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The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) is
described. Results from a prototype detector (XENON3) are presented.

1. Introduction

The XENON dark matter search experiment [1]
uses time projection chamber (TPC) to search
for the hypothetical WIMP dark matter parti-
cles. The detector (see the most recent status
at [2]) consists a bulk of liquid xenon (LXe) as
the target for WIMP interactions. The target is
also self-shielded from the external background
events, mostly gamma rays. The external gamma
rays have more chance to interact near the edge
and surface of the LXe target. A fiducial volume
cut of the edge and surface events will dramat-
ically reduce the background rate and improve
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the detector’s sensitivity for dark matter search.
A fiducial volume cut will also help to remove
events from the regions (edge or surface) with ir-
regular or non-uniform electric fields. The signals
of events from these regions can be similar to the
WIMP signals and make them difficult to be re-
jected without 3D position sensitivity. A position
sensitive detector will also have the capability to
distinguish neutron interactions by their multiple
scatters in the target, while a WIMP is very un-
likely to make more than one scatter due to its
tiny interaction cross-section.

2. 3D Position Localization

The XENON experiment uses a two-phase (lig-
uid/gas) xenon detector. An event in the detector
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produces two signals: a prompt direct scintilla-
tion light (S1) and a delayed proportional scintil-
lation light (S2). The delayed S2 signal is from
the ionization electrons that are drifted from the
event site in the liquid to the gas phase. The
event Z position is calculated from the electron
drift velocity (about 2 us/mm at 1 kV/cm drift
field) times the drift time.

The diffusion of the drifted electrons in LXe
is very small, which gives a very localized X &Y
positions for the S2 signal. Using an array of
photon-detectors on top of the S2 signal, the
X&Y positions can be reconstructed from the
S2 signal distributions in these photon-detectors.
During the R&D phase of XENON experiment, a
detector (called XENON3) was constructed with
21 Hamamatsu R9288 PMTs (1-inch-square each)
installed in the gas phase, right on top of the
structure where proportional scintillation occurs.
Fig. 1 shows the structure of the 21-PMT array.
The array covers the 5-cm-radius surface area of
the LXe target.

Figure 1. A 21-PMT array installed in the
XENONS detector.

To reconstruct the X &Y positions, a simulated
S2 map is produced for comparing with the actual
S2 distributions from the detector. The simulated
S2 distributions on the 21 PMTs are produced for
each 1 x 1 mm? pixel in the 5-cm-radius sensitive

area, where proportional scintillation light occurs.
A minimum-x? method is used for the comparing.
The minimum-x? method calculates the y? value
as in equation 1. S; and s; are the measured and
expected (from simulation) S2 signals (in number
of photoelectrons) for the ith PMT. M is the to-
tal number of PMTs in the top PMT array (for
XENONS3 detector, M = 21).

M 2
oy =Y Bl o

Here o7 is the uncertainties from both the mea-
sured signal S; and simulated expectation signal
s;. If the simulation has enough statistics, the
major contribution to ¢? is the measured signal
fluctuation, which includes the statistical fluc-
tuations of photoelectron emission (ope,;) from
the PMT’s photocathode and its gain fluctuation
(0g4,)- It can be approximately written as in equa-
tion 2. oy ; is simply equal to \/S;, providing S;
is sufficiently large. o, was measured for each
PMT based on its single photoelectron spectrum,
where g; is the gain of that PMT.

07 =00 [14 (04,/9:)%] = Si [1+ (04,/9:)°] (2)

The x? value is computed for all possible X &Y
positions, in 1 mm? pixels. The minimum value,
X2,in, corresponds to the reconstructed event
X&Y positions.

3. Results

The Z position, calculated from the electron
drift time, is quite precise. The resolution is bet-
ter than 1 mm. Due to the solid-angle effect of
light collection and the electron-negative impuri-
ties in liquid xenon, both S1 and S2 signals are
dependent on Z-position. The precise Z positions
thus can be used to correct the signals. The sub-
mm resolution also allows a very precise fiducial
volume cut based on Z.

With a localized 5.3 MeV « source in the detec-
tor, the X &Y position resolutions were measured
to be around 3 mm (o) (see Fig. 2). The X&Y
position resolutions are not as good as that for Z.
But they are sufficient for making fiducial volume
cut in X&Y'
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Figure 2. Recontructed X&Y positions of a «
source located at (X =-24 mm, Y = -10 mm) in
the XENONS detector. The reconstructed X po-
sition has a small offset. The position resolutions
for both X and Y are less than 3 mm (o).

To verify the position sensitivity for events near
the edge, an external low energy ~-ray source
(°7Co) was used. 57Co emits mainly 122 keV ~
rays. With its small attenuation length in lig-
uid xenon, most of the 122 keV ~ rays interact
near the detector’s edge. Fig. 3 shows the recon-
structed radial position distribution of the 122
keV ~v-ray events, compared with expected dis-
tribution from a Geant4 simulation. The distri-
butions from experiment and simulation match
quite well, while the reconstructed positions have
a tendency to the edge. This is very possibly due
to the less coverage of PMTs near the edge.

The two-phase xenon detectors have a good
gamma background rejection efficiency, based on
the ratio of S2 and S1 signals, as demonstrated
in [3]. The S2/S1 value for nuclear recoils (from
WIMPs) are much smaller than that from elec-
tron recoils (background gammas). The S2 sig-
nal is proportional to the number of electrons
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Figure 3. Radial position distribution for 122 keV
~-ray interacting in the XENON3 detector. Re-
constructed positions from experiment are com-
pared with simulations.

extracted from the liquid to the gas. In a re-
alistic detector, the non-uniformity of the elec-
tric field near the edge usually gives an insuffi-
cient electron extraction (“edge effect”), resulted
a smaller S2/S1 value, which makes the electron
recoils leaking into the nuclear recoil region, as
reported in [4].

The XENON3 detector was exposed to a neu-
tron source and the “edge effect” was also ob-
served, as in Fig. 4 (top). The neutron elastic
recoil events are clearly separated from the elec-
tron recoils. Neutrons also interact inelastically
and produce meta-stable states from '2Xe and
131Xe in the liquid xenon target. The 12Xe
and 13'™Xe emit 40 keV and 80 keV gammas.
Neutrons also make inelastic scattering on '°F in
the PTFE material, surrounding the liquid xenon
target. The PTFE is used to improve the scin-
tillation light collection. The F produces 110
keV gammas, mostly interacting near the edge.
It’s clear from Fig. 4 (top) that a portion of these
edge events have smaller S2/S1 value, due to the
“edge effect”. A fiducial volume cut out of 5 mm
from the edge significantly reduces the number of
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edge events and makes a better electron/nuclear
recoil discrimination, as shown in Fig. 4 (bot-
tom).

In a larger scale detector (e.g. 100 kg of LXe),
the capability of rejecting neutron background
becomes more necessary. Neutrons, unlike y-ray
background, will make elastic scattering on the
target and produce nuclear recoils, the same as
those from WIMPs. It’s not possible to reject
those neutron events based on S2/S1 ratio. But
neutrons have a much larger interaction cross-
section than the WIMPs and they can make mul-
tiple scatters in the target. A 3D Position sen-
sitive detector, such as the one described in the
current work, will be able to reject those back-
ground neutron events with multiple scatters.

A larger scale detector (XENON10) has been
constructed and deployed underground for dark
matter search [2]. The same technique discussed
here for the 3D position realization will be applied
to XENON10.
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Figure 4. S2/S1 as a function of energy
for events from neutron interactions in the
XENONS3 detector, without radial position
cut (top) and with 5 mm radial position
cut from edge (bottom). The energy scale
(keVee: keV electron equivalent) is calibrated
with 122 keV gamma rays. (Note: color ver-
sion of these two plots can be found in the talk at:
http://www.physics.ucla.edu/hep/dm06/talks/
ni.pdf)



