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Abstract

We prove the convergence of weighted sums of associated ran-

dom variables normalized by n1/p, p ∈ (1, 2), assuming the ex-

istence of moments somewhat larger than p, depending on the

behaviour of the weights, improving on previous results by get-

ting closer to the moment assumption used for the case of con-

stant weights. Besides moment conditions we assume a convenient

behaviour either on truncated covariances or on joint tail proba-

bilities. Our results extend analogous characterizations known for

sums of independent or negatively dependent random variables.
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1 Introduction

Sums of random variables have always attracted a lot of interest as their

asymptotic behaviour raises relevant theoretical challenges. Moreover,

many statistical procedures depend on such sums. Thus, there is a natu-

ral interest in considering the convergence of Tn =
∑n

i=1 an,iXi, where the

variables Xi are centered, both from a theoretical and practical point of

view. For constant weights and independent and identically distributed

variables Baum and Katz [3] proved the Marcinkiewicz-Zygmund strong

law of large numbers, that is, that n−1/p Tn −→ 0 almost surely, p ∈ [1, 2),

if and only if E(|X1|p) <∞. Chow [6] and Cuzick [7] considered variables

such that E(|X1|β) <∞ and weights satisfying supn≥1 n
−1∑n

i=1 a
α
n,i <∞

where α−1 + β−1 = 1, to prove the Marcinkiewicz-Zygmund law with

p = 1. This was extended by Cheng [5] and Bai and Cheng [2] to other

values of p ∈ (1, 2). The same problem with negatively dependent ran-

dom variables was considered by Ko and Kim [8], Baek, Park, Chung and

Seo [1], Cai [4], Qiu and Chen [14] or Shen, Wang, Yang and Hu [17].

Positively associated random variables were considered by Louhichi [9]

for constant weights and Oliveira [11] for more general weights. In this

paper we extend the results in [11], relaxing the moment assumption on

the random variables, approaching the p-th order moment assumption

used by Louhichi [9] to prove the convergence for constant weights, while

strengthening the assumption on the decay rate of the covariances. We

also consider the Marcinkiewicz-Zygmund law with assumptions on the

2-dimensional analogue of tail probabilities of the random variables re-

laxing in this case the assumption on the decay rate on the covariances,

but strengthening the moment condition.
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2 Framework and preliminaries

Let Xn, n ≥ 1, be a sequence of random variables and define partial

sums Sn =
∑n

i=1Xi and weighted partial sums Tn =
∑n

i=1 an,iXi, where

an,i ≥ 0, i ≤ n, n ≥ 1. The variables Xn, n ≥ 1, are assumed to be

associated, that is, for any m ≥ 1 and any two real-valued coordinatewise

nondecreasing functions f and g,

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0,

whenever this covariance exists. It is well known that the covariance

structure of associated random variables characterizes their asymptotics,

so it is natural to seek assumptions on the covariances.

In this paper we will be interested in the case where second order mo-

ments do not exist, so we will avoid using covariances directly, using them

only through truncation. For this later argument, define, for each v > 0,

the nondecreasing function gv(u) = max(min(u, v),−v), which performs

the truncation at level v, and introduce, for each n ≥ 1, the random

variables X̄n = gv(Xn) and X̃n = Xn− X̄n. It is easily checked that both

these families of random variables are associated, as they are nondecreas-

ing transformations of the original ones. Define next the weighted sums

of the truncated variables: for each n ≥ 1, T̄n =
∑n

i=1 an,i(X̄i − EX̄i)

and T̃n =
∑n

i=1 an,i(X̃i − EX̃i), and the maxima T ∗n = maxk≤n |Tk| and

T̄ ∗n = maxk≤n
∣∣T̄k∣∣. To handle covariances define, for each i, j ≥ 1,

∆i,j(x, y) = P(Xi ≥ x,Xj ≥ y) − P(Xi ≥ x)P(Xj ≥ y). Of course,

Cov(Xi, Xj) =
∫
R2 ∆i,j(x, y) dxdy. Moreover,

Gi,j(v) = Cov(X̄i, X̄j) =

∫
[−v,v]2

∆i,j(x, y) dxdy. (1)

The control of moments of maxima of partial sums is a crucial ar-

gument throughout. For nonweighted sums it was proved by Newman
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and Wright [10] that E (maxk≤n S
2
k) ≤ ES2

n. This maximal inequality is

one of the key ingredients used by Louhichi [9] to control tail probabil-

ities of maxima of sums of associated random variables and then prove

that n−1/pSn −→ 0 a.s., where p ∈ [1, 2) when one only has p-th order

moments. For weighted sums, the following extension of this maximal

inequality was proved by Oliveira [11].

Lemma 2.1 Let Xn, n ≥ 1, be centered and associated random vari-

ables. Assume the coefficients are such that

an,i ≥ 0, and an,i ≥ an−1,i, i < n, n ≥ 1. (2)

Then E (maxk≤n T
2
k ) ≤ E(T 2

n).

We will need some more assumptions on the weights. Define, for

each α > 0, Aαn,α = n−1
∑n

i=1 |ani|
α . These coefficients are considered in

[1, 2, 4, 7, 8, 14, 18], assuming them to be either bounded or convergent.

Finally, we recall the following extension of Lemma 1 in Louhichi [9]

proved by Oliveira [11].

Lemma 2.2 Let Xn, n ≥ 1, be centered and identically distributed as-

sociated random variables and assume the weights satisfy (2). Then, for

every α > 1, x ∈ R and v > 0,

P(T ∗n > x) ≤ 8

x2
n1+2/αA2

n,αE
(
X2

1 I|X1|≤v
)

+
8

x2
n1+2/αA2

n,αv
2P(|X1| > v)

+
16

x2
n2/αA2

n,α

∑
1≤i<j≤n

Gi,j(v) +
4

x
nAn,αE

(
|X1| I|X1|>v

)
.

(3)
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3 SomeMarcinkiewicz-Zygmund strong laws

We now prove the almost sure convergence of n−1/pTn based on the Borel-

Cantelli Lemma. Instead of considering Tn directly, we replace it by the

larger T ∗n , which is an increasing sequence. For this increasing sequence

T ∗n , the use of the Borel-Cantelli Lemma may be reduced to proving∑
n n
−1P(T ∗n > εn1/p) <∞ (see, for example, Yang, Su and Yu [19]).

Theorem 3.1 Let Xn, n ≥ 1, be centered and identically distributed

associated random variables. Let p ∈ (1, 2). Assume the weights satisfy

(2) and supn≥1 An,α < ∞, for some α > 2p
2−p . Further, assume that

E |X1|p
α−2
α−2p <∞. If∑

1≤i<j<∞

∫ ∞
j(α−2p)/(αp)

v−2
α−p
α−2p

−1Gi,j(v) dv <∞, (4)

then n−1/p Tn −→ 0 almost surely.

Proof: The proof follows similar arguments as in Theorem 4.1 in Oliveira [11].

Taking into account (3), with v = n1/q, where q is to be specified later,

we find that

1

n
P(T ∗n > εn1/p) ≤ 8n2/α−2/p

ε2
A2
n,αE

(
X2

1 I|X1|≤n1/q

)

+
8n2/α−2/p+2/q

ε2
A2
n,αP(|X1| > n1/q)

+
16n2/α−2/p−1

ε2
A2
n,α

∑
1≤i<j≤n

Gi,j(n
1/q)

+4n−1/p

ε
An,αE

(
|X1| I|X1|>n1/q

)
.

The remaining argument is to prove that this upper bound defines a

convergent series. Taking into account that An,α is bounded, we may
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drop these terms. Notice that α > 2p
2−p is equivalent to 2

α
− 2

p
< −1.

Using Fubini’s Theorem we easily find that:

∞∑
n=1

n2/α−2/pE
(
X2

1 I|X1|q≤n
)

= E

X2
1

∞∑
n=|X1|q

n2/α−2/p

 ≤ c1E |X1|q(1+2/α−2/p)+2 ,

∞∑
n=1

n2/α−2/p+2/qE
(
I|X1|q>n

)
= E

|X1|q∑
n=1

n2/α−2/p+2/q

 ≤ c2E |X1|q(1+2/α−2/p)+2 ,

∞∑
n=1

n−1/pE
(
|X1| I|X1|q>n

)
≤ c3E |X1|q(1−1/p)+1 .

(5)

The constants c1, c2 and c3 used above only depend on p, q and α. As

1+ 2
α
− 2

p
< 0, in order to consider the lowest moment assumption possible

on the variables, the first two terms above imply that we want to choose

q as large as possible. On the other hand, as 1 − 1
p
> 0, the last term

implies that we should choose q as small as possible. It is clear that for

small values of q we have q
(

1− 1
p

)
+1 < q

(
1 + 2

α
− 2

p

)
+2, so we choose

q such that these two expressions coincide, that is, q = αp
α−2p . Notice that

α > 2p
2−p , with p ∈ (1, 2), implies that α > 2p, so the above choice for q is

positive. It is now straightforward to verify that the moments considered

above are of order p α−2
α−2p , thus finite.

Finally we control the term depending on the covariances. Again,

using Fubini’s Theorem we may write
∞∑
n=1

n2/α−2/p−1
∑

1≤i<j≤n

Gi,j(n
1/q)

=
∑

1≤i<j<∞

∫ ∫ ∑
n>j

n2/α−2/p−1 In>max(|x|q ,|y|q ,j) ∆i,j(x, y) dxdy

≤ c4
∑

1≤i<j<∞

∫ ∫ (
max(|x|q , |y|q , j)

)2/α−2/p
∆i,j(x, y) dxdy
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= c4
∑

1≤i<j<∞

∫ ∫ ∫ j2/α−2/p

0

I
|x|≤u

− αp
2q(α−p)

I
|y|≤u

− αp
2q(α−p)

du∆i,j(x, y) dxdy

=
2q(α− p)c4

αp

∑
1≤i<j<∞

∫ ∞
j1/q

v−2q
α−p
αp
−1Gi,j(v) dv <∞, (6)

taking into account (4), where c4 depends only on p and α, so the proof

is concluded.

Remark 3.2 Notice that α > 2p
2−p , as assumed in Theorem 3.1, implies

that p α−2
α−2p < 2, thus we are still not assuming second order moments.

Remark 3.3 In Theorem 4.1 in Oliveira [11] the moment considered

was pα+2
α

. It is easily seen that α > 2p
2−p implies that pα+2

α
> p α−2

α−2p , thus

we are improving somewhat the moment assumption. As what regards the

integrability assumption (4), in [11] the exponent of the polynomial term

in the integrand was −3+2 p
α
> −2 α−p

α−2p−1, thus the present integrability

assumption is a little stronger. The difference between these exponents is

equal to 4p p−α
α(α−2p) , thus of order α−1.

Remark 3.4 To compare this result with Louhichi’s [9] conditions for

nonweighted sums, notice that allowing α −→ ∞ in the assumptions of

Theorem 3.1 we are lead to assume the existence of p-th order moments

and the exponent in the integrability condition converges to −3, that is,

we find the assumptions of Theorem 1 in [9].

It is easy to adapt the integrability assumption (4) to the case where the

random variables are stationary.

Corollary 3.5 Let Xn, n ≥ 1, be centered and stationary associated

random variables. Let p ∈ (1, 2). Assume the weights satisfy (2) and
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supn≥1 An,α <∞, for some α > 2p
2−p . Put β = 2(α−p)

α−2p +1. If E |X1|p
α−2
α−2p <

∞ and
∞∑
n=1

∫ ∞
(n+1)(α−2p)/(αp)

v
αp
α−2p

−β G0,n(v) dv <∞, (7)

then n−1/p Tn −→ 0 almost surely.

We present next an application of the above result, extending Corol-

lary 4 of Louhichi [9]. Let εn, n ∈ Z, be stationary, centered and as-

sociated random variables, φn, n ≥ 0, positive real numbers and define

Xn =
∑∞

i=0 φiεn−i. The random variables Xn are associated and station-

ary. If the variables εn have finite moments of order s,
∑∞

i=0 φ
ρs
i < ∞

and
∑∞

i=0 φ
(1−ρ)s/(s−1)
i < ∞, for some ρ ∈ (0, 1), then, using Hölder

inequality, it follows E |Xn|s < ∞. Write now Un =
∑n

i=0 φiεn−i and

Vn =
∑∞

i=n+1 φiεn−i. Then

G0,n(v) = Cov(gv(X0), gv(Xn))

= Cov(gv(X0), gv(Un + Vn)− gv(Vn)) + Cov(gv(X0), gv(Vn)).

Taking into account that v > 0 and |gv(y)| ≤ |y| it follows that, given

γ ∈ (0, 1),

G0,n(v) ≤ 2 (E |gv(X0)Vn|+ E |gv(X0)|E |Vn|)

≤ 2 (E(min(v, |X0|) |Vn|) + E(min(v, |X0|))E |Vn|)

≤ 2vγ
(
E(|X0|1−γ |Vn|) + E |X0|1−γ E |Vn|

)
.

Using now Hölder inequality for a suitable r > 1, it follows that

G0,n(v) ≤ 4vγ(E |Vn|r)1/r(E |X0|(1−γ)r/(r−1))(r−1)/r.

It is easily verified that

E |Vn|r ≤

(
∞∑

i=n+1

φ
(1−ρ)r/(r−1)
i

)(r−1)/r( ∞∑
i=n+1

φρri

)
E |ε0|r .
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Assume that the moments of X0 and ε0 above are finite. Then, with β

defined as in Corollary 3.5, the following upper bound holds,

∞∑
n=1

∫ ∞
n(α−2p)/(αp)

v
αp
α−2p

−β G0,n(v)dv ≤ c′ (E |Vn|r)1/r
∞∑
n=1

∫ ∞
n(α−2p)/(αp)

v
αp
α−2p

−β+γdv.

If γ < 2(α−p)−αp
α−2p , so that the integrals above converge, it follows that (7)

holds whenever,

∞∑
n=1

∫ ∞
n(α−2p)/(αp)

v
αp
α−2p

−β G0,n(v) dv

≤ c′1

∞∑
n=1

nγ
α−2p
αp
− 2(α−p)

αp
+1

(
∞∑

i=n+1

φ
(1−ρ)r/(r−1)
i

)(r−1)/r2 ( ∞∑
i=n+1

φρri

)1/r

(E |ε0|r)1/r <∞.

So, finally, the above condition implies that n−1/p
∑n

i=1 an,iXi −→ 0 for

every choice of weights satisfying (2) and supn≥1An,α <∞. If we assume

that φn ∼ n−a, for some a > 1, E |ε0|r <∞ and choose ρ ∈ (1/(ar), 1−

(r − 1)/(ar)), both the series above defined using the coefficients φn are

convergent and then (7) is satisfied if we can choose γ ∈ (0, 1) such that

γ
α− 2p

αp
− 2(α− p)

αp
− a

(
1− ρ
r

+ ρ

)
+

2r − 1

r2
< −2.

Choosing r = p(α − 2)/(α − 2p), meaning the existence of the moment

assumed to be finite in Theorem 3.1 and Corollary 3.5, the condition

rewrites as

γ
α− 2p

αp
−a
(

(1− ρ)(α− 2p)

p(α− 2)
+ ρ

)
<

2(α− p)
αp

−2−2(α− 2p)

p(α− 2)
+

(α− 2p)2

p2(α− 2)2
.

Allowing α −→ +∞, which corresponds to the case studied in Louhichi [9],

means that we should find a > p(γ+2)−1
p(1−ρ+pρ) . The most favorable choice is

ρ = 1. The condition that follows on the convergence for the coefficients

φn defining the moving average is somewhat stronger than what is as-

sumed in Corollary 4 in Louhichi [9], which is a > 2 − 1/p, which is
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essentially what corresponds to the choice ρ = 0. But this stronger as-

sumption is due to the fact that we are assuming the εn to be dependent,

so an extra effort must be made in order to control the moments of the

variables Xn.

The statement of Theorem 3.1 assumes a moment condition and ad-

justs the integrability condition on the truncated covariances to get the

convergence. One may be interested in doing the opposite, that is, as-

sume an integrability condition on the truncated variables and describe

which moments should be required. Assume that for some β > 0 and a

suitable q > 0 we have∑
1≤i<j<∞

∫ ∞
j1/q

v−β Gi,j(v) dv <∞. (8)

We now choose q conveniently. Comparing with (6) we need that 2qα−p
αp

+

1 ≥ β or, equivalently, q ≥ pα(β−1)
2(α−p) . Assume that α > 2p

2−p , which is

equivalent to 2
α
− 2

p
< −1 and implies that α > 2p. So, if β ∈ [0, 1]

the above condition is verified for every choice of q > 0, thus, as seen in

the proof of Theorem 3.1, the choice q∗ = αp
α−2p optimizes the moment

assumption, requiring the existence of the absolute moment of order p∗ =

p α−2
α−2p . Because of the integration region in (8) we need to assume that

q ≥ q∗. If β > 1, we look at αp
α−2p −

pα(β−1)
2(α−p) . As we assumed that α > 2p

it is easily seen that the sign of this difference is equal to the sign of

(3− β)α− 2p(2− β). If β ∈ (1, 2] this means that the sign is positive if

α > 2p2−β
3−β = 2p

(
1− 1

3−β

)
which always holds. Thus, the optimization

of the moments is achieved by the choice q∗ = αp
α−2p . If β ∈ (2, 3] the above

difference is always nonnegative, so we choose again q∗ = αp
α−2p . Now, if

β > 3, αp
α−2p−

pα(β−1)
2(α−p) ≥ 0 is equivalent to α ≤ 2pβ−2

β−3 = 2p
(

1 + 1
β−3

)
. So,

when β > 3, if 2p < α ≤ 2p
(

1 + 1
β−3

)
we should also choose q∗ = αp

α−2p .
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Finally, when β > 3 and α > 2p
(

1 + 1
β−3

)
we must assume the finiteness

of the largest of the moments appearing in (5), where q∗ is taken to be

pα(β−1)
2(α−p) . Thus we have proved the following statement.

Theorem 3.6 Let Xn, n ≥ 1, be centered and identically distributed as-

sociated random variables. Assume the weights satisfy (2) and supn≥1An,α <

∞. Further, assume that p ∈ (1, 2) and α > 2p
2−p are satisfied. Define q∗

and p∗ as

• if β ≤ 3 or if β > 3 and α ∈
(

2p, 2p
(

1 + 1
β−3

)]
, q∗ = αp

α−2p and

p∗ = p α−2
α−2p ,

• if β > 3 and α > 2p
(

1 + 1
β−3

)
, q∗ = pα(β−1)

2(α−p) and p∗ = 1 +

α(β−1)(p−1)
2(α−p) .

If (8) is satisfied with q ≥ q∗ and E |X1|p
∗
< ∞ then n−1/p Tn −→ 0

almost surely.

We will now look for assumptions on the functions ∆i,j rather than on

the truncated covariances. Remark that the ∆i,j may also be interpreted

as covariances: ∆i,j = Cov
(
I[x,+∞)(Xi), I[y,+∞)(Xj)

)
. It follows from

Sadikova [15] that, if the random variables have bounded density and

covariances do exist that ∆i,j(x, y) ≤ cCov1/3(Xi, Xj), where c > 0 is

a constant depending only on the density function. This made natural

to seek for assumptions on the ∆i,j while studying the asymptotics of

empirical processes based on associated random variables, as in Yu [20],

Shao and Yu [16] or Oliveira and Suquet [12, 13]. Moreover, the ∆i,j(x, y)

play, in dimension two, the role of the tail probabilities usually considered

in the one dimensional framework. So, we will now consider the following
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assumption on the limit behaviour of ∆i,j:

sup
i,j≥1

∆i,j(x, y) = O
(
max(|x| , |y|)−a

)
, as max(|x| , |y|) −→ +∞. (9)

Thus, outside of some [−j0, j0]2 we may assume that all the ∆i,j are, up

to the multiplication by some constant c0, that does not depend on i or

j, bounded above by max(|x| , |y|)−a. Thus

Gi,j(v) ≤ 4j20 + 4c0

∫ ∞
j1/q

∫ x

−x
x−a dy dx = 4j20 +

4c0
2− a

(
v2−a − j2−a0

)
. (10)

Remember that Cov(Xi, Xj) = Gi,j(+∞). Looking at the expression

above, if we allow v −→ +∞ we have convergence to a finite limit

whenever a > 2. Thus, the most interesting case for us corresponds

to 0 < a ≤ 2, so that we do not have finite covariances between the

random variables.

Theorem 3.7 Let Xn, n ≥ 1, be centered and identically distributed as-

sociated random variables. Assume the weights satisfy (2) and supn≥1An,α <

∞. Let p ∈ (1, 2) and α > 2p
2−p . Assume that (9) is satisfied for some

a ∈ (0, 2] and (8) holds for some q > 0 and β > 3 − a + 2q. If

E |X1|p
∗
< ∞, where p∗ = max

(
q
(

1 + 2
α
− 2

p

)
+ 2, q

(
1− 1

p

)
+ 1
)

then

n−1/p Tn −→ 0 almost surely.

Proof: Using (10) to compute the integral in (8), one easily finds that,

as β > 3− a+ 2q > 3− a,∫ ∞
j1/q

v−βGi,j(v) dv ≤ c′0j
(1−β)/q + j3−(β+a)q,

where c′0 does not depend on i or j. Thus inserting this upper bound in

(8) and taking into account the summation, we have a convergent series

if both 1 + 1−β
q
< −1 and 1 + 3−(β+a)

q
< −1. But these two inequalities

follow from β > 3 − a + 2q. As the summations in (5) are finite due to

our moment assumptions, the proof is concluded.
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Remark 3.8 The above statement allows to consider β < 3 in (8). This

was out of reach in Theorem 3.1. However, the moment assumed to

be finite is of order p∗ = max
(
q
(

1 + 2
α
− 2

p

)
+ 2, q

(
1− 1

p

)
+ 1
)

. It is

easily seen that if q > αp
α−2p , then p∗ = q

(
1− 1

p

)
+ 1. The difference

between this order and the one considered in Theorem 3.1 has the same

sign as (α−2p)q−pα ≥ 0 for the range of values for q where this applies.

Likewise, if q < αp
α−2p then the difference of order moments has the same

sign as (p − 2)α2 + 2pα(3 − p) − 2p2 > 0 for the range of values for

q considered. Thus, the moment condition assumed in Theorem 3.7 is

always stronger than the one in Theorem 3.1.

Acknowledgment: The authors wish to thank the anonymous referee
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