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Abstract. We study the system of equations of motion for in-
extensible strings. This system can be recast into a discontinuous
system of conservation laws as well as into the total variation wave
equation. We prove existence of generalized Young measure so-
lutions with non-negative tension after transforming the problem
into a system of conservation laws and approximating it with a
regularized system for which we obtain uniform estimates of the
energy and the tension. We also discuss sufficient conditions for
non-negativity of the tension for strong solutions.

1. Introduction

An inextensible string is defined (cf. [4]) to be the one for which
the stretch is constrained to be equal to 1, whatever system of forces
is applied to it. As in [30], some authors refer to it as a chain which
is a long but very thin material that is inextensible but completely
flexible, and hence mathematically described as a rectifiable curve of
fixed length. Dynamics of pipes, flagella, chains, or ribbons of rhythmic
gymnastics, mechanism of whips, and galactic motion are only a few
phenomena and applications that can be related to inextensible strings
(see [10, 21, 18] for more details).

The motion executed by a homogeneous, inextensible string with
unit length and density can be modeled by the system

(1.1)

{
ηtt(t, s) =

(
σ(t, s) ηs(t, s)

)
s

+ g, s ∈ [0, 1],
|ηs| = 1,

where g ∈ R3 is the given gravity vector, η ∈ R3 is the unknown
position vector for material point s at time t. The unknown scalar
multiplier σ, which is called tension, satisfies the equation

(1.2) σss(t, s)− |ηss(t, s)|2 σ(t, s) + |ηst(t, s)|2 = 0
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(see Section 2.4 for the derivation of (1.2) from (1.1)). We are given
the initial positions and velocities of the string as

(1.3) η(0, s) = α(s) and ηt(0, s) = β(s).

There are several options for boundary conditions:

a) two fixed ends:

(1.4) η(t, 0) = α(0) and η(t, 1) = α(1)

b) two free ends:

(1.5) σ(t, 0) = σ(t, 1) = 0

c) the “ring” or periodic conditions (here it is convenient to consider
s ∈ R instead of s ∈ [0, 1]):

(1.6) η(t, s) = η(t, s+ 1) and σ(t, s) = σ(t, s+ 1)

d) the “whip” boundary conditions when one end is free and one is
fixed:

(1.7) σ(t, 0) = 0 and η(t, 1) = 0.

We make the convention that s = 0 corresponds to the free end while
the end s = 1 is fixed at the origin of the space.

Even though the analysis of the dynamics of inextensible strings
subject to different kinds of boundary conditions is a notable problem
which goes back to Galileo, Leibniz and Bernoulli (cf. [30, 4, 26]),
and it has been investigated by many authors in various contexts (see
e.g. [10, 22, 21, 33, 42]), there are still very few results about gen-
eral well-posedness. According to [26], V. Yudovich was interested in
this problem (possibly because of its relation to the Euler equations,
see our Section 2.6), and obtained some unpublished results. One of
the available existence results is by Reeken [31, 32] who proves well-
posedness for an infinite string with gravity when the initial data is
near the trivial (downwards vertical) stable stationary solution (close
in H26).

Another one is due to Preston [26] who considers (1.1) in the absence
of gravity with the whip boundary conditions (1.7). He obtains local
existence and uniqueness in weighted Sobolev spaces for which the en-
ergy is bounded. He uses the method of lines, approximating with a
discrete system of chains. In his paper, he imagines that the graph of
the whip extends smoothly through the origin (which corresponds to
the fixed end), and hence the tension extends to an even smooth func-
tion. This evenness leads to what he calls the compatibility boundary
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condition given by
σs(t, 1) = 0.

In the presence of gravity (and still assuming the boundary condition
(1.7)) this condition looks like

(1.8) σs(t, 1) = −gηs(t, 1);

it is just a consequence of our formula (2.22) and therefore is not an
independent boundary condition. These conditions are related to the
delicate issue of non-negativity of the tension. We study this issue in
Section 2.4, allowing for all possible boundary conditions and presence
of gravity, and find pre-conditions which a priori guarantee that the
tension is non-negative for strong solutions. Rather surprisingly, the
generalized solutions which we will construct in the subsequent sections
of this paper will always have non-negative tension.

Dickey [18] looks into the two-dimensional case, also ignoring the
gravity. He defines a new variable as the angle the tangent to the string
makes with the positive x-axis, and obtains a transformed system for
which he discusses two asymptotic theories, one in which the amplitude
of the angle is small and another in which the amplitude is large.

In [27], Preston studies the space of curves parametrized by the unit
speed (with one fixed end) as a Hilbert submanifold of the Hilbert
space L2(0, 1;R3). He proves that the geodesics on his manifold are
determined by the inextensible string system (1.1), (1.7) with g = 0.
For technical reasons, he extends the curves through the fixed point by
oddness to get curves with two free endpoints. He notes that if periodic
boundary conditions were used, the results of his paper would change,
for example, he would work on ordinary Sobolev spaces on the circle,
rather than weighted Sobolev spaces on the interval.

Thess et al. [37] observed that the motion of inextensible string has
deep similarities with the one of an ideal incompressible fluid, which is
governed by the Euler equations. The two objects were recently put
into a common geometric framework in [9]. We discuss these issues in
more detail in Remark 2.6. Accordingly, the studies of the “toy model”
(1.1) may shed more light on the nature of turbulence [16].

After certain transformations of (1.1) (see Section 2.2) we obtain the
hyperbolic system of conservation laws in (2.1). This kind of systems
are mentioned in the book by Dafermos [17, Chapter 7] as examples of
balance laws in one space dimension arising in the contexts of planar
oscillations of thermoelastic medium and oscillations of flexible, exten-
sible elastic strings. To our knowledge, there is no existence result in
this context for conservation laws as well as for the 1-Laplacian wave
equation (2.10) which is derived from (1.1) by certain transformations
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(see Section 2.2). The difficulty of the problem is not surprising since
the system of conservation laws (2.7) is not strictly hyperbolic, and its
flux is discontinuous at zero.

Scalar hyperbolic conservation laws with a discontinuous flux were
recently considered in [14]. Although the authors of that paper notice
that their procedures do not work in the case of systems, we managed
to find a slightly similar approach in the case of our particular system
(2.7). Note that a related but different class of problems concerns scalar
conservation laws with a flux that is discontinuous in the spatial and
not in the unknown variable [8, 25].

In this paper we show global existence of solutions in the sense of
Young measures for the equations of motion of the inextensible string
without restrictions on the initial data. Our solutions always have non-
negative tension. We introduce the approximate problem which gives
the opportunity to numerically evaluate the Young measure solutions
for the inextensible string. This seems to be the first treatment of well-
posedness both for the systems of hyperbolic conservation laws with
discontinuous flux and for the total variation wave equation.

We work with the most complex boundary conditions, namely the
“whip” conditions (1.7), but the results of the paper remain valid for
any of (1.4), (1.5) or (1.6). In some places throughout the paper we
emphasize the technical differences of those cases with respect to (1.7).
Moreover, the three-dimensional space was chosen due to the physical
meaning of the problem, but, mathematically, everything presented in
the paper is true in any dimension.

The paper is organized in the following way. In Section 2.1, we intro-
duce the basic notation. In Section 2.2, we make a series of transfor-
mations of our problem and obtain a system of hyperbolic conservation
laws with discontinuous flux and the total variation wave equation. In
Section 2.3, we derive an equivalent system which is more tractable
due to the lack of discontinuity. In Section 2.4, we discuss the non-
negativity of the tension which is crucial in our considerations. In
Section 2.5, we make some preliminary observations related to the en-
ergy. In Section 2.6, we show how our problem can be derived from
the physical principle of least action, and justify its relation to the mo-
tion of an ideal incompressible fluid and to the optimal transport. In
Section 3.1, we recall the main concepts of the theory of generalized
Young measures. In Section 3.2, we define the generalized solutions
to our system of conservation laws with discontinuous flux. In Section
4.1, we introduce an approximate problem and study its global well-
posedness. In Section 4.2, we define the energy for the approximate
problem, and show dissipativity of that problem. This allows us to
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derive, in Section 4.3, a crucial uniform L1 bound for the tension. In
Section 5.1, we prove the main result of the paper, which is the exis-
tence of generalized Young measure solutions with non-negative tension
to the initial-boundary value problem for the equations of motion of
the inextensible string, employing the equivalent continuous formula-
tion introduced in Sections 2.3 and 3.2. Then, in Section 5.2, we touch
on some examples which illustrate our key finding that even though
strong solutions with non-negative tension do not exist for some initial
data, generalized solutions with non-negative tension do exist and can
be interpreted from the point of view of mechanics.

2. Preliminaries

2.1. Some conventions. Throughout the paper we will denote Ω =
(0, T )×(0, 1). The scalar product of any two vectors χ, ξ in R3 is simply
denoted by χξ, and |χ| is the Euclidean norm

√
χχ. The notation

Lip1([0, 1];R3) stands for the set of continuous functions f : [0, 1]→ R3

satisfying

|f(s1)− f(s2)| ≤ |s1 − s2|, s1, s2 ∈ [0, 1].

The symbol Sn−1 stands for the unit sphere in Rn, n ∈ N. M+(U)
and M1(U) are the spaces of positive finite and probability measures,
respectively, on a closed set U ⊂ Rn. L∞w (U1, µ;M1(U)) is the space
of µ-weakly*-measurable maps (cf. [35]) from an open or closed set
U1 ⊂ Rm into M1(U) (the default measure µ on U1 is the Lebesgue
measure). Generic positive constants are denoted by C. Finally, by
regular solutions in various contexts we mean sufficiently smooth func-
tions so that all derivatives involved in the associated arguments are
continuous.

2.2. Changes of variables and formal transformations.

1. We make an ansatz that σ ≥ 0 (cf. the discussion in Section 2.4).
By putting κ := σ ηs we get σ = |κ| and ηs = κ

|κ| . We can then formally

rewrite (1.1) as

(2.1)

{
ηtt = κs + g,

ηs =
κ

|κ|
⇐⇒


vt = κs + g,

vs =

(
κ

|κ|

)
t

where for the second system we use v := ηt. From (1.7) we infer that
the boundary conditions for κ take the form

(2.2) κ(t, 0) = 0 and κs(t, 1) = −g.
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The second condition follows from the fact that the velocity of the fixed
end is zero, that is,

(2.3) v(t, 1) = 0,

which is easily obtained from the second condition in (1.7) since v = ηt.
Note that we can find the initial conditions for σ (and thus for κ) using
(1.2), (1.3), (1.8) and the first condition in (1.7), see (2.24), but we do
not need them at this stage. (In the case when the boundary conditions
are different from the whip ones, (1.8) and (1.7) are to be replaced by
suitable corresponding conditions.) We also observe that

(2.4)
κ

|κ|
(0, s) = ηs(0, s) = αs(s)

and

(2.5) v(0, s) = ηt(0, s) = β(s).

2. If α(1) = 0, then by using

(2.6) η(t, s) = α(s) +

∫ t

0

v(r, s) dr and σ = |κ|,

we can come back from the “velocity v – contact force κ” formulation
(2.1)–(2.5) to the original “position η – tension σ” setting (1.1), (1.3),
(1.7).
3. Let Υ = (v, κ) ∈ R6, and define the map F : R6 × [0, T ] → R6,

(v, κ, t) 7→
(
κ
|κ| , v − gt

)
. Then (2.1) can be rewritten in the form

(2.7) Υs = [F (Υ, t)]t.

This is a system of conservation laws with discontinuous flux F , where
s plays the role of time and t plays the role of space.
4. Let us now further define

(2.8) φ(t, s) :=

∫ t

0

κ(z, s) dz.

From (2.1) we get ∫ t

0

vt dt =

∫ t

0

κs dt+

∫ t

0

g dt

which, by (2.5) and (2.8), gives

(2.9) v = φs + g t+ β.

Together with (2.1) this leads to

(2.10) φss(t, s) + βs =

(
φt
|φt|

)
t

=: ∆1φ(t, s).
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The initial/boundary conditions for φ are

φ(t, 0) = 0 and φs(t, 1) = −g t,(2.11a)

φ(0, s) = 0 and φt(0, s) = κ(0, s).(2.11b)

Remark 2.1. The nonlinear hyperbolic equation (2.10) can be referred
to as the vectorial 1-Laplacian wave equation because it involves the
vectorial 1-Laplacian operator (cf. [36]). Here, once again, s plays
the role of time and t plays the role of space. It can also be called the
(vectorial) total variation wave equation because its parabolic analogue
is the total variation flow [3]. We surmise that the total variation wave
equation might be relevant in image processing, since its parabolic and
elliptic counterparts play an important role there, we refer to [3, 15]
for more information; see also [34] and the references therein for the
vectorial case (color images).

5. Since |ηs| = 1, a necessary assumption for existence of regular
solutions is

(2.12) |αs| = 1.

Differentiating the equation |ηs|2 = 1 with respect to time we get
ηsηst = 0, yielding the second necessary condition

(2.13) αsβs = 0.

2.3. Removing the discontinuity. As a result of the transformation
u = ηs

√
σ, v = ηt we can rewrite the second system in (2.1) as

(2.14)


vt =

(
u |u|

)
s

+ g,

vs =

(
u

|u|

)
t

.

Defining ξ := (v, u) ∈ R6 we can further put this in the form

Φ(ξ)t = Ψ(ξ)s + (g, 0) where

 Φ(ξ) =

(
v,

u

|u|

)
Ψ(ξ) =

(
u |u|, v

)
.

Let P : R6 → R6 be the projection ξ 7→ (0, u). Then, inspired by
the implicit constitutive theory (cf. [14]), we formally define the map
Γ: R6 → R6 as

Γ(ξ) :=

(
v,

u

|u|
+ u

)
and, in order to patch the discontinuity of the function Γ in zero,
consider its continuous inverse: for γ = (v, w) ∈ R6,

Γ−1(γ) = (v,M(w)) ,
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where

M(w) :=

{
0 for |w| ≤ 1,
w − w

|w| for |w| ≥ 1.

Taking the derivative of Φ(ξ) with respect to time, we find

Γ(ξ)t − Pξt = Ψ(ξ)s + (g, 0),

whence

Γ(Γ−1(γ))t − [P(Γ−1(γ))]t = Ψ(Γ−1(γ))s + (g, 0).

We formally conclude that

γt − [P(Γ−1(γ))]t = Ψ(Γ−1(γ))s + (g, 0).

Defining the operators

A(γ) = γ − P(Γ−1(γ)),

B(γ) = Ψ(Γ−1(γ))
(2.15)

we obtain

(2.16) A(γ)t = B(γ)s + (g, 0).

Observation 2.2. The new equation (2.16) is equivalent to the original
system (1.1) coupled with the additional restriction

(2.17) σ ≥ 0,

provided the solutions are regular and some natural compatibility con-
ditions hold. Indeed, it is straightforward to check that for any solution
(η, σ) of the system (1.1),(2.17), the corresponding vector function

γ = (v, w) = (ηt, ηs(1 +
√
σ))

satisfies (2.16). Conversely, take any regular solution γ = (v, w) to
(2.16). We now assume that

(2.18) |w(0, s)| ≥ 1, w(0, s)vs(0, s) = 0

for all s ∈ [0, 1]. In Section 3.2 we will realize that this is a necessary
and legitimate assumption. At the relative interior of the set {(t, s) ∈
Ω : |w(t, s)| ≥ 1}, letting κ = w

|w|(|w| − 1)2, we obtain

(2.19)


vt = κs + g,

vs =

(
w

|w|

)
t

Since

1 =

∣∣∣∣ w|w|
∣∣∣∣2 ,
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differentiating it with respect to time gives

(2.20) 0 =

(
w

|w|

)
t

w

|w|
= vs

w

|w|
.

Assume that there is a point (t0, s0) ∈ Ω such that |w(t0, s0)| < 1.
Without loss of generality, it does not lie on the boundary of Ω. Let K
be the connected component of the set {(t, s) ∈ Ω : |w(t, s)| < 1, s =
s0} containing (t0, s0), and let t1 = inf{t ≥ 0 : (t, s0) ∈ K}. If t1 = 0
then

(2.21) |w(t1, s0)| ≥ 1, w(t1, s0)vs(t1, s0) = 0

due to (2.18), and if t1 > 0 then (2.21) follows from (2.20) by continuity.
For (t, s) = (t, s0) ∈ K we have A(γ(t, s)) = γ(t, s), B(γ(t, s)) =
(0, v(t, s)). Hence, the solution to (2.16) on K can be written explicitly
as

v(t, s0) = (t− t1)g + v(t1, s0), w(t, s0) = (t− t1)vs(t1, s0) + w(t1, s0).

By the Pythagorean theorem,

|w(t, s0)| ≥ |w(t1, s0)| ≥ 1,

arriving at a contradiction. Consequently, |w| ≥ 1 on Ω, and thus
(2.19) holds everywhere. By (2.19), there exists a vector function η
such that ηs = w

|w| and ηt = v. This function η solves the system

(1.1),(2.17) with σ = (|w| − 1)2. Note that η is determined up to a
constant unless initial or boundary conditions are specified.

By the above analysis, we have killed the discontinuity since A and
B are both continuous with A being sublinear and B having at most
quadratic growth. We will therefore proceed in the same way amid the
weak formulation of our problem in Section 3.2.

Remark 2.3. Observation 2.2 and considerations from Sections 2.2
and 3.2 imply that the original (η, σ)–setting (1.1) coupled with (2.17),
the (v, κ)–setting (2.1) and the γ–setting (2.16) are all equivalent (at
least formally) provided proper compatibility assumptions on the initial
and boundary data are met.

2.4. The equation for the tension. Differentiating the constraint
|ηs|2 = 1 with respect to s shows that ηsηss = 0. Hence, multiplying
the first equation in (1.1) by ηs we get

(2.22) ηs ηtt = σs + gηs.

Now, differentiating |ηs|2 = 1 twice with respect to time we obtain

ηs ηstt + ηst ηst = 0.
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Due to (2.22),

ηss ηtt + ηs ηstt = σss + gηss.

Combining these two equations we get

σss − (ηtt − g)ηss + |ηst|2 = 0.

Expressing (ηtt − g) by (1.1), we end up with

(2.23) σss − |ηss|2 σ + |ηst|2 = 0.

Proposition 2.4. Let (η, σ) be a regular solution to (1.1), (1.3) with
one of the boundary conditions (1.4)–(1.7). Assume that one of the
following assumptions holds:

(i) the boundary condition is (1.5) or (1.6);
(ii) the boundary condition is (1.7) and g = 0;
(iii) the boundary condition is (1.4), |α(0)− α(1)| < 1 and g = 0.

Then σ ≥ 0 for all times.

Proof. Assume that, for some t, the minimum of σ(t, ·) is negative.
Note that from (2.23) we have

σ |ηss|2 − σss ≥ 0.

By the maximum principle [28], either σ(t, ·) is a negative constant, or
the minimum is achieved at s = 0 or 1.

The first alternative is impossible for (1.5) and (1.7), and in the re-
maining cases it implies |ηss(t, ·)| ≡ 0, so the string should be straight,
and thus

|η(t, 0)− η(t, 1)| = 1.

This obviously contradicts (1.6), whereas (1.4) would yield |α(0) −
α(1)| = 1.

The second alternative can only hold [28] provided σs(t, 0) > 0 (if
the minimum is at 0) or σs(t, 1) < 0 (if the minimum is at 1). This
immediately rules out the periodic case, so the negative minimum can
only be achieved at fixed ends. But (2.22) implies that at such points
σs = −gηs, and we again arrive at a contradiction. �

This proof implies that, for the “whip” boundary condition (1.7),
instead of assuming that the gravity is zero, it suffices to know a priori
that gηs(t, 1) ≤ 0, whereas, for two fixed ends (1.4), it suffices to know
a priori that gηs(t, 0) ≥ 0 and gηs(t, 1) ≤ 0. We believe that there exist
much weaker hypotheses which guarantee non-negativity of the tension.
Our conjecture is that, for both (1.4) and (1.7), if σ0(s) := σ(0, s) ≥ 0
for all s ∈ [0, 1], then σ ≥ 0 on Ω. Remember that σ0 is determined
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by α, β and the boundary conditions. For example, in the “whip” case
(1.7) it is the solution of the problem

(2.24) (σ0)ss − |αss|2 σ0 + |βs|2 = 0, σ0(0) = 0, (σ0)s(1) = −gαs(1).

However, for non-zero gravity, σ can be negative at the initial moment
of time and even for all times. For instance, (1.1) has an unstable
stationary solution

(2.25) ηu(s) = αu(s) = (s− 1)
g

|g|
, σu(s) = −|g|s,

which satisfies both (1.4) and (1.7).
Nevertheless, our ansatz σ ≥ 0 is meaningful even for such “unsta-

ble” problems as (1.1), (1.3), (1.7) with the initial data

(2.26) α = αu, β = 0.

There exist objects which can be interpreted as generalized solutions
to this problem with non-negative tension. We will get back to this
example in Section 5.2.

2.5. Conservation of energy. We define the kinetic and potential
energies as

(2.27) K(t) =
1

2

∫ 1

0

|ηt|2 ds and P (t) = −
∫ 1

0

g η ds.

Proposition 2.5. Let (η, σ) be a regular solution to (1.1), (1.3) with
one of the boundary conditions (1.4)–(1.7). Then the total energy
E(t) := K(t) + P (t) is conserved.

Proof. From (1.1) we have

d

dt
(K(t) + P (t)) =

1

2

d

dt

∫ 1

0

|ηt|2 ds−
∫ 1

0

g ηt ds =

=

∫ 1

0

ηtt ηt ds−
∫ 1

0

g ηt ds =

∫ 1

0

(σηs)s ηt ds

= σ(t, 1) ηs(t, 1)ηt(t, 1)− σ(t, 0) ηs(t, 0)ηt(t, 0)−
∫ 1

0

σ ηsηts ds.

The third term is identically zero as observed in the end of Section 2.2.
The first two terms vanish if 0 and 1 are either free or fixed ends. In
the periodic case their difference is still zero. �

In the absence of the gravity, as also mentioned in [18], the energy
of the whip is entirely kinetic. In this case from Proposition 2.5 we
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obtain that∫ 1

0

|ηt(t, s)|2 ds =

∫ 1

0

|ηt(0, s)|2 ds = 2E(0), t > 0.

In the general case, we have

1

2

∫ 1

0

|ηt(t, s)|2 ds =
1

2

∫ 1

0

|ηt(0, s)|2 ds+

∫ 1

0

g(η − α) ds

= E(0) +

∫ 1

0

gη ds.(2.28)

If the initial energy is finite, with the help of Grönwall’s lemma, (2.28)
implies

(2.29)

∫ 1

0

|ηt(t, s)|2 ds ≤ C, t ∈ [0, T ].

(cf. the reasoning in Section 4.2). When at least one end is fixed, the
potential energy is a priori bounded because of |ηs| = 1, and thus C in
(2.29) does not depend on T .

2.6. The least action principle. In this section we show that system
(1.1) can be viewed as a manifestation of the celebrated physical prin-
ciple of least action [6, 20]. Although our reasoning here is formal and
rather sloppy, this claim can be rigorously justified at least for g = 0
by the methods of infinite-dimensional Riemannian geometry (see e.g.
[27]). The main objective of this section is to advocate the relation of
the inextensible string problem to the Euler equations for ideal incom-
pressible fluids and to the optimal transport, and the results of this
section are never used in the rest of the paper.

Being guided by the physical principle of least action, we define the
action functional for the inextensible string as the time integral of the
difference between the kinetic and potential energies (cf. [20]):

(2.30) S(η) =

∫ T

0

K(t)− P (t) dt =

∫
Ω

(
1

2
|ηt|2 + gη

)
ds dt.

Consider the set of inextensible strings with one fixed end and with
fixed initial and final configurations:

(2.31) W := {η ∈ C1(Ω;R3) :

|ηs(t, s)|2 = 1; η(t, 1) = 0; η(0, s) = η0(s), η(T, s) = ηT (s)},
and let us look for minimizers of the functional S within the constraint
set W . We claim that for each local constrained minimizer η there is a
scalar function σ such that the pair (η, σ) is a solution to (1.1), (1.7).
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Indeed, take any local constrained minimizer η. Let h be an arbitrary
element of the unit sphere in C1(Ω;R3), satisfying

(2.32) h(t, 1) = 0, h(0, s) = 0, h(T, s) = 0,

and let ε be a small parameter. Then

(2.33)

∫
Ω

(
1

2
|ηt + εht|2 + g(η + εh)

)
ds dt ≥

∫
Ω

(
1

2
|ηt|2 + gη

)
ds dt

provided η + εh ∈ W . Dividing by ε, we can recast this in the form

(2.34)

∫
Ω

(
ηtht +

1

2
ε|ht|2 + gh

)
ds dt ≥ 0

provided

(2.35) 2hsηs + ε|hs|2 = 0.

Letting ε→ 0, we deduce

(2.36)

∫
Ω

(ηtht + gh) ds dt = 0

provided

(2.37) hsηs = 0.

Observe that we have the equality sign in (2.36) instead of the in-
equality sign in (2.34) since we can replace h by −h in (2.36) without
violating the constraints (2.32), (2.37). Integrating by parts in (2.36),
we see that ∫

Ω

(ηtt − g)h ds dt = 0

for all h satisfying (2.32), (2.37). Denote

Z(t, s) :=

∫ s

0

(ηtt(t, ξ)− g(t, ξ)) dξ.

Then ∫
Ω

Zsh ds dt = 0,

and integration by parts gives

(2.38)

∫
Ω

Zhs ds dt = 0

for all h satisfying (2.32), (2.37). By a Hilbertian duality argument, it
is possible to deduce from (2.38) that there exists a measurable scalar
function σ(t, s) such that Z = σηs. Since Z(t, 0) = 0 by construction,
we necessarily have σ(t, 0) = 0, whence (η, σ) solves (1.1), (1.7).
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Remark 2.6. In the gravity-free case g = 0, the action is purely ki-
netic, and the least action principle can be recast in a geometric way:
(1.1), (1.2), (1.7) are the geodesic equations for the Hilbert manifold
of the unit speed curves equipped with the L2 Riemannian metric [27].
A similar interpretation of the Euler equations of motion of an ideal
incompressible fluid, both homogeneous and inhomogeneous, goes back
to [5] (see also [7, 11, 38]). A common framework for the two models
was proposed in [9]; they are examples of geodesic equations on infinite-
dimensional manifolds of volume preserving immersions endowed with
the L2 metric. The analogy between the two objects was also promoted
in [37], where the “vorticity” for the inextensible string is introduced
and a blow-up simulation is provided. When the external forces are
present, the geodesic formulation for the motion of ideal fluid is re-
placed by the minimization of the Lagrangian action [11], hence the
analogy with (1.1) is preserved. From the perspective of the optimal
transport theory [38, 39], the solutions of the inextensible string problem
(as well as the trajectories of a moving ideal fluid) perform the dynam-
ical transportation of material objects which optimizes some relevant
cost functional. Other examples of this nature are discussed in [12];
they include the celebrated Monge-Kantorovich optimal transport with
quadratic transportation cost, hydrostatic Boussinesq equations and the
Born-Infeld electromagnetism.

3. Setting in the context of Young measures

3.1. Introduction. We will essentially follow [41] for a basic introduc-
tion to the generalized Young measures.

Let m, l, d ∈ N, p ∈ [1,+∞), Γ ⊂ Rm be an open set. We define Fp
as the collection of continuous functions f : Γ×Rl → Rd for which the
limit

f∞(x, z) := lim
x′→x
z′→z
s→∞

f(x′, sz′)

sp

exists for all (x, z) ∈ Γ×Rl and is continuous in (x, z). The function f∞

is called the Lp-recession function of f . Note that it is p-homogeneous
in z, i.e., f∞(x, rz) = rpf∞(x, z) for all r ≥ 0.

A generalized Young measure on Rl with parameters in Γ is defined
as a triple (ν, λ, ν∞) such that

ν ∈ L∞w (Γ;M1(Rl)),

λ ∈M+(Γ),

ν∞ ∈ L∞w (Γ, λ;M1(Sl−1)).
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Note that ν is defined Lebesgue-a.e. on Γ, and ν∞ is defined λ-a.e. on
Γ; ν is called the oscillation measure, λ is the concentration measure
and ν∞ is the concentration-angle measure.

Now, we can state the fundamental theorem on generalized Young
measures (see [1, 19, 23, 41]):

Theorem 3.1. Let {wn} ⊂ Lp(Γ;Rl) be an Lp-bounded sequence of
maps. Then there exists a subsequence (not relabeled) and a generalized
Young measure (ν, λ, ν∞) such that, for every f ∈ Fp,∫

Γ

f(x,wn(x))dx→
∫

Γ

〈νx, f(x, ξ)〉dx+

∫
Γ

〈ν∞x , f∞(x, θ)〉λ(dx),

where

〈νx, f(x, ξ)〉 =

∫
Rl

f(x, ξ)νx(dξ), 〈ν∞x , f∞(x, θ)〉 =

∫
Sl−1

f∞(x, θ)ν∞(dθ).

Remark 3.2. In particular, for f(x, ξ) = |ξ|p we infer that

‖wn‖pLp(Γ)l
→
∫

Γ

〈νx, |ξ|p〉dx+ λ(Γ) < +∞

in view of f∞ ≡ 1 on Sl−1.

3.2. Weak setting of the inextensible string problem. Consider
the problem of finding a velocity field v and a contact force κ, which
was derived in Section 2.2 from the original problem (1.1), (1.3), (1.7):

vt = κs + g,(3.1a)

vs =

(
κ

|κ|

)
t

,(3.1b)

κ|s=0 = 0,(3.1c)
κ

|κ|

∣∣∣
t=0

= αs,(3.1d)

v|s=1 = 0,(3.1e)

v|t=0 = β.(3.1f)

Let us define the auxiliary function h0 : R+ → R+ as

(3.2) h0(r) = 1 +
√
r.
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Then we have h−1
0 (r) = (r − 1)2, r ≥ 1, and we can continue h−1

0 by
zero for r ≤ 1. We also define H0, H

∗
0 : R3 → R3 as

H0(χ) =
χ

|χ|
h−1

0 (|χ|), H0(0) = 0,

H∗0 (χ) =
χ

|χ|

√
h−1

0 (|χ|), H∗0 (0) = 0.
(3.3)

Let
w =

κ

|κ|
+

κ√
|κ|

= h0(|κ|) κ
|κ|
.

Then κ = H0(w) and

κ

|κ|
=

κ

|κ|
+

κ√
|κ|
− w

|w|
√
|κ| = w − w

|w|

√
h−1

0 (|w|) = w −H∗0 (w),

so we can rewrite (3.1a) and (3.1b) as

vt = (H0(w))s + g,(3.4a)

vs = (w −H∗0 (w))t .(3.4b)

In Section 2.3 we showed that this system was equivalent to (1.1),
(2.17). Observe that, in the current setting, (2.18) is a consequence of
the compatibility conditions (2.12) and (2.13). Indeed,

|w(0, s)| ≥ |w(0, s)−H∗0 (w(0, s))| = |αs(s)| = 1,

w(0, s)vs(0, s) = |w(0, s)|αs(s)βs(s) = 0.

Define the space C̃∞(Ω) of test functions to be the set of pairs ϕ =
(φ, ψ), φ, ψ ∈ C∞(Ω;R3) such that

φ|s=1 = 0, φs|s=0 = 0, φ|t=T = 0,

ψ|s=0 = 0, ψs|s=1 = 0, ψ|t=T = 0.
(3.5)

Take any ϕ = (φ, ψ) ∈ C̃∞(Ω). Multiplying (3.1a) (or (3.4a)) by φ and
integrating in space and time gives

(3.6)

∫
Ω

vφt ds dt =

∫
Ω

H0(w)φs ds dt−
∫ 1

0

βφ|t=0 ds−
∫

Ω

gφ ds dt.

Doing the same with (3.1b) (or (3.4b)) and ψ gives

(3.7)

∫
Ω

[w −H∗0 (w)]ψt ds dt =

∫
Ω

vψs ds dt+

∫ 1

0

αψs|t=0 ds.

Observe that we have taken into account (3.1c) - (3.1f), and the setting
(3.6) - (3.7) already incorporates the initial and boundary conditions.
We also used the assumption

(3.8) α(1) = 0.
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Denote γ = (v, w) ∈ R6, and define functions A,B : Ω × R6 → R6

(by recalling (2.15)) as follows:

A(t, s, γ) = A(t, s, v, w) = (v, w −H∗0 (w)),(3.9)

B(t, s, γ) = B(t, s, v, w) = (H0(w), v).(3.10)

Since A does not depend on t, s, we will often abuse the notation
and simply write A(γ) instead of A(t, s, γ), similarly with B. We also
introduce the operator

Ξ0(α, β, ϕ) = Ξ0(α, β, φ, ψ)

= −
∫ 1

0

βφ|t=0 ds+

∫ 1

0

αψs|t=0 ds−
∫

Ω

gφ ds dt.(3.11)

Then (3.6) and (3.7) can be merged to get

(3.12)

∫
Ω

A(γ)ϕt ds dt =

∫
Ω

B(γ)ϕs ds dt+ Ξ0(α, β, ϕ).

Observe thatA and B are in the class F2 (with Γ = Ω). Moreover, since
A is sublinear, A∞ ≡ 0, whereas it can be checked that B∞(v, w) =
(w|w|, 0).

These considerations and analogy with [13, 19, 35, 41] suggest:

Definition 3.3. A triple (ν, λ, ν∞) with

ν ∈ L∞w (Ω;M1(R6)),(3.13)

λ ∈M+(Ω),(3.14)

ν∞ ∈ L∞w (Ω, λ;M1(S5)),(3.15)

is an admissible Young measure solution to (3.1) provided the energy-
tension bound

(3.16)

∫
Ω

〈νt,s, |ξ|2〉 ds dt+ λ(Ω) ≤ Θ

holds, where Θ is a certain constant depending only on T , g, and the
L2-norms of α and β, and∫

Ω

〈νt,s,A(ξ)〉ϕt(t, s) ds dt =

∫
Ω

〈νt,s,B(ξ)〉ϕs(t, s) ds dt(3.17)

+

∫
Ω

〈ν∞t,s,B∞(θ)〉ϕs(t, s)λ(dt, ds) + Ξ0(α, β, ϕ)

for every ϕ ∈ C̃∞(Ω).

Remark 3.4. If an admissible Young measure solution (ν, λ, ν∞) sat-
isfies νt,s = δγ(t,s) a.e. in Ω, where γ : Ω→ R6 is a measurable function
and δ is the Dirac delta, and λ = 0, then γ belongs to L2(Ω;R6) and
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is a weak solution in the sense of (3.12). Assume now that γ is a reg-
ular function on Ω and the compatibility conditions (2.12), (2.13) and
(3.8) hold. Then (3.12) yields (2.16), and, as in Section 2.3, the vector
function γ generates a pair (η, σ) satisfying (1.1), (2.17). Since η is
determined up to a constant, we can choose it to satisfy η(0, 1) = 0.
Then, similarly to our previous considerations, we can check that the
initial and boundary conditions (1.3), (1.7) are met.

Remark 3.5. The arguments in Sections 4 and 5.1 provide a rigorous
expression for Θ.

Remark 3.6. An important open problem is the one of uniqueness
of regular solutions to (1.1). The upward whip anomaly (see Sections
2.4 and 5.2) hints that it should be more rational to study the issue of
uniqueness for (1.1) coupled with (2.17) (equipped with suitable initial
and boundary conditions, either in a strong form, e.g., (1.3), (1.7),
or in a weak form, e.g., (3.12)). A positive answer to this question
is the cornerstone for such possible developments in the studies of the
inextensible string equations as existence of dissipative solutions [24,
40] and their relation with the Young measure ones, or discovery of
additional admissibility constraints in the definition of Young measure
solutions which would secure weak-strong uniqueness [13] for (2.16).

4. Well-posedness and uniform bounds for the
approximate problem

4.1. Global regularity. Let ε ∈ (0, 1] be a constant and consider the
auxiliary problem

vt = εvss + κs + g,(4.1a)

vs =

(
εκ+

κ√
ε+ |κ|2

)
t

− ε

(
εκ+

κ√
ε+ |κ|2

)
ss

,(4.1b)

κ|s=0 = 0,(4.1c) (
εκ+

κ√
ε+ |κ|2

)∣∣∣∣∣
t=0

= αs,(4.1d)

v|s=1 = 0,(4.1e)

v|t=0 = β,(4.1f) (
εκ+

κ√
ε+ |κ|2

)
s

∣∣∣∣∣
s=1

= 0,(4.1g)

vs|s=0 = 0.(4.1h)



INEXTENSIBLE STRINGS 19

Remark 4.1. The boundary condition (4.1h) is added for purely tech-
nical reasons, since the order of the new system (4.1) is higher than
that of the original system. This restriction will completely disappear
after we will have passed to the limit as ε → 0, both for the initial
condition β and for the solution component v.

Denote τ = εκ + κ√
ε+|κ|2

. Then, κ = G(τ), where G is a function

with positive-semidefinite Jacobian matrix, and G(0) = 0. Moreover,
observe that the eigenvalues of ∇G−1(κ) are ε + ε

(ε+|κ|2)3/2
and ε +

1
(ε+|κ|2)1/2

. Thus, the eigenvalues of ∇G(τ) are

(4.2)
1

ε+ ε−1/2
≤ Λ1(τ) :=

1

ε+ (ε+ |G(τ)|2)−1/2

≤ Λ2(τ) :=
ε−1

1 + (ε+ |G(τ)|2)−3/2
≤ ε−1.

In particular, G is globally Lipschitz. Observe also that

|κ| ≥ 1 ⇒ |τ | ≥ ε+ (1 + ε)−1/2 > 1,

and, consequently,

(4.3) |τ | ≤ 1 ⇒ |G(τ)| < 1.

We can rewrite the problem (4.1) as

vt = εvss + (G(τ))s + g,(4.4a)

τt = vs + ετss,(4.4b)

τ |s=0 = 0, τs|s=1 = 0,(4.4c)

v|s=1 = 0, vs|s=0 = 0,(4.4d)

τ |t=0 = αs, v|t=0 = β.(4.4e)

Theorem 4.2. Let α, β ∈ C3([0, 1];R3), αs(0) = 0, αss(1) = 0,
βs(0) = 0, β(1) = 0. Then there exists a unique solution (v, τ) to
(4.4) in the class C∞((0, T ]× [0, 1];R6)× C(Ω;R6).

Proof. (Sketch) The well-posedness of the semilinear problem (4.4) fits
into the classical theory of Amann. Indeed, by [2, Theorem 14.6,
Corollary 14.7], a smooth solution exists locally in time. By [2, The-
orem 15.5], the solution can be continued in time as long as it re-
mains bounded in L∞. But the term (G(τ))s can be rewritten as
∇G(τ)τs = G̃(t, x)τs, where G̃ is a bounded matrix-valued function,
hence [29, Theorem 2] provides the required L∞ bound. �



20 Y. ŞENGÜL AND D. VOROTNIKOV

4.2. Uniform energy estimates. Hereafter in Section 4 we assume
that

(4.5) |αs(s)| ≤ 1 for 0 ≤ s ≤ 1,

that

α|s=1 = 0,

and that there is a constant C∗ such that

(4.6)

∫ 1

0

|α|2(s) ds+

∫ 1

0

|β|2(s) ds ≤ C∗.

Multiplying (4.4a) by v and integrating with respect to s gives∫ 1

0

vtv ds = ε

∫ 1

0

vssv ds+

∫ 1

0

(G(τ))sv ds+

∫ 1

0

gv ds

= −ε
∫ 1

0

vsvs ds−
∫ 1

0

G(τ)vs ds+

∫ 1

0

gv ds

= −ε
∫ 1

0

vsvs ds+ ε

∫ 1

0

G(τ)τss ds−
∫ 1

0

G(τ)τt ds+

∫ 1

0

gv ds.

Hence,

−ε
∫ 1

0

vsvs ds =

∫ 1

0

vtv ds−
∫ 1

0

gv ds

+ε

∫ 1

0

∇G(τ)τsτs ds+

∫ 1

0

G(τ)τt ds.(4.7)

Considering the last term,∫ 1

0

G(τ)τt ds =

∫ 1

0

κ

(
εκ+

κ√
ε+ |κ|2

)
t

ds

= ε

∫ 1

0

κκt ds+

∫ 1

0

κ

(
κ√

ε+ |κ|2

)
t

ds

= ε

∫ 1

0

κκtd s+

∫ 1

0

κ
κt√
ε+ |κ|2

ds−
∫ 1

0

|κ|2κ
(
√
ε+ |κ|2)3

κt ds

= ε

∫ 1

0

κκtds+ ε

∫ 1

0

κκt

(
√
ε+ |κ|2)3

ds

= ε
d

dt

∫ 1

0

( |κ|2
2
− 1√

ε+ |κ|2
)
ds.
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Let

(4.8) η(t, s) = α(s) +

∫ t

0

v(r, s) dr

and define the energy as

Eε(t) =
1

2

∫ 1

0

|v|2 ds−
∫ 1

0

gη ds+
ε

2

∫ 1

0

|κ|2 ds

+
√
ε− ε

∫ 1

0

1√
ε+ |κ|2

ds+ ε

∫ t

0

∫ 1

0

∇G(τ)τsτs ds dt.

Then (4.7) yields

(Eε)t = −ε
∫ 1

0

vsvs ds ≤ 0.

The initial energy

Eε(0) =
1

2

∫ 1

0

|β|2 ds−
∫ 1

0

gα ds+
ε

2

∫ 1

0

|G(αs)|2 ds

+
√
ε− ε

∫ 1

0

1√
ε+ |G(αs)|2

ds.

is bounded due to (4.3), (4.5), (4.6). Therefore,

1

2

∫ 1

0

|v|2 ds+
ε

2

∫ 1

0

|κ|2 ds+ ε

∫ t

0

∫ 1

0

∇G(τ)τsτs ds dt

≤ C +

∫ 1

0

gη ds ≤ C.(4.9)

Note that the second inequality follows from the first one and the
Grönwall’s lemma since

d

dt

∫ 1

0

gη ds =

∫ 1

0

gv ds ≤ 1

2

∫ 1

0

|v|2 ds+
1

2

∫ 1

0

|g|2 ds ≤
∫ 1

0

gη ds+ C.

Finally, using (4.2) we deduce that

1

1 + ε−3/2

∫ T

0

∫ 1

0

|τs|2 ds dt ≤ ε

∫ T

0

∫ 1

0

Λ1(τ)|τs|2 ds dt

≤ ε

∫ T

0

∫ 1

0

∇G(τ)τsτs ds dt ≤ C.(4.10)
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4.3. Estimate for the tension. The estimate obtained in this sec-
tion, together with the one for kinetic energy, is crucial for the rest of
the analysis. We let

(4.11) ζ(t, s) =

∫ s

1

τ(t, w) dw.

From (4.4b) we find

τ(t, s) = ηs(t, s) + ε

∫ t

0

τss(r, s) dr.

Consequently,

(4.12) ζ(t, s) = η(t, s) + ε

∫ t

0

τs(r, s) dr.

From (4.8) we get

(4.13) (|η|2)tt = 2ηttη + 2ηtηt = 2vtη + 2|v|2,

and from (4.4a) we obtain

∫ 1

0

vtζ ds = ε

∫ 1

0

vssζ ds+

∫ 1

0

(G(τ))sζ ds+

∫ 1

0

gζ ds

= −ε
∫ 1

0

vsτ ds−
∫ 1

0

G(τ)τ ds+

∫ 1

0

gζ ds.(4.14)

Combining (4.11) – (4.14), we infer

∫ 1

0

G(τ)τ ds =

= −ε
∫ 1

0

vt

[∫ t

0

τs(r, s) dr

]
ds−

∫ 1

0

(
|η|2

2

)
tt

ds+

∫ 1

0

|v|2 ds

−ε
∫ 1

0

vsτ ds+

∫ 1

0

gη ds+ ε

∫ 1

0

g

[∫ t

0

τs(r, s) dr

]
ds

=: I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + I6(t).(4.15)
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The time integral of the first integral is

∫ T

0

I1(t) dt = −ε
∫ T

0

∫ 1

0

vt

[∫ t

0

τs(r, s) dr

]
ds dt

= −ε
∫ 1

0

v
∣∣∣
t=T

[∫ T

0

τs(r, s) dr

]
ds+ ε

∫ T

0

∫ 1

0

vτs ds dt

≤ 1

2

∫ 1

0

|v|2
∣∣∣
t=T

ds+
ε2

2

∫ 1

0

[∫ T

0

τs(r, s) dr

]2

ds

+
1

2

∫ T

0

∫ 1

0

|v|2 ds dt+
ε2

2

∫ T

0

∫ 1

0

|τs|2 ds dt.(4.16)

The first and third terms are bounded by the energy estimate (4.9),
and the second and the fourth ones are bounded by Cε2(1 + ε−3/2) due
to (4.10).

For the second integral in (4.15) we have

∫ T

0

I2(t) dt = −
∫ T

0

∫ 1

0

(
|η|2

2

)
tt

ds dt

= −
∫ 1

0

(
|η|2

2

)
t

∣∣∣
t=T

ds+

∫ 1

0

(
|η|2

2

)
t

∣∣∣
t=0

ds

= −
∫ 1

0

ηηt

∣∣∣
t=T

ds+

∫ 1

0

αβ ds

≤ 1

2

∫ 1

0

|ηt|2
∣∣∣
t=T

ds+
1

2

∫ 1

0

|η|2
∣∣∣
t=T

ds+

∫ 1

0

αβ ds.

Here, the first integral is bounded by (4.9); the second integral is

bounded since the linear operator v 7→ η, i.e., v(t) 7→ α+
∫ t

0
v(r) dr, is

bounded in the Banach space L∞(0, T ;L2(0, 1;R3)); the third integral
is bounded due to (4.6).

Continuing from (4.15), I3 and I5 are bounded by the energy bound
(4.9), and

∫ T

0

I4(t) dt = ε

∫ T

0

∫ 1

0

vτs ds dt ≤ C + Cε2(1 + ε−3/2)
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as in (4.16). Finally,∫ T

0

I6(t) dt = ε

∫ T

0

∫ 1

0

g

[∫ t

0

τs(r, s) dr

]
ds dt

= −ε
∫ T

0

∫ 1

0

(t− T )gτs ds dt

≤ 1

2

∫ T

0

∫ 1

0

|(t− T )g|2 ds dt+
ε2

2

∫ T

0

∫ 1

0

|τs|2 ds dt

≤ C + Cε2(1 + ε−3/2).(4.17)

Therefore, from (4.15) we conclude that∫ T

0

∫ 1

0

G(τ)τ ds ≤ C,

whence ∫ T

0

∫ 1

0

κ

(
εκ+

κ√
ε+ |κ|2

)
ds dt ≤ C.

Thus,∫
Ω

|κ(t, s)| ds dt ≤ C +

∫
Ω, |κ|≥1

|κ| ds dt

≤ C +

∫
Ω, |κ|≥1

(ε+ (1 + ε)−1/2)|κ| ds dt

≤ C +

∫
Ω, |κ|≥1

(
ε|κ|+ |κ|√

ε+ |κ|2

)
|κ| ds dt

≤ C +

∫
Ω

κ

(
εκ+

κ√
ε+ |κ|2

)
ds dt ≤ C.(4.18)

5. Existence of the Young measure solution

5.1. Main theorem.

Theorem 5.1. Given a pair α ∈ Lip1([0, 1];R3), β ∈ L2(0, 1;R3)with
α(1) = 0, there exists an admissible Young measure solution to (3.1).

Proof. Take any sequence εn → 0. The data (α, β) can be approxi-
mated in L2(0, 1;R6) by a sequence of C3-functions (αn, βn) such that
|(αn)s(s)| ≤ 1, (αn)s(0) = 0, (αn)ss(1) = 0, αn(1) = 0, (βn)s(0) = 0,
βn(1) = 0. By Theorem 4.2 there exist smooth solutions (vn, τn) to
(4.4) with ε = εn, α = αn, β = βn. Then (vn, κn) where κn = G(τn)
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is a smooth solution to (4.1) with ε = εn, α = αn, and β = βn. The
uniform energy and tension bounds imply

‖vn‖L∞(0,T ;L2(0,1)) ≤ C,(5.1)

‖κn‖L1(Ω) ≤ C.(5.2)

Let

(5.3) wn =
κn√

εn + |κn|2
+

κn√
|κn|

.

Then

(5.4) ‖wn‖L2(Ω) ≤ C.

Consider the function hεn : R+ → R+ defined as

hεn(r) =
r√

εn + r2
+
√
r,

which becomes h0 in (3.2) when ε = 0. We can easily check that this
function is strictly increasing. Thus, there exists the inverse function
h−1
εn : R+ → R+ which is continuous. Observe that h−1

εn (0) = 0. Let us
also introduce the functions Hεn , H

∗
εn : R3 → R3 as

Hεn(χ) =
χ

|χ|
h−1
εn (|χ|), H∗εn(χ) =

χ

|χ|

√
h−1
εn (|χ|), Hεn(0) = H∗εn(0) = 0,

which, similarly, become (3.3) when ε = 0. Observe that these func-
tions are continuous at zero (in fact everywhere). From (5.3) we find
that

κn = Hεn(wn) and
κn√

εn + |κn|2
= wn −H∗εn(wn).

Now, (4.1a) and (4.1b) imply

(5.5) (vn)t = εn(vn)ss + (Hεn(wn))s + g,

and

(5.6) (vn)s = (εnHεn(wn) + wn −H∗εn(wn))t

− εn(εnHεn(wn) + wn −H∗εn(wn))ss.

We need the following result to proceed.

Lemma 5.2. We have

Hεn(χ)→ H0(χ), H∗εn(χ)→ H∗0 (χ)

uniformly on R3.
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Proof. Suppose there exists sequences εnk
and χk such that

|Hεnk
(χk)−H0(χk)| ≥ δ

for some δ > 0. In the sequel we write εk instead of εnk
. Due to the

above inequality, we get

(5.7) |h−1
εk

(|χk|)− h−1
0 (|χk|)| ≥ δ.

Without loss of generality, there exists χ = lim
k→∞
|χk|, which can be

equal to +∞. Assume first that χ ≤ 1. Then h−1
0 (χ) = 0, and, since

h−1
0 (|χk|) is non-negative, we must have dk := h−1

εk
(|χk|) ≥ δ for k large

enough. Therefore,

|χk| = hεk(dk) =
dk√
εk + d2

k

+
√
dk

≥ δ√
εk + δ2

+
√
δ → 1 + δ

which contradicts the assumption χ ≤ 1. Now, consider the case χ >
1. Then without loss of generality |χk| > 1 for all k. Denote rk =
h−1

0 (|χk|). Then, there exist numbers kl for l = 1, 2, . . . , such that
either rkl ≥ dkl or rkl ≤ dkl for all l. To simplify the notation, we write
rk and dk instead of rkl and dkl . Due to (5.7) we either have rk ≥ dk+δ
or dk ≥ rk + δ. In the first case, we have

dk√
εk + d2

k

+
√
dk = 1 +

√
rk ≥ 1 +

√
dk + δ

≥ dk√
εk + d2

k

+
√
dk + δ

>
dk√
εk + d2

k

+
√
dk

which gives a contradiction. In the second case we have

1 +
√
rk =

dk√
εk + d2

k

+
√
dk

≥ rk + δ√
εk + (rk + δ)2

+
√
rk + δ.

However, the last inequality cannot hold for all k since by Lagrange’s
mean value theorem we have√

rk + δ −
√
rk =

1

2
√
rk + c0

δ ≥ δ

2
√
rk + δ
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for some c0 ∈ (0, δ), and

1− rk + δ√
εk + (rk + δ)2

=

√
εk + (rk + δ)2 −

√
(rk + δ)2√

εk + (rk + δ)2

=

εk

2
√

(rk+δ)2+ck√
εk + (rk + δ)2

≤ εk
2(rk + δ)2

<
δ

2
√
rk + δ

for k large enough and some ck ∈ (0, εk). Similarly, one shows that the
inequality

|H∗εnk
(χk)−H∗0 (χk)| ≥ δ

cannot hold. �

We now return to the proof of the theorem and introduce the func-
tions Aε,Bε, Dε,D : R6 → R6 as

Aε(γ) = Aε(v, w) = (v, w −H∗ε (w)),

Bε(γ) = (Hε(w), v),

Dε(γ) = (0, Hε(w)),

D(γ) = (0, H0(w)).

Note that when ε = 0 operators Aε and Bε reduce to the ones we
defined earlier in (2.15). Let γn = (vn, wn). Then, (5.5) and (5.6) may
be rewritten as

(Aεn)t(γn) + εn(Dεn)t(γn) =(5.8)

= (Bεn)s(γn) + εn(Aεn)ss(γn) + ε2
n(Dεn)ss(γn) + (g, 0).

Moreover, by (5.5) and (5.6), the initial and boundary conditions (4.1c)
- (4.1h), and the restriction αn(1) = 0, we find that for any ϕ = (φ, ψ) ∈
C̃∞(Ω), which was defined by (3.5), we have∫

Ω

vnφt ds dt =

∫
Ω

Hεn(wn)φs ds dt−
∫ 1

0

βnφ|t=0 ds

−
∫

Ω

gφ ds dt− εn
∫

Ω

vnφss ds dt,∫
Ω

[wn −H∗εn(wn) + εnHεn(wn)]ψt ds dt =

∫
Ω

vnψs ds dt

+

∫ 1

0

αnψs|t=0 ds− εn
∫

Ω

[wn −H∗εn(wn) + εnHεn(wn)]ψss ds dt.



28 Y. ŞENGÜL AND D. VOROTNIKOV

These can be merged to give∫
Ω

Aεn(γn)ϕt ds dt+ εn

∫
Ω

Dεn(γn)ϕt ds dt =

=

∫
Ω

Bεn(γn)ϕs ds dt− εn
∫

Ω

Aεn(γn)ϕss ds dt

− ε2
n

∫
Ω

Dεn(γn)ϕss ds dt+ Ξ0(αn, βn, ϕ),(5.9)

where we used the operator Ξ0 defined in (3.11). Due to (5.1) and (5.4)
we have

(5.10) ‖γn‖L2(Ω;R6) ≤ C.

Observe that this constant merely depends on T , g, and the L2-norms
of α and β.

By Lemma 5.2 we obtain

Aεn(γ)→ A(γ),(5.11)

Bεn(γ)→ B(γ),(5.12)

Dεn(γ)→ D(γ),(5.13)

uniformly in γ ∈ R6. From (5.9) we infer∫
Ω

A(γn)ϕt ds dt−
∫

Ω

B(γn)ϕs ds dt− Ξ0(α, β, ϕ) =

=

∫
Ω

[A(γn)−Aεn(γn)]ϕt ds dt

+

∫
Ω

[Bεn(γn)− B(γn)]ϕs ds dt

− εn
∫

Ω

[Dεn(γn)−D(γn)]ϕt ds dt

− εn
∫

Ω

[Aεn(γn)−A(γn)]ϕss ds dt

− ε2
n

∫
Ω

[Dεn(γn)−D(γn)]ϕss ds dt

− εn
∫

Ω

D(γn)ϕt ds dt− εn
∫

Ω

A(γn)ϕss ds dt

− ε2
n

∫
Ω

D(γn)ϕss ds dt+ Ξ0(αn − α, βn − β, ϕ).

(5.14)

The first five terms on the right-hand side tend to zero by (5.11) –
(5.13). Since A and D are sublinear and subquadratic, respectively,
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(5.10) gives

‖A(γn)‖L2(Ω;R6) ≤ C,

‖D(γn)‖L1(Ω;R6) ≤ C.

Recall that αn → α, βn → β in L2(0, 1;R3). Hence, we conclude
that the remaining terms on the right-hand side of (5.14) go to zero.
Consider the functions

Ã(t, s, ξ) = A(t, s, ξ)ϕt(t, s),

B̃(t, s, ξ) = B(t, s, ξ)ϕs(t, s).

It is easy to see that Ã and B̃ are in the class F2 (with Γ = Ω), Ã∞ ≡ 0,
and B̃∞(t, s, ξ) = B∞(ξ)ϕs(t, s). By Theorem 3.1, we can pass to the
limit in (5.14) (passing to a subsequence, if necessary) and obtain∫

Ω

〈νt,s, Ã(t, s, ξ)〉 ds dt−
∫

Ω

〈νt,s, B̃(t, s, ξ)〉 ds dt

−
∫

Ω

〈ν∞t,s, B̃∞(t, s, θ)〉λ(dt, ds)− Ξ0(α, β, ϕ) = 0,(5.15)

which yields (3.17). Remark 3.2 and (5.10) imply (3.16). �

5.2. Examples. Let us briefly examine the implications of Theorem
5.1 for some particular cases of chain dynamics with the “whip” bound-
ary conditions and non-zero gravity g. In the case of the initial data
(2.26), we get existence of a generalized solution which is a priori dif-
ferent from the stationary solution (2.25) plainly because the latter one
does not admit non-negative tension. A qualitative glimpse at the aux-
iliary problems (4.1) and (4.4) implies that the “approximate strings”
start to evolve close to the upright position (2.26) but eventually with
the course of time they approach their steady-states. As ε goes to zero,
these steady-states approach the downwards vertical orientation with

(5.16) v(s) = 0, κ(s) = −gs.
Hence, our solution must be relevant in connection with the problem
of falling of a chain which is initially in an upright position and then
its upper end is released and the lower one remains fixed.

On the other hand, there are many physical and mechanical works
dealing with a problem of falling of a chain which initially has two ends
together and then one of them is released (see [42] for a review). In
this case, the initial data are

(5.17) α(s) = g

(
1

2|g|
−
∣∣∣∣ s|g| − 1

2|g|

∣∣∣∣) , β(s) = 0.
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Although the compatibility condition (2.12) is violated for s = 1
2
, the

hypothesis of Theorem 5.1 is met. Thus, the Young measure solution
exists, providing a new framework for a correct description of this me-
chanical system.

Acknowledgement
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