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1 Introduction

In [6] G. Janelidze and M. Sobral gave a complete characterization of the morphisms in
the category Ord of (pre)ordered sets (denoted by Preord in [6]) which are effective
for descent with respect to the class of étale morphisms, i.e., discrete fibrations. In [9]
M. Sobral characterized the effective descent morphisms in the category Cat of small
categories with respect to the class of discrete (op-)fibrations. These two works suggested
the study of descent theory for the class of étale morphisms in the category M -Ord of
M -ordered sets for a given monoid M . Using the identification of M -ordered sets as
M -normed small categories given by M.M. Clementino, E. Colebunders and W. Tholen
in [2], in this paper we present a complete characterization of the effective étale-descent
morphisms in M -Ord.

2 M-ordered sets as M-normed categories

Given a monoid M , consider the monad

M = (M × (−), µ, η)

on Set, with µX : M ×M ×X →M ×X defined by (m,n, x) 7→ (mn, x) and ηX : X →
M × X by x 7→ (1, x), for each set X. The Barr extension [1] M : Rel → Rel is an
extension of the monad M, and it is given by

(m,x)(Mr)(n, y)⇐⇒ m = n and x(r)y,
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where r : X → Y is a relation, x ∈ X, y ∈ Y , and m,n ∈M . The category (M, 2)-Cat of
(M, 2)-categories and functors is the category M -Ord of M -ordered sets and equivariant
maps. For a relation a : M ×X → X one writes x

m−→ y instead of (m,x)(a)y, that is x
is related to y with weight m. As remarked in [2, Section V.1.4], this arrow notation for
the structure of an (M, 2)-category (X, a) emphasizes that X is actually the object set
of a small category, denoted again by X, with hom-sets

X(x, y) = {(x,m, y) | m ∈M and x
m−→ y}

for x, y ∈ X; moreover this small category comes equipped with a faithful functor

νX : X →M, (x,m, y) 7→ m,

with M considered as a one-object category. Accordingly, the identity morphisms and
composition in an M -ordered set X are given by

x
eM−−→ x and (x

m−→ y & y
n−→ z =⇒ x

nm−−→ z),

while an equivariant map f : X → Y must satisfy

x
m−→ y =⇒ f(x)

m−→ f(y)

for all x, y ∈ X and m ∈M . Defining an M -norm to be a functor from the small category
X to the category M , we have a full embedding

I : (M, 2)-Cat ↪→ Cat ↓M, (X, a) 7→ (X, νX).

Proposition 2.1 [2, Proposition V.1.4.2] The functor I is reflective and identifies (M, 2)-
categories as those small categories over M whose norm is faithful.

Now let E be the class of étale morphisms in M -Ord. As introduced in [3], a (T, 2)-
functor is étale if it is a pullback stable ‘discrete fibration’ (see [3] for details). For a
cartesian monad, as M is, discrete fibrations are pullback stable, hence étale morphisms
are the same as discrete fibrations. Using the arrow notation, an equivariant map f :
X → Y in M -Ord is an étale morphism if and only if:

∀x0 ∈ X, ∀y1 ∈ Y, ∀m ∈M : y1
m−→ f(x0) =⇒ ∃!x1 ∈ f−1(y1) : x1

m−→ x0.

The problem concerning the characterization of effective étale-descent morphisms in M -
Ord can be stated as follows.
Given an equivariant map p : E → B of M -ordered sets, denote by E(B) the slice
category of étale morphisms over B and by p∗ : E(B) → E(E) the pullback functor
along p. We have then a commutative (up to isomorphism) diagram

E(B)

p∗ ##

Kp
// DesE(p)

Up
zz

E(E)
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where DesE(p) is the category of E-descent data for p, and Up and Kp are the forgetful
and the comparison functor, respectively. By definition, the equivariant map p : E → B
is an (effective) étale-descent morphism if the comparison functor Kp is full and faithful
(an equivalence of categories). If we replace E by the class of all morphisms, p is said
to be an effective descent morphism. For a more detailed presentation of descent theory
we refer the Reader to the papers [7] and [8].

3 Characterization of (effective) étale-descent morphisms

Consider the following diagram

(M, 2)-Cat
I−→ Cat ↓M U−→ Cat,

where I is the full embedding described in Section 2 and U is the obvious forgetful
functor. A functor F : X → Y in Cat is called a discrete fibration if for every object x
in X and every morphism of the form g : y′ → F (x) in Y there exists a unique morphism
f : x′ → x in X such that F (f) = g. The notion of ‘discrete fibration’ given in Section
2 for a morphism in M -Ord coincides with the notion of discrete fibration given above
when we consider M -ordered sets as (M -normed) small categories. Moreover, given an
equivariant map p : E → B of M -ordered sets, since I preserves pullbacks, the pullback
functor p∗ : E(B) → E(E), where E is the class of étale morphisms in M -Ord, is
described by the following diagram

E ×B A
π1
��

π2 // A

α
��

E

νE
��

p // B

νBzz
M

where the square is in Cat. In fact for a discrete fibration α : A→ B of small categories,
being in particular a faithful functor, the composition

A
α−→ B

νB−−→M

gives an M -valued norm for A making α : A → B an object in E(B). Hence the argu-
ments given in [9] leading to the characterization of effective descent morphisms in Cat
with respect to the class of discrete (op-)fibrations can be used to get a characterization
of the effective étale-descent morphisms in M -Ord.
Following those arguments, the equivariant map p : E → B can be then factorized in

3



Cat in the following way

E

ψ $$

p // B

Z(Eq(p)),

ϕ

::

where Z(Eq(p)) is the category of zigzags with E as object-set and morphisms given by
equivalent classes of zigzags of the form

e0 // e′0

m1

��
e1 // e′1

m2

��
e2 // e′2

m3

�� //

�� //

mn

��
en // e′n

where p(ei) = p(e′i) for i = 0, · · · , n, and e′i
mi+1−−−→ ei+1 in E for i = 0, · · · , n − 1. The

equivalent classes are given by the smallest equivalence relation ∼ for which

e0 // e′0

m

��
∼

e0

m

��
e′1 e1 // e′1.

For a more detailed presentation of this construction we refer the Reader to the papers
[6] and [9]. An n-zigzag as above will be denoted by

[en, e
′
n]mn · · ·m2[e1, e

′
1]m1[e0, e

′
0].

The morphism ψ is defined as the identity on objects and ψ(e0
m−→ e1) = [e0

m−→ e1]
on morphisms, while ϕ on objects acts as p and the image of an equivalent class of an
n-zigzag [en, e

′
n]mn · · ·m2[e1, e

′
1]m1[e0, e

′
0] via ϕ is

p(e0)
m1−−→ p(e′1)

m2−−→ · · · mn−−→ p(e′n) = p(e0)
mn···m2m1−−−−−−−→ p(e′n).
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Based on the observations above, the Theorem below immediately follows form the
similarly formulated [9, Theorem 2], while the Corollary can be deduced either directly
from it, or, easily, from [9, Corollary 3].

Theorem 3.1 An equivariant map p : E → B is an effective étale-descent morphism in
M -Ord if and only if ϕ : Z(Eq(p))→ B is a full and faithful lax epimorphism in Cat.

Corollary 3.2 An equivariant map p : E → B is an effective étale-descent morphism
in M -Ord if and only if

(i) For each p(e)
k−→ p(e′) in B with k ∈M there exists a zigzag in Z(Eq(p))

[en, e
′
n]mn · · ·m2[e1, e

′
1]m1[e0, e

′
0]

with k = mn . . .m2m1, and such a zigzag is unique up to equivalence.

(ii) every point b ∈ B is in relation to a point of the image via a right-invertible
element of the monoid, i.e., for each b ∈ B there exist e ∈ E, n,m ∈M such that
p(e)

n−→ b and b
m−→ p(e) with nm = 1.

Remarks 3.3 1. When M = 1, 1-Ord=Ord, also identified as the full subcategory
of Cat given by small categories X for which X → 1 is faithful. Hence the char-
acterization of effective étale-descent morphsism in M -Ord generalizes the char-
acterization in Ord given in [6]. As in Ord uniqueness of zigzags encodes the fact
that Z(Eq(p)) is a (pre)order, here it encodes the property that Z(Eq(p)) is an

M -ordered set, with norm Z(Eq(p))
ϕ−→ B

νB−−→M .

2. The étale-descent morphisms in M -Ord are precisely the morphisms for which
condition (ii) is satisfied.

3. Since ϕop is a full and faithful lax epimorphism if and only if the same holds for ϕ,
we conclude, as in the case for Cat, that the effective descent morphisms in M -
Ord with respect to the class of discrete op-fibrations coincide with the effective
étale-descent morphisms.

4. Effective descent morphisms in M -Ord were characterized in [4, Theorem 1.8] as
the equivariant maps p : E → B such that

∀ b2
m−→ b1

n−→ b0 in B ∃ e2
m−→ e1

n−→ e0 in E : ∀i = 0, 1, 2 p(ei) = bi.

Therefore every effective descent morphism is effective for étale-descent. The con-
verse is not true, even for surjective maps, as illustrated by the following modific-
ation of [5, Example 8.7]:
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E

p

��

B

e0
m // e11

e12
n // e2

_

��

b0
m // b1

n // b2
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