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Abstract

As it is well known, the concepts of normality and extremal disconnectedness of a topo-
logical space are dual to each other in some sense. This is nicely illustrated by several
pairs of famous results in classical topology. A recent paper by E. P. de Jager and H.-P. A.
Künzi provides some interesting pairs of results of the kind in the asymmetric setting of
quasi-uniform spaces. The aim of this paper is to shed a more unifying light on these
results. Besides extending them to a setting determined by more general fixed classes
of subspaces of the underlying space, encompassing some weak variants of normality, we
determine sufficient conditions on the fixed class of subspaces that enable us to unify
each pair of results under the same proof.
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1. Introduction

Normality is one of the most important topological separation properties. There is a
large literature devoted to it and the most recent one is fraught with all kinds of (weak)
variants of it (see, for instance, [2, 3, 4, 5, 14, 15, 21, 22, 24, 26, 25, 27]). Let us recall
that a topological space X is normal provided that any two disjoint closed sets in X can
be separated by open sets. In other words, X is normal if and only if for every open
subsets A and B of X,

A ∪B = X ⇒ ∃ open U, V : U ∩ V = ∅, A ∪ U = X = B ∪ V.

On the other hand, a topological space X is said to be extremally disconnected if every
open set in X has an open closure. Equivalently, any two disjoint open subsets of X
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have disjoint closures, that is, X is extremally disconnected if and only if for every open
subsets A and B of X,

A ∩B = ∅ ⇒ ∃ open U, V : U ∪ V = X, A ∩ U = ∅ = B ∩ V.

Hence, the property of extremal disconnectedness is, in lattice-theoretical terms, dual to
normality (cf. [16, p. 301]). This nice observation was first pointed out by T. Kubiak
in [17, 18]. This duality is revealed in some famous pairs of theorems like Urysohn
and Gillman-Jerison separation type lemmas, Tietze and Stone extension type theorems,
Katětov-Tong and Stone insertion type theorems and Hausdorff mapping invariance type
theorems (see Table 1 in [11] for more information). But most interestingly, the duality
is not completely symmetric in the sense that not every result in each pair is directly
obtainable from its dual one (simply because in some cases the conditions required for it
are not exactly the duals of the conditions required for the dual result).

Recently, E. P. de Jager and H.-P. A. Künzi [13] proved the following result in the
realm of quasi-uniform spaces:

Theorem 1. Let P be the Pervin quasi-uniformity on a topological space X.
Then:

(1) P ◦ P−1 is a (quasi-)uniformity if and only if X is normal.

(2) P−1 ◦ P is a (quasi-)uniformity if and only if X is extremally discon-
nected.

(3) P and P−1 permute if and only if X is normal and extremally discon-
nected.

The motivation for this paper arose from a conversation of the third author with Prof.
H.-P. A. Künzi about this result, in particular, and the nature of the normality/extremal
disconnectedness duality, in general. Our primary goal with it is to investigate whether
it is possible to formulate Theorem 1 in a “two for the price of one” setting so that
the proof of assertion (2) (and hence of (3)) is a direct consequence of (1) by some
kind of dualization process. Concurrently, the extended setting should allow for the
formulation and unification of several weak variants of the notion of normality. Our
approach follows the idea introduced in [11] that by selecting different classes A of
subspaces of the underlying space of the (quasi- )uniform space (X,U), one can deal
with relative notions of normality and extremal disconnectedness, unifying the different
variants. This development enables us to obtain the sufficient conditions on A and U

that allow to extend the proofs of E. P. de Jager and H.-P. A. Künzi [13].
We will conclude that the dualization of part of Theorem 1(1) yields precisely the

desired result in the disconnectedness side (2) while the other part does not (just because
in this case, the conditions on the class A are required for arbitrary joins, not only the
finite ones). The interesting aspect of this work is that it reveals precisely whether it is
possible to get each dual result for free.

We point out that all definitions and results in the paper are written in a way to be
easily extendable to the point-free setting of frames and locales with the help of the tools
introduced in [7, 8]. We keep everything in the point-set classical setting just to make
the connections with the results in [13] more apparent.
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We now give an overview of the contents of the paper. The paper begins with some
background material on quasi-uniform spaces in Section 2. The relations amongst the
several versions of the notions of normality and extremal disconnectedness collected from
the literature together with the relative general notions that unify them are given in
Section 3. The corresponding relative notions of a compatible quasi-uniformity and the
Pervin quasi-uniformity are presented in Section 4. The proofs of our two main theorems
and their corollaries are provided in Sections 5 and 6, the core sections of the paper.

2. Background on quasi-uniformities

Let X be a set. A filter U on X ×X such that each U ∈ U is a reflexive relation and
for each U ∈ U there is a V ∈ U such that V ◦ V ⊆ U is called a quasi-uniformity on
X and the pair (X,U) is a quasi-uniform space. Note that for any quasi-uniformity U

the filter U−1 = {U−1 | U ∈ U}, where U−1 = {(y, x) ∈ X ×X | (x, y) ∈ U}, is also a
quasi-uniformity on X, the conjugate of U. A quasi-uniformity U satisfying U = U−1 is
called a uniformity. For each A ⊆ X and each x ∈ A, let

U(x) = {y ∈ X | (x, y) ∈ U}

and
U(A) =

⋃
x∈A

U(x).

The topology τ(U) induced by U on X consists of all A ⊆ X such that for each a ∈ A
there is some U ∈ U satisfying U(a) ⊆ A. Then, obviously,

∀U ∈ U, ∀A ⊆ X, A ⊆ intτ(U)(U(A)). (QU1)

Moreover, for any base B of U and any A ⊆ X,

clτ(U)(A) =
⋂
{U−1(A) | U ∈ B} [9, Prop. 1.8]. (QU2)

Although U(x) may not be in τ(U), there is a base B for U such that

∀B ∈ B, ∀x ∈ X, ∀S ⊆ X, B(x), B(S) ∈ τ(U).

A quasi-uniformity U on X induces the bitopological space (X, τ(U), τ(U−1)). The
pairwise completely regular bispaces are precisely the bispaces that are induced by some
quasi-uniformity.

For more information about quasi-uniform spaces we refer the reader to [9, 19]. Here
we just recall the specific notions and facts that are relevant to our discussion.

Throughout the paper we denote the lattice of open sets (resp. closed sets) of a
topological space X by O(X) (resp. C(X)). A quasi-uniformity U on a space X is
compatible with the topology of X if τ(U) coincides with the given topology O(X).
Clearly, this is equivalent to say that the following two conditions hold:

(C1) ∀U ∈ U, ∀A ⊆ X, ∃B ∈ O(X) : A ⊆ B ⊆ U(A).

(C2) ∀a ∈ A ∈ O(X), ∃U ∈ U : U(a) ⊆ A.
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Moreover, notice from (QU2) that

(C3) ∀U ∈ U−1, ∀A ⊆ X, ∃F ∈ C(X) : A ⊆ F ⊆ U(A).

For each A ⊆ X,
SA = [(X rA)×X] ∪ [X ×A]

is a transitive entourage of X. Then the set of entourages {SA | A ∈ O(X)} is a subbase
for a totally bounded transitive quasi-uniformity on X, compatible with O(X). This is
the well-known Pervin quasi-uniformity UP on X. Since SXrA = S−1A , it follows that
the quasi-uniformity (UP )−1 is generated by {SF | F ∈ C(X)}.

If U1 and U2 are two quasi-uniformities on a set X and U1 ⊆ U2, then U1 is said to be
coarser than U2 or that U2 is finer than U1. Let {Ui}i∈I be a family of quasi-uniformities
on X. The supremum of {Ui}i∈I is the coarsest quasi-uniformity on X that is finer than
every Ui. The supremum always exists and it is the filter on X × X generated by the
subbase

⋃
i∈I Ui. Of course, the set q(X) of all quasi-uniformities on X equipped with

the set-theoretic inclusion ⊆ is a complete lattice (see, for instance, [12]).
The infimum of {Ui}i∈I , that is, the finest quasi-uniformity that is coarser than every

Ui, is then the supremum of the family of all quasi-uniformities on X that are coarser
than every Ui.

The operation of conjugation of quasi-uniformities commutes with the supremum and
the infimum operations. Indeed, suppose that V (resp. W) is the infimum of a family
{Ui}i∈I of quasi-uniformities on X (resp. the family of conjugate quasi-uniformities
{U−1i }i∈I). Then W−1 is a lower bound of {Ui}i∈I and thus W−1 ⊆ V. Similarly
V−1 ⊆W by the analogous conjugate argument, and thus V = W−1 (a similar proof for
the statement about suprema can be given).

In particular, the supremum and infimum of an arbitrary family of uniformities in
(q(X),⊆) is a uniformity and for any quasi-uniformity U, both U∨U−1 and U∧U−1 are
uniformities.

3. Relative normality and relative extremal disconnectedness

Throughout the present paper no separation axiom is assumed. LetX be a topological
space and let A ⊆ X. The closure of A will be denoted by A or clA and the interior
by intA. Recall that a set A ⊆ X is said to be regularly open if A = intA. The
complement of a regularly open set is called regularly closed. Clearly, the intersection of
any two regularly open sets is regularly open. A finite (resp. arbitrary) union of regularly
open sets is called a π-open (resp. δ-open) set. The complement of a π-open (resp. δ-
open) set is called π-closed (resp. δ-closed). Of course, δ-open sets form a topology (the
semiregularization topology in X, that is, the topology generated by regularly open sets).
Hence:

clopen ⇒ regularly open ⇒ π-open ⇒ δ-open ⇒ open. (3.1.1)

A set A ⊆ X is called a regular Fσ-set if it is a countable union of open sets whose
closures are contained in A, i.e., if A =

⋃
n∈NAn =

⋃
n∈NAn, where each An is an open

subset of X. The complement of a regular Fσ-set is called a regular Gδ-set. Recall also
that a set A ⊆ X is a zero-set if there exists a continuous real-valued function f on X

4



such that A = f−1({0}). The complement of a zero-set is a cozero-set. It is clear that in
any space X,

clopen ⇒ cozero-set ⇒ regular Fσ-set ⇒ open. (3.1.2)

Definitions 3.1. A topological space X is said to be

(i) almost normal if any two disjoint closed sets, one of which is regularly closed, can
be separated by open sets [26];

(ii) mildly normal if any two disjoint regularly closed sets can be separated by open
sets [27];

(iii) π-normal if any two disjoint closed sets, one of which is π-closed, can be separated
by open sets [14];

(iv) quasi-normal if any two disjoint π-closed sets can be separated by open sets [14];

(v) ∆-normal if any two disjoint closed sets, one of which is δ-closed, can be separated
by open sets [3];

(vi) weakly ∆-normal if any two disjoint δ-closed sets can be separated by open sets [3];

(vii) δ-normal if any two disjoint closed sets, one of which is a regular Gδ-set, can be
separated by open sets [22];

(viii) weakly δ-normal if any two disjoint regular Gδ-sets can be separated by open sets
[15];

(ix) lightly normal if any two disjoint closed sets, one of which is a zero-set, can be
separated by open sets [25];

(x) weakly lightly normal if any two disjoint closed sets, one of which is regularly closed
and the other a zero-set, can be separated by open sets [15].

The diagram in Table 1 depicts the relations between these classes of spaces (none of
these implications is reversible, see [3, 4, 15]).

In view of the definitions above it appears natural to introduce the following gener-
alization of the topological notion of normality.

Given a space X, let A ,B ⊆ P(X) be two fixed classes of open subspaces of X. We
call them open subspace selections on X and denote by A c the class {X r A | A ∈ A }
of all complements of elements of A .

Definitions 3.2. We say that X is (A ,B)-normal if for every A ∈ A and B ∈ B,

A ∪B = X ⇒ ∃U ∈ A ,∃V ∈ B : U ∩ V = ∅, A ∪ U = X = B ∪ V.

Dually, we say that X is (A ,B)-disconnected if for every A ∈ A and B ∈ B,

A ∩B = ∅ ⇒ ∃U ∈ A ,∃V ∈ B : U ∪ V = X, A ∩ U = ∅ = B ∩ V.

In the case where B = A we simply say that X is A -normal or A -disconnected.
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normal

∆-normal

δ-normal

lightly

normal

π-normal

almost

normal

weakly

∆-normal

quasi-

normal

mildly

normal

mildly

lightly

normal

weakly

δ-normal

Table 1: Variants of normality.

Of course, the particular case where A = B = O(X) yields the usual notions of
normality and extremal disconnectedness, and for any space X,

X is (A ,B)-disconnected iff it is (A c,Bc)-normal. (3.2.1)

This explicitly shows that these two notions are dual to each other. The following
lemma shows that this duality is not symmetric: the duals of many of the variants of
normality presented above collapse into extremally disconnected spaces.

Lemma 3.3. Let A ,B be two open subspace selections on a space X containing all
regularly open sets. Then:

(a) X is (A ,B)-normal if and only if for every A ∈ A and B ∈ B,

A ∪B = X ⇒ ∃U, V ∈ O(X) : U ∩ V = ∅, A ∪ U = X = B ∪ V. (3.3.1)

(b) X is (A ,B)-disconnected if and only if it is extremally disconnected.

Proof. (a) Clearly, (A ,B)-normality implies that any pair (A,B) in A × B satisfies
(3.3.1). Conversely, given an open set U , let U∗ denote the regularly open set int (X r
U) = X r cl (U). It is easy to check that U∗∗ ⊇ U and that U ∩ V = ∅ implies
U∗∗ ∩ V ∗∗ = ∅. Hence, given the open sets U and V provided by (3.3.1), it suffices to
consider the regularly open sets U∗∗ and V ∗∗ which are in A and B by assumption.
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(b) The implication “⇐” follows easily, in a way similar to the preceding proof, from the
properties U ⊆ U∗∗ and

A ∩ U = ∅ ⇒ A ∩ U∗∗ = ∅.

Conversely, consider A,B ∈ O(X) such that A ∩ B = ∅. Then A∗∗ ∩ B∗∗ = ∅. Once
A∗∗ ∈ A and B∗∗ ∈ B, there exist U ∈ A ⊆ O(X) and V ∈ B ⊆ O(X) such that
U ∪ V = X and A ∩ U ⊆ A∗∗ ∩ U = ∅ = B∗∗ ∩ V ⊇ B ∩ V .

Examples 3.4. Consider the following selections of open sets for A and B:

(1) open sets, (2) regularly open sets, (3) π-open sets,

(4) δ-open sets, (5) cozero-sets, (6) regular Fσ-sets.

Note that selections (1), (3), (4), (5), (6) are clearly sublattices of O(X) while (2) is
only closed under finite meets. They yield the classes of spaces listed in Table 2 below.
Let us explain each one in detail.

A B (A ,B)-normal spaces (A ,B)-disconnected spaces

1: (1) (1) normal extremally disconnected
2: (2) (2) mildly normal extremally disconnected
3: (1) (2) almost normal extremally disconnected
4: (3) (3) quasi-normal extremally disconnected
5: (1) (3) π-normal extremally disconnected
6: (4) (4) w∆-normal extremally disconnected
7: (1) (4) ∆-normal extremally disconnected
8: (5) (5) all spaces F -spaces
9: (1) (5) lightly normal∗ basically disconnected

10: (2) (5) weakly lightly normal∗ basically disconnected
11: (6) (6) δ-normal∗ extremally δ-disconnected
12: (1) (6) weakly δ-normal∗ extremally δ-disconnected

Table 2: Examples of (A ,B)-normal and (A ,B)-disconnected spaces.

(a) (A ,B)-normality. In each example, the condition of (A ,B)-normality implies the
corresponding property listed in the table since A ,B ⊆ O(X). Regarding the converses,
we have:

Example 1 is obvious. Examples 2-7 follow from Lemma 3.3(a) and relations in
Definitions 3.1.1. Example 8 is a consequence of the result of Mandelker in [23] that
the lattice of all cozero-sets of any space is a normal lattice. Regarding Examples 9-12,
they are in general subclasses (that we distinguish by adding an asterisk to the name) of
the classes of normal-like spaces in Definitions 3.1 (vii), (viii), (ix) and (x) respectively.
But according to e.g. the terminology schema for F -spaces and F ′-spaces (see [6]), they
should be denoted the other way round: the stronger variants should get the name, not
the weaker ones.
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Anyway, in each case, both classes coincide whenever the space is an Oz space (Blair
[1] calls a Tychonoff space X an Oz space if every open set of X is z-embedded). Indeed,
a useful characterisation is that X is an Oz space if and only if every regularly open
subset of X is a cozero-set (i.e. Oz spaces are the perfectly mildly normal spaces [20,
Theorem 1.1]) and thus Lemma 3.3 applies.

(b) (A ,B)-disconnectedness. Example 1 is obvious while Examples 2-7 follow from
Lemma 3.3(b) and relations in Definitions 3.1.1. Example 8 is also easy: recall that a
topological space is an F -space if disjoint cozero-sets are contained in disjoint zero-sets [6]
and notice that being contained in disjoint zero-sets, that is being completely separated,
is the same as saying that they are contained in disjoint cozero-sets [10, p. 17]. In
Examples 11 and 12 we cannot find those classes of spaces in the literature. They are
clearly the same class and we name them extremally δ-disconnected spaces. Finally, for
Examples 9 and 10 we need the following result:

Proposition 3.5. Let A ⊆ O(X) contain all regularly open sets and let B be the class
of all cozero-sets of X. Then X is (A ,B)-disconnected if and only if X is basically
disconnected.

Proof. Recall that a space is basically disconnected if every cozero-set has an open closure.
This can be interpreted as saying that A∩B = ∅, with A an arbitrary open set and B a
cozero-set, implies A∗∪B∗ = X. So consider an open set A and a cozero-set B such that
A∩B = ∅. Then A∗∗ is a regularly open set disjoint from B. Therefore by the hypothesis
there exists a U ∈ A and a cozero-set V such that U ∪V = X and A∗∗∩U = ∅ = B∩V ,
from which it follows that A∗ ∪B∗ ⊇ U ∪ V = X.

Conversely, let A∩B = ∅ with A ∈ A and B a cozero-set. By basic disconnectedness,
A∗ ∪ B∗ = X. Of course, U = A∗ is regularly open thus belongs to A . Further, B is
clopen and therefore a zero-set. Hence V = B∗ = X rB is a cozero-set.

4. Relative compatibility of a quasi-uniform structure

Let U be a quasi-uniformity on a space X and A ⊆ O(X). We say that U is
compatible with A (or simply A -compatible) whenever A is a subbase for the induced
topology τ(U). Note that the particular case where A = O(X) is precisely the usual
notion of a compatible quasi-uniformity on X.

Lemma 4.1. Let U be a quasi-uniformity on a space X, A ⊆ O(X) and let τA be the
topology on X generated by A . Then U is A -compatible iff the following conditions hold:

(C1) ∀U ∈ U, ∀S ⊆ X, ∃A ∈ τA : S ⊆ A ⊆ U(S).

(C2) ∀a ∈ A ∈ τA , ∃U ∈ U : U(a) ⊆ A.

Proof. ⇒: Suppose that A is a subbase for τ(U). Then τ(U) = τA and therefore
condition (C1) follows from (QU1) while (C2) follows from the definition of τ(U).
⇐: The inclusion τA ⊆ τ(U) follows from (C2). On the other hand, for each A ∈ τ(U)
and any a ∈ A there is some Ua ∈ U such that a ∈ U(a) ⊆ A. Consequently, by (C1),
there is some Ba ∈ τA satisfying {a} ⊆ Ba ⊆ U(a) ⊆ A. Hence A =

⋃
a∈ABa ∈ τA .
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Lemma 4.2. Let U be a quasi-uniformity on a space X, A ⊆ O(X) and let τA be the
topology on X generated by A . If U is A -compatible, then

(C3) ∀U ∈ U−1, ∀S ⊆ X, ∃F ∈ τ cA : S ⊆ F ⊆ U(S).

Proof. The result follows from (QU2) and the fact that clτ(U)(S) = clτA (S) ∈ τ cA .

Let X be a topological space and A ⊆ O(X). The sets of the form

SA = [(X rA)×X] ∪ [X ×A] (A ∈ A )

are entourages of X that generate an A -compatible quasi-uniformity UP (A ) on X:

Lemma 4.3. The set of entourages {SA | A ∈ A } is a subbase for a transitive totally
bounded A -compatible quasi-uniformity on X.

Proof. Since each SA is a reflexive and transitive relation and {A,XrA} is a finite cover
of X with A×A,XrA×XrA ⊆ SA, it follows that {SA | A ∈ A } is always a subbase
for a transitive totally bounded quasi-uniformity on X.

Regarding compatibility, we need to show that τA = τ(UP (A )).
⊆: Let A ∈ A and a ∈ A. Since SA ∈ UP (A ) and SA(a) = A, it follows that A ∈
τ(UP (A )) and τA ⊆ τ(UP (A )).
⊇: Since each U(x) such that U ∈ UP (A ) is a nhood of x in τ(UP (A )) for every x ∈ X,
it suffices to check that each U(x) is a nhood of x in τA . To this end, take U ∈ UP (A ).
Then

⋂n
i=1 SAi ⊆ U for some A1, . . . , An ∈ A . If x /∈

⋃n
i=1Ai (that is, x ∈ X r Ai for

every i), then (x, y) ∈
⋂n
i=1 SAi

for every y ∈ X, that is,[
n⋂
i=1

SAi

]
(x) = X ∈ τA

is contained in U(x). Otherwise, if x ∈
⋃n
i=1Ai, then[

n⋂
i=1

SAi

]
(x) =

⋂
{Ai | x ∈ Ai} ∈ τA .

We call UP (A ) the Pervin quasi-uniformity induced by A in X.

Remarks 4.4. (1) Note that S−1A = SXrA and thus UP (A c) = U−1P (A ). This implies that

U is a quasi-uniformity finer than UP (A ) if and only if U−1 is a quasi-uniformity finer
than UP (A c).

(2) Of course, the case where A = O(X) yields precisely the standard Pervin quasi-
uniformity of X.

5. Quasi-uniformities that permute with their conjugate

Following the notation in [13], given two quasi-uniformities U and V on a set X, U◦V
denotes the filter on X ×X generated by the base

{U ◦ V | U ∈ U, V ∈ V}.
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As it is shown in [13, Lemma 1],

U ◦ V is a quasi-uniformity iff U ◦ V = U ∧ V iff U ◦ V ⊆ V ◦ U. (5.1.1)

In particular, U ◦ U−1 is a quasi-uniformity if and only if it is a uniformity.
The quasi-uniformities U and V are said to permute (and called permutable) if U◦V =

V ◦U. Hence U and V permute if and only if both U ◦V and V ◦U are quasi-uniformities.

Theorem 5.1. Let U be a quasi-uniformity on a space X that is finer than the Pervin
quasi-uniformity UP (A ). If U satisfies the condition

∀U ∈ U,∀A ∈ A c,∃B ∈ A : A ⊆ B ⊆ U(A) (A -int)

and U ◦ U−1 is a quasi-uniformity, then X is A -normal.

Proof. Suppose that U ◦ U−1 is a quasi-uniformity. By (5.1.1), U ◦ U−1 is equal to the
uniformity U ∧ U−1. Let A,B ∈ A with A ∪ B = X. Set U = SA ∩ SB ∈ UP (A ). Then
U ∈ U. Note that U−1 = SXrA ∩ SXrB by Remark 4.4. Moreover

U ◦ U−1 =
⋃

x∈ X

(U(x)× U(x)) = (A×A) ∪ (B ×B).

Since U ◦U−1 ∈ U◦U−1 = U∧U−1 and U∧U−1 is a uniformity, there exists V ∈ U∧U−1
such that V 2 ⊆ U ◦ U−1. In particular, there is some W ∈ U such that W ∪W−1 ⊆ V .
Hence ⋃

x∈X
(W−1(x)×W−1(x)) ⊆W−1 ◦W ⊆ V 2 ⊆ U ◦ U−1.

Furthermore, let us check that W (X rA)∩W (X rB) = ∅. Indeed, if x ∈W (X rA)∩
W (X r B) we would have (α, x), (β, x) ∈ W for some α ∈ X r A and β ∈ X r B and
thus

(α, β) ∈W−1(x)×W−1(x) ⊆ U ◦ U−1 = (A×A) ∪ (B ×B),

a contradiction.
Now, using (A -int), we obtain A′, B′ ∈ A satisfying X r A ⊆ A′ ⊆ W (X r A) and

X r B ⊆ B′ ⊆ W (X r B). Therefore A′ ∩ B′ = ∅ and A ∪ A′ = X = B ∪ B′, which
shows that X is A -normal.

Corollary 5.2. Let U be an A -compatible quasi-uniformity on a space X that is finer
than the Pervin quasi-uniformity UP (A ). In the case where A is a topology on X, if
U ◦ U−1 is a quasi-uniformity then X is A -normal.

Proof. The result follows from the fact that Condition (C1) of Lemma 4.1 combined with
the fact that A is a topology yields condition (A -int).

Remarks 5.3. (1) The case where A = O(X) in the preceding corollary is precisely
Lemma 2(a) of [13].

(2) By (QU1), any quasi-uniformity U such that τ(U) ⊆ A satisfies condition (A -int):
just take B = intτ(U)(U(A)).

(3) Let A be closed under arbitrary unions and set

intA (S) =
⋃
{A ∈ A | A ⊆ S}

for any S ⊆ X. If A ⊆ intA (U(A)) for any U ∈ U and A ∈ A c, then U satisfies (A -int).
10



By taking U−1 for U and A c for A , Theorem 5.1 yields immediately the following
dual result:

Let U−1 be a quasi-uniformity on a space X that is finer than the Pervin quasi-
uniformity UP (A c). If U−1 satisfies the condition

∀U ∈ U−1,∀A ∈ A ,∃B ∈ A c : A ⊆ B ⊆ U(A)

and U−1 ◦ U is a quasi-uniformity, then X is A c-normal.

Using Remark 4.4(1) and (3.2.1) we then get the following:

Corollary 5.4. Let U be a quasi-uniformity on a space X that is finer than the Pervin
quasi-uniformity UP (A ). If U satisfies the condition

∀U ∈ U−1,∀A ∈ A ,∃B ∈ A c : A ⊆ B ⊆ U(A) (A -cl)

and U−1 ◦ U is a quasi-uniformity, then X is A -disconnected.

Corollary 5.5. Let U be an A -compatible quasi-uniformity on a space X that is finer
than the Pervin quasi-uniformity UP (A ). In the case where A is a topology on X, if
U−1 ◦ U is a quasi-uniformity then X is A -disconnected.

Proof. The result follows from the fact that Condition (C3) of Lemma 4.2 combined with
the fact that A is a topology yields condition (A -cl).

Remarks 5.6. (1) The case where A = O(X) in the preceding corollary is precisely
Lemma 2(b) of [13].

(2) By (QU2), any quasi-uniformity U such that τ(U) ⊆ A satisfies condition (A -cl):
just take B = clτ(U)(U(A)).

(3) Let A be closed under arbitrary unions and set

clA (S) = X r intA (X r S) =
⋂
{X rA | A ∈ A , X rA ⊇ S} ∈ A c

for any S ⊆ X. If clA (A) ⊆ U(A) for every U ∈ U−1 and A ∈ A , then U satisfies (A -cl).

6. On the converse results

Let X be a topological space and A ⊆ O(X). From now on we assume that X ∈ A .
We say that a cover C of X is an A -cover if C ∈ A for all C ∈ C .

Consider now the Pervin quasi-uniformity UP (A ) induced by A in X. We have:

Lemma 6.1. For each U ∈ UP (A ) there is a finite A -cover C of X such that
⋂
C∈C SC ⊆

U .

Proof. Let U ∈ UP (A ). Then
⋂n
i=1 SAi

⊆ U for some A1, . . . , An ∈ A . Since SX =
X ×X, it suffices to take C = {A1, . . . , An, X}.

Moreover:

Lemma 6.2. Let X be a A -normal space and let C = {A1, A2, . . . , An} be a finite
A -cover of X.

11



(1) If A is closed under finite unions, then for each i ∈ n = {1, 2, . . . , n} there is some
Vi ∈ A such that Vi ⊆ Ai and {Vi | i ∈ n} is a finite A -cover of X.

(2) If A is closed under arbitrary unions, then for each i ∈ n there is some Vi ∈ A such
that clA (Vi) ⊆ Ai and {Vi | i ∈ n} is a finite A -cover of X.

Proof. (1) Since A is closed under finite unions we may apply A -normality to A1 and
A2 ∪ · · · ∪ An and conclude that there is some U1, V1 ∈ A such that U1 ∩ V1 = ∅ and
U1 ∪ A1 = X = V1 ∪ A2 ∪ · · · ∪ An. Clearly, V1 ⊆ V1 ⊆ A1. Now we may apply A -
normality to A2 and V1 ∪A3 ∪ · · · ∪An and conclude that there is some U2, V2 ∈ A such
that U2 ∩ V2 = ∅ and U2 ∪ A2 = X = V2 ∪ V1 ∪ A3 ∪ · · · ∪ An. Clearly, V2 ⊆ V2 ⊆ A2.
Proceeding inductively we get, at step n, Un, Vn ∈ A such that Un ∩ Vn = ∅ and
Un ∪An = X = Vn ∪ · · · ∪ V2 ∪ V1 from which it follows that Vn ⊆ Vn ⊆ An.

In conclusion, {V1, V2, . . . , Vn} is the required A -cover.

(2) In each step of the preceding proof we have Vi ⊆ X r Ui ⊆ Ai with Ui ∈ A . If A is
closed under arbitrary unions (precisely the condition on A that ensures the existence
of clA (−)), then that implies immediately Vi ⊆ clA (Vi) ⊆ Ai.

In the next lemma, st(x,D) denotes, as usual, the union
⋃
{D ∈ D | x ∈ D}.

Lemma 6.3. Let C be a finite A -cover of X. If X is A -normal and A is a topology,
then there exists a finite A -cover D of X such that

{st(x,D) | x ∈ X} ≤
{[ ⋂

C∈C

SC

]
(x) | x ∈ X

}
.

Proof. Let C = {A1, A2, . . . , An} be a finite A -cover of X and let

C ′ =

{[ ⋂
C∈C

SC

]
(x) | x ∈ X

}
.

As observed in the proof of Lemma 4.3,
[⋂

C∈C SC

]
(x) =

⋂
{C ∈ C | x ∈ C} ∈ A (since

A is closed under finite intersections). Hence C ′ is a finite A -cover of X and by Lemma
6.2(2) there is a finite A -cover {VC | C ∈ C ′} satisfying clA (VC) ⊆ C for all C ∈ C ′.

Now, for each C ′′ ⊆ C ′ set

DC ′′ = (
⋂

C∈C ′′
C) r

⋃
{clA (VC) | C ∈ C ′ r C ′′} and D = {DC ′′ | C ′′ ⊆ C ′}.

Note that DC ′′ =
⋂
C′∈C ′rC ′′

⋂
C∈C ′′(C ∩ intA (X r VC′)) and thus each DC ′′ is in A .

Furthermore, for each x ∈ X let C ′′x = {C ∈ C ′ | x ∈ clA (VC)}. Since

DC ′′
x

=
⋂

C′∈C ′rC ′′
x

⋂
C∈C ′′

x

(C ∩ intA (X r VC′)),

it is clear that x ∈ DC ′′
x

and therefore D is a finite A -cover of X. It suffices now to show
that {st(x,D) | x ∈ X} ≤ C ′. So we need to check that for any C ′′ ⊆ C ′ with x ∈ DC ′′

there is some C ∈ C ′ such that DC ′′ ⊆ C. Any C ∈ C ′′x (so that x ∈ clA (VC) ⊆ C) will
do the job. Indeed:
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(1) From x ∈ DC ′′ = (
⋂
C∈C ′′ C)r

⋃
{clA (VC) | C ∈ C ′rC ′′} it follows that x /∈ clA (V ′C)

for every C ′ ∈ C ′ r C ′′; but since x ∈ clA (VC), then C ∈ C ′′.

(2) Finally, it is true that DC ′′ ⊆ C whenever C ∈ C ′′ and x ∈ C:

DC ′′ =
⋂

C∈C ′rC ′′

⋂
C′∈C ′′

(C ′ ∩ (X r clA (VC)))

⊆
⋂

F∈C ′rC ′′
(C ∩ (X r clA (VF ))) ⊆ C.

Theorem 6.4. Let X be a topological space and let A ⊆ O(X) be a topology. If X is
A -normal, then UP (A ) ◦ U−1P (A ) is a uniformity.

Proof. Let U ∈ UP (A ). By Lemma 6.1 there is a finite A -cover C of X such that⋂
C∈C

SC ⊆ U. (6.4.1)

Then, by Lemma 6.3, there exists a finite A -cover D of X such that

{st(x,D) | x ∈ X} ≤
{[ ⋂

C∈C

SC

]
(x) | x ∈ X

}
. (6.4.2)

Let V =
⋂
D∈D SD which clearly belongs to UP (A ). We have

(V ◦ V −1)2 = (V ◦ V −1) ◦ (V ◦ V −1)−1 =
⋃
x∈X

(
(V ◦ V −1)(x)× (V ◦ V −1)(x)

)
.

Thus, by (6.4.2),

(V ◦ V −1)2 ⊆
⋃
x∈X

[[ ⋂
C∈C

SC

]
(x)×

[ ⋂
C∈C

SC

]
(x)

]
⊆ (

⋂
C∈C

SC) ◦ (
⋂
C∈C

SC)−1

and, finally, by (6.4.1), (V ◦ V −1)2 ⊆ U ◦ U−1.

Since the conditions for A are not self-dual, we only get the following corollary:

Corollary 6.5. Let X be a topological space and let A ⊆ O(X) be a co-topology. If X
is A -disconnected, then U−1P (A ) ◦ UP (A ) is a uniformity.

Nevertheless, a careful analysis of the proof of the direct result in [13, Lemma 3(b)]
reveals that it is possible to conform it to our relative setting and to obtain directly the
next result.

Theorem 6.6. Let X be a topological space and let A ⊆ O(X) be a topology. If X is
A -disconnected, then U−1P (A ) ◦ UP (A ) is a uniformity.

Indeed, for that we just need the following properties of A -disconnected spaces:

Proposition 6.7. (1) Let A ⊆ O(X) be closed under arbitrary joins. The following are
equivalent:

(i) X is A -disconnected.
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(ii) clA (A) ∈ A for every A ∈ A .

(iii) For any A,B ∈ A , A ∩B = ∅ ⇒ clA (A) ∩ clA (B) = ∅.

(2) Moreover, if A is also closed under finite intersections, then X is A -disconnected if
and only if clA (A ∩B) = clA (A) ∩ clA (B) for every A,B ∈ A .

Proof. (1) (i)⇒(ii): Let A ∈ A . Since A ∩ intA (X r A) = A ∩ X r clA (A) = ∅,
A -disconnectedness provides some U, V ∈ A satisfying U ∪ V = X and A ∩ U =
∅ = V ∩ X r clA (A). Clearly, U ⊆ intA (X r A) and V ⊆ intA (clA (A)). Therefore
intA (X rA) ∪ intA (clA (A)) = X, that is, clA (A) ⊆ intA (clA (A)).

(ii)⇒(iii): SinceB ⊆ XrA ∈ A c, it follows that clA (B) ⊆ XrA, that is, A∩clA (B) = ∅.
It then follows similarly that clA (A) ∩ clA (B) = ∅, since clA (B) ∈ A by hypothesis.

(iii)⇒(i): Let A,B ∈ A such that A ∩ B = ∅. It suffices to take U = X r clA (A) and
V = X r clA (B).

(2) Let U ∈ A such that U ∩ A ∩ B = ∅. Then, by the property proved in the im-
plication (ii)⇒(iii) above, we have U ∩ A ∩ clA (B) = ∅ (note that the assumption
that A is closed under finite intersections is needed here so that U ∩ A ∈ A ). Hence
U ∩ A ∩ intA (clA (B)) = ∅. This shows that A ∩ intA (clA (B)) ⊆ clA (A ∩ B) and thus
that A ∩ intA (clA (B)) ⊆ intA (clA (A ∩B)). Similarly, intA (clA (A)) ∩ intA (clA (B)) ⊆
intA (clA (A ∩B)). The conclusion follows now by application of characterization (ii).

The converse is obvious since the hypothesis implies assertion (iii) above.

Corollary 6.8. Let X be a topological space and let A ⊆ O(X) be a topology. Then:

(1) UP (A ) ◦ U−1P (A ) is a uniformity if and only if X is A -normal.

(2) U−1P (A ) ◦ UP (A ) is a uniformity if and only if X is A -disconnected.

(3) UP (A ) and U−1P (A ) permute if and only if X is A -normal and A -disconnected.

Proof. Assertion (1) follows from Corollary 5.2 and Theorem 6.4, while assertion (2)
follows from Corollary 5.5 and Theorem 6.6.

(3) If UP (A ) and U−1P (A ) permute, then by (5.1.1) both UP (A ) ◦U−1P (A ) and U−1P (A ) ◦UP (A )

are uniformities and so by Corollaries 5.2 and 5.5 X is A -normal and A -disconnected.
Conversely, if X is A -normal and A -disconnected, then by (5.1.1) and Theorems 6.4
and 6.6 we have UP (A ) ◦U−1P (A ) = UP (A ) ∧U−1P (A ) = U−1P (A ) ◦UP (A ) and thus UP (A ) and

U−1P (A ) permute.

This result yields, in particular, the part of Corollary 9 of [13] about the Pervin
quasi-uniformity.
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