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Abstract

Orthogonality criterion is used to show in a very simple and general way that anomalous bound-state solutions for the Coulomb potential
(hydrino states) do not exist as bona fide solutions of the Schrödinger, Klein–Gordon and Dirac equations.
© 2007 Elsevier B.V. All rights reserved.
An alleged tightly-bound state of hydrogen with strong sin-
gularity of the eigenfunction at the origin (called a hydrino
state) has received considerable attention in the literature [1].
The order of magnitude of the atomic size (Bohr radius) as
well as the energy of the hydrogen atom in its ground state
just derived from the Heisenberg uncertainty principle, even
in a relativistic framework, should be enough to disqualify
hydrino states. However, in a recent Letter, Dombey [1] re-
jects the solution of the three-dimensional Klein–Gordon equa-
tion, previously derived by Naudts [2], as well as the solution
of the two-dimensional Dirac equation, by resorting to a few
fair arguments. In addition, Dombey presents a solid argument
founded on the Hermiticity of the Hamiltonian for the Klein–
Gordon case and a suggestion of similar treatment for the three-
dimensional Dirac case. In the wake of Dombey’s suggestion,
this Letter presents such a general criterion for banishing hy-
drino states in the context of the standard quantum mechanics.

The time-independent Schrödinger equation

(1)− h̄2

2M
∇2ψ + V ψ = Eψ

and the time-independent Klein–Gordon equation

(2)−h̄2c2∇2ψ + M2c4ψ = (E − V )2ψ
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with spherically symmetric potentials admit eigenfunctions in
the form

(3)ψ = uk(r)

r
Ylm(θ,φ),

where k denotes the principal quantum number plus other
possible quantum numbers, uk is a square-integrable function
(
∫ ∞

0 dr |uk|2 = 1) and Ym
l are the orthonormalized spherical

harmonics (
∫

dΩ Y ∗
lmY

l̃m̃
= δ

ll̃
δmm̃), with l = 0,1,2, . . . and

m = −l,−l + 1, . . . , l, in such a way that

(4)Heffuk = (Eeff)kuk

with

(5)Heff =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− h̄2

2M
d2

dr2 + V + h̄2l(l+1)

2Mr2

for the Schrödinger equation,

− h̄2

2M
d2

dr2 + E

Mc2 V − V 2

2Mc2 + h̄2l(l+1)

2Mr2

for the Klein–Gordon equation,

and

(6)Eeff =
{

E for the Schrödinger equation,

E2−M2c4

2Mc2 for the Klein–Gordon equation.

Meanwhile, the time-independent Dirac equation is

(7)Hψk = Ekψk, H = �α · �p + βMc2 + V,
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where αi and β in the standard (or Dirac–Pauli) representation
are given by the 2 × 2 block matrix form

(8)αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
, i = 1,2,3,

and σi are the 2×2 Pauli matrices. Its eigenfunction has a spino-
rial structure given by [3]

(9)ψ = 1

r

(
ifk(r)Yκ

jmj
(θ,φ)

gk(r)Y−κ
jmj

(θ,φ)

)
,

where κ = ∓(j + 1/2), with the minus sign for aligned spin
(j = l +1/2) and the plus sign for unaligned spin (j = l −1/2).
Here, Yκ

jmj
(with j = 1/2,3/2,5/2, . . . and mj = −j,−j +

1, . . . , j ) are the orthonormalized spinor spherical harmonics
resulting from the coupling of two-dimensional spinors to the
eigenstates of orbital angular momentum. The normalization
of the Dirac spinor (

∫ ∞
0 dr (|fk|2 + |gk|2) = 1) requires that

fk and gk are square-integrable functions. Using the identity

�σ · �∇ = �σ · r̂ ∂
∂r

− �σ ·r̂ �σ · �L
h̄r

and the properties �σ · r̂Yκ
jmj

= −Y−κ
jmj

and �σ · �LYκ
jmj

= −(κ +1)Yκ
jmj

, there results that one can write

(10)HeffΦk = EkΦk,

where

Heff =
(

h̄c( d
dr

+ κ
r
) V − Mc2

V + Mc2 h̄c(− d
dr

+ κ
r
)

)
,

(11)Φk =
(

fk

gk

)
.

It is instructive to examine the radial solutions in the neigh-
bourhood of the origin for the Coulomb potential −h̄cα/r (α is
the coupling constant) because u, f and g must behave bet-
ter than r−1/2 at the origin in order to guarantee their square
integrability. An estimative of the asymptotic behaviour of the
radial solutions for small r can be obtained by neglecting the
terms of order r−n compared with the terms of order r−(n+1),
where n = 0,1,2, in the Schrödinger, Klein–Gordon and Dirac
differential equations.

As r → 0 the terms behaving as r−2 (r−1) dominate in the
Schrödinger case for l �= 0 (l = 0) in such a way that

(12)r2 d2u

dr2
− l(l + 1)u = 0, for l �= 0,

(13)r2 d2u

dr2
+ 2Mcα

h̄
ru = 0, for l = 0.

Substituting the Frobenius series expansion

(14)u =
∞∑

n=0

anr
ν+n, a0 �= 0,

into (12) and (13) yields the quadratic indicial equation (ob-
tained when n = 0): ν(ν −1) = l(l+1), which has the solutions
ν1 = l + 1 and ν2 = −l. It happens that there is no recurrence
formula for l �= 0 (an = 0 for n �= 0) so that the general so-
lution for (12) can be written as u = Alr

l+1 + Blr
−l . On the

other hand, for l = 0 the power series expansion fails with
ν = ν2 because only the first coefficient of the series can be
Fig. 1. The roots of the indicial equation, ν+ (thick line) and ν− (thin line),
as a function of the coupling constant for the Klein–Gordon case (a for l = 0,
b for l = 1, c for l = 2 and d for l = 3). The shaded area represents the zone
corresponding to radial solutions diverging at the origin.

defined. It means that the Frobenius method furnishes only one
solution for l = 0. A second solution linearly independent of
u1 = a0r + · · · , the solution related to ν = ν1, can be found by
writing u2 = au1 ln(r)+∑∞

n=0 bnr
ν2+n with a �= 0 and b0 �= 0.

It follows that the general solution for l = 0 can be written as
u = A0(r − Mcα

h̄
r2 + · · ·) + B0(1 − 2Mcα

h̄
r ln(r) + · · ·). The

above results imply that only choosing Bl = B0 = 0 gives a
behaviour at the origin which can lead to square-integrable so-
lutions. For short, all the normalizable radial solutions (u/r) are
regular at the origin and behave as rl as r → 0, for all l.

As for the Klein–Gordon case, the terms behaving as r−2,
for all values of l, outweigh the other terms in such a manner
that one can write

(15)r2 d2u

dr2
− [

l(l + 1) − α2]u = 0

for small r . The power series expansion (14) gives the indicial
equation ν(ν − 1) = l(l + 1) − α2 which has the roots

(16)ν± = 1

2
±

√(
l + 1

2

)2

− α2, α � l + 1

2
.

The argumentation given below is based on (16) and can be
better understood by observing Fig. 1, where ν+ and ν−, as
a function of α, are plotted on the same grid. The constraint
ν > −1/2 which ensures the square integrability of u demands
that for α � 1/2 there are just a S-wave (l = 0) solution for
ν = ν− although all the values of l are allowed for ν = ν+.
Since ν < 1 for α � 1/2, both S-wave solutions, in the sense
of u/r , diverge at the origin. As α increases some normalizable
solutions diverging at the origin for ν = ν− become possible
whereas some normalizable solutions for ν = ν+ become diver-
gent. In any case, as the coupling constant takes critical values
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Fig. 2. The solutions of the system of indicial equations, ν+ (thick line) and
ν− (thin line), as a function of the coupling constant for the Dirac case (a for
|κ| = 1, b for |κ| = 2 and c for |κ| = 3). The shaded area represents the zone
corresponding to radial solutions diverging at the origin.

(α = lc + 1/2, lc = 0,1,2, . . .) only the solutions for l > lc are
allowed.

In analogy with the solutions in the neighbourhood of the
origin of the Schrödinger and Klein–Gordon equations, we look
for solutions of the asymptotic Dirac equation

r
df

dr
+ κf − αg = 0,

(17)r
dg

dr
− κg + αf = 0

in the form of power series

f =
∞∑

n=0

anr
ν+n, a0 �= 0,

(18)g =
∞∑

n=0

bnr
ν+n, b0 �= 0.

Now the coefficient of rν (n = 0) gives the system of indicial
equations

(ν + κ)a0 − αb0 = 0,

(19)αa0 + (ν − κ)b0 = 0

and the two possible values of ν:

(20)ν± = ±
√

κ2 − α2, α � |κ|.
Fig. 2 illustrates (20) as a function of the coupling constant for
the lowest values of |κ|. The requirement of normalizability
(ν > −1/2) implies that for α �

√
3/2 only the positive root

is allowed and the radial solutions (f/r and g/r) are found for
all the values of |κ| (|κ| = 1,2,3, . . .), although the radial solu-
tions with |κ| = 1 diverge at the origin. The negative root allows
divergent radial solutions with |κ| = 1 for
√

3/2 < α � 1. Nev-
ertheless, there are no normalizable solutions with |κ| = 1 for
α > 1. Continuing this process, as the coupling constant in-
creases starting with α = 1, some normalizable solutions for
ν = ν+ turn out to be divergent whereas some normalizable so-
lutions diverging at the origin for ν = ν− become possible. As
α takes critical values (α = |κ|c , |κ|c = 1,2,3, . . .) only the so-
lutions for |κ| > |κ|c are allowed. This means that the radial
solutions for the smallest values of |κ| become disallowed one
after the other as α increases.

In the standard quantum mechanics an observable such as
the energy is represented by a Hermitian operator, whose set of
eigenfunctions constitutes a basis so that every arbitrary wave
function can be expanded in one and only one way in terms
of the eigenfunctions. Besides square-integrability, appropriate
boundary conditions must be imposed on the eigenfunctions of
an eigenvalue problem. Square-integrability requires that the
eigenfunction vanishes at the infinity and the boundary con-
dition at the origin for a singular potential, as the Coulomb
potential, comes naturally into existence by demanding that the
Hamiltonian is Hermitian, viz.

(21)

∞∫
0

dτ ψ∗
k (Hψk′) =

∞∫
0

dτ (Hψk)
∗ψk′,

where ψk is an eigenfunction corresponding to an eigenvalue
Ek . In passing, note that a necessary consequence of Eq. (21)
is that the eigenfunctions corresponding to distinct effective
eigenvalues are orthogonal. Identifying Heff with H and Eeff

with E in (21), integrating by parts and recalling the orthonor-
mality of the spherical harmonics, it is easy to show that uk(r)

for the Schrödinger and Klein–Gordon cases must satisfy the
following constraint [4,5]

(22)lim
r→0

(
u∗

k

duk′

dr
− du∗

k

dr
uk′

)
= 0.

For the Dirac case, identifying Heff with H in (21), one finds
a constraint involving the upper and lower components, namely
[4,5]

(23)lim
r→0

(
f ∗

k gk′ − fk′g∗
k

) = 0.

For the Schrödinger case, the square-integrable solution
for u (u→ rl+1 as r → 0) satisfies (22) and its corresponding
radial solution u/r is regular at the origin.

For the Klein–Gordon case, only the solutions for u less
singular than r1/2 can satisfy the orthogonality criterion. One
sees, then, that the square-integrable solution must behave as
rν+ , as r → 0, where ν+ is one of the two possibilities of (16),
corresponding to the thick lines in Fig. 1. Therefore, square-
integrable solutions of the Klein–Gordon equation satisfying
the orthogonality criterion are such that for α � 1/2 all the val-
ues of l are allowed. The l = 0 radial solution, in the sense
of u/r , has a divergence at the origin. As α increases some
regular normalizable solutions become divergent. In any case,
as the coupling constant takes critical values (α = lc + 1/2,
lc = 0,1,2, . . .) we are left with the solutions for l > lc.
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For the Dirac case, only the regular solutions for f and
g can satisfy the orthogonality criterion. This means that the
square-integrable solutions must behave at the origin as rν+ ,
where ν+ is the positive square root of (20), corresponding to
the thick lines in Fig. 2. Here, square-integrable solutions sat-
isfying the orthogonality criterion are such that, for α � 1, the
radial solutions (f/r and g/r) are found for all the values of
|κ| (|κ| = 1,2,3, . . .), with the radial solutions with |κ| = 1 di-
verging at the origin. Nevertheless, there are no normalizable
solutions with |κ| = 1 for α > 1. Continuing this process, as α

increases starting with α = 1, some solutions turn out to be di-
vergent. As α takes critical values (α = |κ|c , |κ|c = 1,2,3, . . .)
only the solutions for |κ| > |κ|c are allowed. This means that
the radial solutions for the smallest values of |κ| become disal-
lowed one after the other as α increases.

In summary, a very simple and general criterion has been
presented to reject hydrino states in the context of the standard
quantum mechanics. Square integrability is sufficient enough to
exclude singular wave functions in the Schrödinger equation,
but not in the Klein–Gordon and Dirac ones. For the relativistic
equations with the Coulomb potential, singular wave functions
are allowed. The orthogonality criterion, though, imposes an
additional constraint in such way that the would-be relativis-
tic square-integrable solutions for hydrino states, related to the
thin lines in Figs. 1 and 2, are not acceptable. Therefore, only
radial solutions behaving at the origin as r−1/2+ε , with ε > 0,
for the Klein–Gordon case, and r−1+ε for the Dirac case, are
physically acceptable solutions.
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