, . . . ,±λk} such that (24) holds, with l even if
r 6= 0. Then there exists a (nontoral) grading on H

(λ1,...,λk)
n over the group

Zs+1 × Zr−1
2 × Zl if r 6= 0,

Zs+1 × Zl if r = 0.

Proof. Note that H
(λ1,...,λk)
n is isomorphic to H

(−λ1,λ2,...,λk)
n by means of the automor-

phism which interchanges u1 with v1. Of course it is also isomorphic to H
(λσ(1),...,λσ(k))
n

if σ is a permutation of {1, . . . , k}. Now, by considering blocks as in Equations (14) and
(16), the fine gradings determined by Theorem 3 exist and can be combined to get the ones
of the theorem.
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If we take {xj
1, y

j
1, . . . , x

j
l , y

j
l } a block BI

l(u, βj) if j ≤ s, and {at
1, . . . , a

t
l} a block

BII
l
2

(u, αt) if t ≤ r, then the grading is given by

deg(xj
i ) = (i + 1; 0, . . . , 1, . . . , 0; 1; 0̄, . . . , 0̄) ∈ Zl × Zs × Z × Zr−1

2 (1 in the jth slot),
deg(yj

i ) = (i; 0, . . . ,−1, . . . , 0; 1; 0̄, . . . , 0̄),
deg(z) = (1; 0, . . . , 0; 2; 0̄, . . . , 0̄),
deg(u) = (1; 0, . . . , 0; 0; 0̄, . . . , 0̄),
deg(at

i) = (i; 0, . . . , 0; 1; 0̄, . . . , 1̄, . . . , 0̄) (1̄ in the tth slot if t 6= r),
deg(ar

i ) = (i; 0, . . . , 0; 1; 0̄, . . . , 0̄).

�

In practice, when one wants to know how many gradings are in a particular extended
Heisenberg algebra Hλ

n , it is enough to see how many ways are of splitting {±λ1, . . . ,±λk}
in the way described in Equation (24).

Example 1. Let us compute how many fine gradings are there in L = H
(1,1,i,i)
10 . As l must

divide 8, the possibilities are l = 1, l = 2 with (r, s) = (4, 0), (2, 1), (0, 2) and l = 4
with (r, s) = (2, 0), (0, 1). Thus we have seven fine gradings over the groups Z5, Z × Z4

2,
Z2 × Z2

2 (two of these ones, with bases of homogeneous elements {z, u} ∪ B II
1 (u, 1) ∪

BII
1 (u, 1) ∪ BI

2(u, i) and {z, u} ∪ BII
1 (u, i) ∪ BII

1 (u, i) ∪ BI
2(u, 1) respectively), Z3 × Z2,

Z × Z4 × Z2 and Z2 × Z4, all of them inequivalent with all the components of dimension
1. The possibility l = 8 does not happen taking into account that ± λi

λj
is never a primitive

eighth root of the unit when λi, λj ∈ Spec(u).

For computing the Weyl groups of the fine gradings described in the above theorems,
we need to make some considerations.

Lemma 4. Let L be a Lie algebra, z ∈ Z(L), u ∈ L, α, β ∈ F× such that L contains
blocks of types Bν

l (u, α) and Bν
l (u, β) for some ν ∈ {I,II}. Then

i) 〈BI
l(u, α)〉 = 〈BI

l(u, β)〉 if and only if
(

α
β

)l

= 1 if l is even and
(

α
β

)2l

= 1 if l is
odd.

ii) 〈BII
l (u, α)〉 = 〈BII

l (u, β)〉 if and only if
(

α
β

)l

= 1.

Proof. As usual, denote ϕ = ad(u) and ξ a primitive lth root of the unit. For i), take
BI

l(u, α) = {x1, y1, . . . , xl, yl} and V the vector space spanned by these elements. Note
that ϕl diagonalizes V with eigenvalues αl and (−1)lαl (eigenvectors xi’s and yi’s respec-
tively). Thus αl = βl or αl = (−1)lβl.

Conversely, let us see that there is a block of type B I
l(u, ξα) contained in 〈BI

l(u, α)〉.
Indeed, take γ such that γ2 = ξ. The elements x′

i := γ1−2ixi and y′
i := γ1−2iyi constitute

the required block. Moreover, if we take δ such that δ4 = ξ, then the elements x′
i :=

(−1)iδ1−2iyi and y′
i := (−1)iδ1−2ixi constitute a block of type BI

l(u, δ2α) if l is odd.
The case ii) is proved with similar arguments. �

These arguments make convenient to consider the equivalence relation in F× given by:
α is related to β if and only if (α

β )l = 1. The equivalence class of the element α will be
denoted by ᾱ := {αξt : t = 0, . . . , l − 1}.

Assume we have fixed a Zs+1 × Zr−1
2 × Zl-grading Γ on H

(λ1,...,λk)
n given by blocks

BI
l(u, βj) = {xj

1, y
j
1, . . . , x

j
l , y

j
l } if j ≤ s, and blocks BII

l
2

(u, αi) = {ai
1, . . . , a

i
l} if i ≤ r

(r 6= 0), for some β1, . . . , βs, α1, . . . , αr ∈ {±λ1, . . . ,±λk}. We have some remarkable
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elements in the group of automorphisms of the grading, fixing all the spaces spanned by
the blocks. For each j ≤ s, consider θj ∈ Aut(Γ) leaving invariant 〈{z, u, xt

i, y
t
i , a

p
i : i ≤

l, p ≤ r, t ≤ s, t 6= j}〉 and such that

θj(x
j
i ) = ixj

i+1, θj(y
j
i ) = iyj

i−1,

(indices taken modulo l). As l is necessarily even, we can also consider ϑj ∈ Aut(Γ)
leaving invariant 〈{z, u, xt

i, y
t
i , a

p
i : i ≤ l, p ≤ r, t ≤ s, t 6= j}〉 and such that

ϑj(x
j
i ) = yj

i , ϑj(y
j
i ) = −xj

i .

Finally consider for each t ≤ r the automorphism %t ∈ Aut(Γ) leaving invariant the
subspace 〈{z, u, xj

i , y
j
i , a

p
i : i ≤ l, p ≤ r, j ≤ s, p 6= t}〉 and such that

%t(a
t
i) = at

l
2+i

for all i ≤ l (sum modulo l).
We observe too that the following automorphisms stabilize the grading: for each α ∈

F×, the automorphism given by

z 7→ α2z, u 7→ u, xj
i 7→ αxj

i , yj
i 7→ αyj

i , ap
i 7→ αap

i

and for each t = 0, . . . , l − 1, the automorphism given by

z 7→ ξtz, u 7→ ξtu, xj
i 7→ (ξt)ixj

i , yj
i 7→ (ξt)i+1yj

i , ap
i 7→ (ξt)iap

i .

Thus any f ∈ Aut(Γ) can be assumed to satisfy f(z) = z and f(u) = εu for some
ε ∈ F×, which can be replaced by any εξt. Notice that f(BI

l(u, β)) = BI
l(f(u), β) for

any automorphism, so, in this case f(BI
l(u, βj)) = BI

l(u, βj/ε). This implies that βj/ε is
related with some element in {β1, . . . , βs}. The same happens with the blocks of type II,
so that there are σ ∈ Sr and η ∈ Ss such that

εᾱi = ᾱσ(i), εβ̄j = β̄η(j)

for all i ≤ r and j ≤ s. In particular ε̄r = 1̄ = ε̄s, so ε is a root of unit. This root is a pth
primitive root for some p. This also implies that there are sets X of Y of classes such that
{ᾱ1, . . . , ᾱr} = ∪p−1

t=0 εtX (disjoint union) and {β̄1, . . . , β̄s} = ∪p−1
t=0 εtY, chosen in such

a way that X ∩ εjX is either ∅ or X for any j, and in the same way Y ∩ εjY is either ∅ or
Y . Now reorder the scalars of the blocks such that ᾱt r

p
+i = εtᾱi and β̄t s

p
+j = εtβ̄j for all

i = 1, . . . , r
p , t = 0, . . . , p− 1 and j = 1, . . . , s

p . Moreover we can suppose, by Lemma 4,
that just αt r

p
+i = εtαi and βt s

p
+j = εtβj , by replacing the chosen vectors in the blocks

(without changing the grading, since changes were produced only when replacing β with
−β in the case l odd). Now the map gp given by

z 7→ z, u 7→ ε−1u, xj
i 7→ x

j+ s
p

i , yj
i 7→ y

j+ s
p

i , at
i 7→ a

t+ r
p

i ,

if t ≤ r, i ≤ l, j ≤ s, is an order p automorphism of the grading such that gpf applies
u into itself. Applying besides Lemma 4, we can suppose that our σ ∈ Sr and η ∈ Ss

verify that αi = ασ(i) and βj = βη(j) for all i ≤ r and j ≤ s. If we reorder the set
{α1, . . . , αr} = {γ1, . . . , γ1, . . . , γr′ , . . . , γr′} with γ̄i 6= γ̄j if i 6= j, each γi repeated ni

times (n1 + · · ·+ nr′ = r), and the set {β1, . . . , βs} = {δ1, . . . , δ1, . . . , δs′ , . . . , δs′} with
δ̄i 6= δ̄j if i 6= j, each δi repeated mi times, then σ leaves invariant the subsets {1, . . . , n1},
{n1 + 1, . . . , n1 + n2} and so on, thus it determines σ1 ∈ Sn1

, . . . , σr′ ∈ Snr′
and also

η determines an element in Sm1
× · · · × Sms′

. Conversely each σ = (σ1, . . . , σr′) ∈
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Sn1
×· · ·×Snr′

(that is, σ(n1 + · · ·+nj + t) = n1 + · · ·+nj +σj+1(t) if 1 ≤ t ≤ nj+1)
and η ∈ Sm1

× · · · × Sms′
allow to define the automorphism Υ(η,σ) by

z 7→ z, u 7→ u, xj
i 7→ x

η(j)
i , yj

i 7→ y
η(j)
i , at

i 7→ a
σ(t)
i ,

and if we compose it with f , the new automorphism fixes all the blocks globally. It is not
hard to prove that then [f ] belongs to the group generated by

{[θj ], [ϑj ] : j ≤ s} ∪ {[%t] : t ≤ r},
which is isomorphic to Ds

l × Zr
2.

To arrive at a conclusion, note that there are always p ∈ N and sets X and Y of classes
such that {ᾱ1, . . . , ᾱr} = ∪p−1

t=0 εtX and {β̄1, . . . , β̄s} = ∪p−1
t=0 εtY, for ε a primitive pth

root of 1, and such that X ∩ εjX is either the empty set or X and the same happens to Y
(for instance take p = 1). We choose the maximum p with this property (the existence of
X and Y ). Let t be the minimum positive integer such that ε̄t = 1̄. Clearly t is a divisor
of p. If we reorder the set {ᾱ1, . . . , ᾱr} = {γ̄1, . . . , γ̄1, . . . , γ̄r′ , . . . , γ̄r′} with γ̄i 6= γ̄j

if i 6= j, each γi repeated ni times (n1 + · · · + nr′ = r), and the set {β̄1, . . . , β̄s} =
{δ̄1, . . . , δ̄1, . . . , δ̄s′ , . . . , δ̄s′} with δ̄i 6= δ̄j if i 6= j, each δi repeated mi times, we obtain
that the Weyl group of Γ is isomorphic to

(25)

(

Sn1
× · · · × Snr′

× Sm1
× · · · × Sms′

× Zr
2 n Ds

l

)

o Zp

Zp/t
.

The arguments are the following. First, if f ∈ Aut(Γ), then f(u) = δu for some δ
primitive p′th root, and applying the above arguments to fg−1

p (which applies u into εδu),
by maximality of p we get mcm(p, p′) = p and δ is a power of ε, so that we can compose
f with a power of gp to get f(u) = u. Second, if f ∈ Aut(Γ) with f(u) = u, then [f ]
belongs to the group generated by

(26) {[Υ(η,σ)], [θj ], [ϑj ], [%t] : j ≤ s, t ≤ r}
with η and σ permutations as above. Third, note that [gp] is an order p element in the
Weyl group such that the order p

t element [gp]
t belongs to the group generated by the set

described in Equation (26), since gt
p(u) = εtu so that the composition of gt

p with certain
element in the stabilizer applies u into itself (εt is a power of ξ).

The formula (25) and the related arguments work if l is even, still in case r = 0.
If l is odd, there are no blocks of type II. In this case it is more convenient to consider

α related to β when
(

α
β

)2l

= 1, and the classes of this relation as α̃ = {αζ t : t =

0, . . . , 2l − 1} for ζ primitive 2lth root. As above, if f ∈ Aut(Γ) verifies f(u) = εu, then
f(BI

l(u, βj)) = BI
l(u, βj/ε). Thus there is η ∈ Ss such that

εβ̃j = β̃η(j)

for all j = 1, . . . , s, and ε is a pth root of the unit. So we can divide {β̃1, . . . , β̃s} =

∪p−1
t=0 εtY , with p maximum verifying this property, and take gp as in the previous case.

The maps ϑj are not longer automorphisms, but we can consider ϑ′ ∈ Aut(Γ) given by

ϑ′(z) = z, ϑ′(u) = −u, ϑ′(xj
i ) = (−1)iyj

i , ϑ′(yj
i ) = (−1)i+1xj

i .

It is straightforward to get the conclusion that, if f ∈ Aut(Γ) is an automorphism fixing
the subspaces spanned by the blocks, then f belongs to the subgroup generated by

{[θj ] : j ≤ s} ∪ {[ϑ′]},
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which is isomorphic to Zs
l o Z2, and hence

(27) W(Γ) ∼=
(

Sm1
× · · · × Sms′

× Z2 n Zs
l

)

o Zp

Zp/t
.

with (m1 + · · · + ms′)p = s = n−2
2l , for mj’s defined as above, and t minimum such that

ε̃t = 1̃.

Proposition 6. The Weyl groups of the fine gradings described in Theorem 4 are those in
Equations (25) for l even and (27) for l odd.

Example 2. We now describe the Weyl groups of the fine gradings on L = H
(1,1,i,i)
10

computed in Example 1. For l = 1, our grading is Γ2, and the Weyl group is Z
3
2oZ4

Z2=〈(1̄,1̄,1̄,2̄)〉 .
Indeed, W(Γ2) has 4 generators: [g] ≡ [g4] (the only element with order 4), [ϑ′] and the
classes of the two automorphisms f1 and f2 coming from permutations, such that the three
latter ones commute, [g] commute with [ϑ′], [gf1g

−1] = [f2] and [g]2 = [ϑ′f1f2].
For (l, r, s) = (2, 4, 0), the grading is Γ1 and now the generators of the Weyl group are

{[%i] : i = 1, . . . , 4}, [g] ≡ [g4], the automorphism interchanging e1 with e2 and ê1 with
ê2 and the one interchanging e3 with e4 and ê3 with ê4. Hence W(Γ1) ∼= Z

6
2oZ4

Z2
. Observe

that the results for W(Γ1) and W(Γ2) are quite different than those in Proposition 5.
The remaining cases of Example 1 correspond, respectively, to Weyl groups isomorphic

to Z3
2 n Z2, Z4

2, Z2
2 and D4.
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DPTO. ÁLGEBRA, GEOMETRÍA Y TOPOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE MÁLAGA,
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