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Abstract

In the field of multicriteria decision aid, considerable attention has been paid to
supervised classification problems where the purpose is to assign alternatives into
predefined ordered classes. In these approaches, often referred to as sorting meth-
ods, it is usually assumed that classes are either known a priori or can be identified
by the decision maker. On the other hand, when the objective is to identify groups
(clusters) of alternatives sharing similar characteristics, the problem is known as
a clustering problem, also called an unsupervised learning problem. This paper
proposes an agglomerative clustering method based on a crisp outranking relation.
The method regroups alternatives into partially ordered classes, based on a quality
of partition measure which reflects the percentage of pairs of alternatives that are
compatible with a decision-maker’s multicriteria preference model.1

keywords: Multi-criteria decision aiding (MCDA), Sorting problem, Clustering,
Outranking relations, Agglomerative algorithm, Partial ranking

1 Introduction
The general definition of classification is the assignment of a finite set of alternatives
(actions, objects, projects,...) into predefined classes (categories, groups). There are
several more specific terms often used to refer to this form of decision making prob-
lem. The most common ones are Discrimination, Classification and Sorting. The term
“sorting” has been established by MCDA researchers to refer to problems where the
groups are defined in an ordinal way [6]. The definition of the groups does not only
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provide a simple description of the alternatives, but it also incorporates additional pref-
erential information, which could be of interest to the decision making context.

Another widely referenced technique for the resolution of several practical prob-
lems is Clustering. It is important to emphasize the difference between classification
and clustering: in classification problems the groups are defined a priori, whereas in
clustering the objective is to identify groups (clusters) of alternatives sharing similar
characteristics. In other words, in classification problems the analyst knows in advance
what the results of the analysis should look like, while in clustering the analyst tries
to organize the knowledge embodied in a data sample in the most appropriate way
according to some similarity measure [6].

Traditionally, cluster analysis algorithms can be classified as hierarchical (which
require building a tree hierarchy) or as non-hierarchical (or partitional) (which do not
build a tree, assigning alternatives to clusters after the number of groups to be formed
is specified). Agglomerative clustering starts with all clusters with a single alternative
and recursively merges two or more clusters (in contrast, divisive clustering starts with
a single cluster with all the alternatives and then recursively partitions the clusters until
a stopping criterion is met).

Recently, some multicriteria clustering procedures have been proposed aiming to
discover data structures from a multicriteria perspective ([3], [4], [5], [7], [9], [10],
[22]). Such works aim to not only detect groups with similar actions, but detecting also
the preference relations between groups found. The definition of similarity, which is
based on binary relations of preference between actions, makes these methods original.
In this work, the central idea for definition of similarity is to characterize the quality
of the model by measuring the degree of compliance with principles for multicriteria
clustering. Four possible consistency principles will be discussed.

The work developed to address the multicriteria clustering problematic has mainly
focused on the assignment of alternatives to totally ordered classes (with a few ex-
ceptions, e.g. [20] and [21]). But there is a variety of real world problems where
some alternatives are not comparable. For instance, in diagnosing the attention-deficit
hyperactivity disorder (ADHD) [29] the answers to questions about past and present
problems are evaluated and we can find: A) children displaying no relevant symptoms,
B) children with ADHD with predominantly inattentive type, C) children with ADHD
with predominantly hyperactive-impulsive type, and D) ADHD of combined type (dis-
playing both types of symptoms). Class A is preferable to B and C, and the latter are
preferable to D, but one could consider that classes B and C are not comparable.

De Smet and Eppe [4] developed a method (an extension of the K-means algo-
rithm) not only to detect clusters in a multicriteria context but also to identify relations
between these clusters on the basis of a binary outranking matrix. We are interested
in this last issue. Specifically, we are interested in classification with partially ordered
classes where a class can be higher or lower ranked in comparison with some classes,
whereas it can be considered incomparable with other different classes. We constrain
the resulting relation to be a partial order.

We will adapt the standard agglomerative hierarchical clustering method ([14, 16]).
It can be considered a heuristic approach since it does not attempt to derive an opti-
mal partial order among all conceivable clusters of alternatives. The goal of this new
method is to obtain a set of partitions, where each partition consists of a set of classes,
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together with relations denoting the preference order of the classes. These relations
between classes are not supposed to be complete, but must be transitive and contain no
cycles.

This paper is organized as follows: a brief theoretical background is given in Sec-
tion 2. Four consistency principles for multicriteria clustering with partially ordered
classes are discussed in Section 3, followed by the definitions of the preference struc-
tures on classes and the partition quality (Section 4). Our proposal for the agglomer-
ative method is presented in Section 5. Section 6 presents an illustrative example and
Section 7 concludes the paper.

2 Preference structures on alternatives
Let A ={a1,a2, ...,an} denote a set of existing or fictitious alternatives represented by
a vector of evaluations on m criteria. A comparison of the alternatives is the main
component in any decision problem. According to Roy and Bouyssou [27], a model
of preferences considers the following relations: Preference (P), Indifference (I) and
Incomparability (R). Such relations are such that ∀ai,a j ∈A :

aiPa j =⇒ a j 6 Pa j : P is asymmetric
aiPa j ∧a jPak⇒ aiPak : P is transitive
aiIai : I is reflexive
aiIa j =⇒ a jIa j : I is symmetric
aiIa j ∧a jIak⇒ aiIak : I is transitive
ai 6 Rai : R is not reflexive
aiRa j =⇒ a jRa j : R is symmetric

(1)

definition ([30]) The relations {P, I,R} constitute a preference structure of A if
the condition (1) holds and if, given any two alternatives ai, a j of A , only one of the
following properties holds: aiPa j, a jPai, aiIa j or aiRa j.

A preference structure {P, I,R} can be the result of applying multicriteria outrank-
ing methods (Electre ([26]) and Promethee ([1]) are typical examples). Note that the
outranking methods define the relation of incomparability R, unlike for instance Utility-
based methods ([17]). Many of the outranking methods, as the name suggests, are
based on the outranking relation, a binary relation on A, which traditionally corre-
sponds to P∪ I: given an outranking relation S, ai S a j means that “ai is at least as
good as a j”, i.e., aiPa j or aiIa j. There are four different situations that can result when
comparing two alternatives ai and a j :


aiSa j ∧a j 6 Sai⇐⇒ aiPa j (ai is preferable to a j);
a jSai ∧ ai 6 Sa j⇐⇒ a jPai (a j is preferable to ai);
aiSa j ∧ a jSai⇐⇒ aiIa j (ai is indifferent to a j);
ai 6 Sa j ∧ a j 6 Sai⇐⇒ aiRa j (ai is incomparable to a j).

(2)
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3 Principles for multicriteria clustering with partially
ordered classes.

In this Section, we discuss four principles for multicriteria clustering with partially
ordered classes.

A partition of A in k classes Pk={C1,C2, ...,Ck} is defined as follows:

• Cs 6= /0,s = 1, ...,k

• A = ∪s=1,...,kCs

• Cs∩Ct = /0,s 6= t.

Given any two classes, Cs, Ct ∈Pk, let CsτCt denote “the class Cs is at least as
good as class Ct ”. Having a relation τ and two classes Cs,Ct ∈Pk, Cs � Ct refers
to the asymmetric part of τ and denotes a strict preference of Cs over Ct , and Cs ⊥Ct

denotes incomparability and applies to pairs (Cs,Ct ) unrelated by τ .
A partial order can be defined among the classes: a class can be higher or lower

ranked in comparison with some classes, whereas it can be considered incomparable
with other different classes. If a partial order is sought, there are three different situa-
tions that can result when comparing two classes Cs and Ct : CtτCs∧ Cs 6 τ Ct ⇐⇒Ct �Cs (Ct is better than Cs)

CsτCt ∧Ct 6 τCs⇐⇒Cs �Ct (Cs is better than Ct )
Cs 6 τCt ∧Ct 6 τCs ⇐⇒ Cs ⊥Ct (Cs is incomparable to Ct )

(3)

To cluster a set of alternatives for which S is given into a set of classes for which a
partial order is to be defined, we can follow different ideas, as described next.

3.1 STrong (Sτ)-Consistency
One idea is to base the assignment of the alternatives on a strong consistency princi-
ple (Sτ - Consistency): “an alternative ai outranks an alternative a j if and only if the
class of ai is at least as good as the class of a j”, i.e.

aiSa j⇔C(ai) τ C(a j) (Sτ-Consistency)

where C(ai) denotes the class to which alternative ai is assigned to.

This is an appealing principle given that aiSa j means “ai is at least as good as (is
not worse than) a j ”.

The following corollaries result from Sτ - Consistency:

(1) ai P a j if and only if ai belongs to a class considered to be better than the class
of a j, i.e., (aiSa j ∧a j 6 Sai)⇐⇒C(ai)�C(a j).

(2) ai I a j if and only if ai belongs to the same class as a j, i.e., (aiSa j ∧a jSai)⇐⇒
C(ai) =C(a j).
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(3) ai R a j if and only if ai belongs to a class considered to be incomparable to a j,
i.e., (ai 6 Sa j ∧a j 6 Sai)⇐⇒C(ai)⊥C(a j).

An example that satisfies the Sτ - Consistency conditions is depicted in Figure 1.
The only way it is possible to fully comply with these requirements is to have an S
relation that is transitive. For instance, if a1 6 Sa3 in Figure 1, then it would not possible
to fully comply with Sτ-Consistency: we would need to say that a1 belongs to a class
better than a4 and that a4 belongs to the same class as a3, but we could not conclude
that the first class is better than the latter since a1 and a3 would be required to be in
incomparable classes. Hence, we will next suggest less stringent forms of consistency.

Figure 1: Illustration of Sτ - Consistency

An optimization procedure may look for solutions that minimize the number of
violating pairs of alternatives or taking into account the strongest violation given a
valued S relation, e.g, we may look for a least-costly violation solution. Dias and
Lamboray (2010) show how to obtain the set of optimal solutions using the “min” or
“lexicographical min” criteria for this problem according to a strategy of minimizing
the strongest violation in the context of ranking problems. These authors also show
that it is easy to find examples in which the strongest violation is indeed very strong.
Hence, we will next suggest less stringent forms of consistency which might be an
interesting for a clustering procedure to pursue.

3.2 Forms of Sτ-Consistency relaxed
Sτ-Consistency requires consistency from S to τ and vice-versa. Relaxing the Sτ-
Consistency, we get two weak forms, which we call S-Consistency and τ-Consistency,
resulting from splitting the two-way principle of equivalence into two one-way princi-
ples. We will first discuss these two forms of relaxation, and then we will introduce a
third type of relaxation, which we call SSτ-Consistency, based on a different rationale.

A. S-Consistency

Considering S-Consistency, we base the assignment of the alternatives on the prin-
ciple “if an alternative ai outranks an alternative a j then the class of ai must be at least
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as good as the class of a j”, i.e.

aiSa j⇒C(ai) τ C(a j) (S-Consistency)

The following corollaries result form S-Consistency:

(1) if ai P a j (aiSa j ∧a j 6 Sai) then C(ai)τC(a j).

(2) if ai I a j (aiSa j ∧a jSai) then C(ai) =C(a j), i.e., ai must belong the same class
as a j.

(3) if ai R a j then ai and a j could belong to any class.

Note that, if there exists a cycle in the outranking relation (aiSa jSalS...Sai), then
S-Consistency also implies that all the alternatives involved in the cycle must be placed
in the same class. This follows the philosophy of ELECTRE I and this is the principle
proposed by Rocha and Dias (2008) for an interactive algorithm for ordinal classifica-
tion.

The S-Consistency principle can be rephrased as stating that “alternatives belong-
ing to a given class cannot be outranked by any alternative belonging to a lower or
incomparable class, and cannot outrank any alternative belonging to a higher or incom-
parable class”. Consequently:

(4) if C(ai) is better than C(a j) then we can have ai P a j or a j R ai.

(5) if C(ai) is incomparable to C(a j) then we must have ai R a j.

(6) if C(ai) = C(a j) (i.e., aiand a j are in the same class) then we can have ai P a j, ai
I a j, or even ai R a j.

Note that placing all alternatives in the same class we obtain a trivial weak S-
consistent solution. Hence, this relaxation of S-Consistency is not fully satisfactory.

B. τ - Consistency

Considering τ - Consistency, we base the assignment of the alternatives on the
principle “ if the class of ai is at least as good as the class of a j then the alternative ai
outranks the alternative a j ”:

C(ai) τ C(a j)⇒ ai S a j ( τ - Consistency)

The following corollaries result form τ-Consistency:

(1) if C(ai) is better than C(a j) then we can have ai P a j or ai I a j.

(2) if C(ai) is incomparable to C(a j) we can have ai P a j, a j P ai, ai R a j, or even ai
I a j.

(3) if C(ai) = C(a j) then we must have ai I a j.
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Note that, by corollary 2, if each class has only one alternative and the classes
are declared all incomparable then this would be a τ-Consistent solution. Again, this
relaxation of Sτ-Consistency is not fully satisfactory.

Table 1: Combinations that are forbidden by S-consistency (S) and combinations that
are forbidden by τ-consistency (τ)).

aiPa j a jPai aiIa j aiRa j
aiSa j a j 6 Sai ai 6 Sa j a jSai aiSa j a jSai ai 6 Sa j a j 6 Sai

C(ai) � C(a j)
C(ai) τ C(a j) τ . τ

C(a j) 6 τ C(ai) . S S

C(ai) = C(a j)
C(ai) τ C(a j) τ τ .
C(a j) τ C(ai) τ . τ

C(ai) ⊥ C(a j)
C(ai) 6 τ C(a j) S S .
C(a j) 6 τ C(ai) S . S

C. Semi-STrong (SSτ) - Consistency

Table 1 summarizes what has been discussed so far. Given two alternatives ai and
a j belonging to classes C(ai) and C(a j), it shows the possible combinations that are
inconsistent according to S-consistency or τ-consistency. It is clear from this table that
S-consistency does not pose any constraints to placing two alternatives in the same
class, and that τ-consistency does not pose any constraints to placing two alternatives
in two incomparable classes.

Combinations forbidden by S-consistency or τ-consistency are also forbidden by
strong consistency (Sτ-Consistency). In accordance with the principle Sτ-Consistency,
the following inconsistencies should not occur:

(1) C(ai)�C(a j), but ai 6 Pa j (i.e, ai 6 Sa j or a jSai).

(2) C(ai) =C(a j), but ai 6 Ia j (i.e, ai 6 Sa j or a j 6 Sai).

(3) C(ai)⊥C(a j), but ai 6 Ra j (i.e, aiSa j or a jSai).

Given a relation among two classes, strong consistency imposes a condition on
aiSa j plus a condition on a jSai. A different principle that can be used to relax strong
consistency (besides S and τ-consistency) is to accept that one of these two conditions
on S is violated. We will denote this relaxation of strong consistency by Semi-STrong
consistency, or (SSτ)-Consistency. According to this new principle, the following in-
consistencies should not occur:

(1) C(ai)�C(a j) when a jPai (ai 6 Sa j and a jSai).

(2) C(ai) =C(a j) when aiRa j (ai 6 Sa j and a j 6 Sai).

(3) C(ai)⊥C(a j) when aiIa j (aiSa j and a jSai).
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Table 1 also shows which combinations are now forbidden by semi-strong consis-
tency. All the combinations that are forbidden either by S-consistency or τ-consistency
but affect only one ordered pair, i.e., one direction, from ai to a j or from a j to ai are now
accepted: if C(ai)�C(a j) this principle accepts that they are indifferent or incompara-
ble (besides accepting aiPa j); if C(ai) =C(a j) or C(ai)⊥C(a j) this principle accepts
that one of the alternatives is preferred over the other (besides accepting aiIa j or aiRa j,
respectively). On the other hand, this principle forbids shaded cells in Table 1, i.e, re-
jects combinations in which the two ordered pairs (i.e., direction from ai to a j and from
a j to ai) are wrong, although such situations would be accepted by S-consistency or τ-
consistency: it does not accept indifferent alternatives in incomparable classes (which
τ-consistency accepts), and it does not accept incomparable alternatives the same class
(which S-consistency accepts).

In the next section, we present an extension of the agglomerative hierarchical algo-
rithm to the multicriteria framework, based on the (SSτ)-Consistency, given a possibly
intransitive outranking relation S. The same ideas can be applied using Sτ-Consistency
instead. For the reasons already mentioned, S-consistency and τ-consistency prin-
ciples are less interesting. In fact, experiments that we performed with the principles
S-Consistency and τ-Consistency showed that the S-Consistency principle leads to par-
titions with one of the categories with almost all the alternatives and the τ-Consistency
principle leads to partitions with many incomparable categories.

4 Preference structures on classes and quality of the
partition

Once the objects in A have been clustered, a partition of partially ordered classes of A
can be defined. In the process of ranking clusters, we need arguments to establish when
a cluster should be ranked higher than another. Such arguments can be obtained from
comparing all alternatives that are grouped in different clusters. For this purpose we
will define the outranking relation τ between classes as follows: for each pair (Cs,Ct ),
a class outranking degree θst (Definition 2) is computed indicating the degree to which
Cs outranks Ct . The outranking relation is considered to hold if the outranking degree
is at least 50%, i.e., a weak majority of the pairs agree with the outranking assertion
(Definition 3).

definition Let Cs,Ct ∈Pk, and let ns and nt denote the number of alternatives of
Cs and Ct respectively. The outranking degree of Cs on Ct represents the proportion
of pairs of alternatives (ai,a j) ∈ (Cs,Ct ) that indicate ai outranks a j:

θst =

∑
ai∈Cs

∑
a j∈Ct

θ(ai,a j)

ns×nt
, with θ(ai,a j) =

{
1 i f aiSa j
0 otherwise .

definition Let (Cs,Ct) ∈ Pk×Pk. We say that Cs outranks Ct (CsτCt ) iff the
outranking degree of Cs on Ct is at least 0.5, i.e, θst ≥ 0.5.

According to the SSτ-consistency principle, a partition Pk should be as close as
possible to fully respecting of the following three principles of Preference, Indifference
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and Incomparability. First, the order of preference on classes should not contradict the
order of preference of alternatives. The number of contradictions of this principle is
given by vP. Second, a class should contain comparable alternatives, leading to the
definition of the number of contradictions vI . Third, incomparable classes should not
contain indifferent alternatives, leading to the definition of the number of contradictions
vR. The vP, vI and vR indicators are defined as follows.

definition Let ΓP(ai,a j) =

{
1 i f f a jPai
0 otherwise . The vP index is defined as follows:

vP = ∑
(ai,a j)∈A 2:C(ai)�C(a j)

ΓP(ai,a j) (4)

Let ΓI(ai,a j) =

{
1 i f f aiRa j
0 otherwise . The vI index is defined as follows:

vI = ∑
(ai,a j)∈A 2:C(ai)=C(a j)

ΓI(ai,a j) (5)

Let ΓR(ai,a j) =

{
1 i f f aiIa j
0 otherwise . The vR index is defined as follows:

vR = ∑
(ai,a j)∈A 2:C(ai)⊥C(a j)

ΓR(ai,a j) (6)

Fernandez et al. [8] proposed a multiobjective optimization problem, more flexible
than a single objective optimization approach because it allows to model preferences
on different objectives.

Like Fernandez et al. [8], we propose a partition quality defined on the basis of a
consistency vector of the relation τ on the classes and the relation S on the alternatives.
We define the quality of the partition through a single objective, assigning weights to
inconsistencies of Preference, Indifference and Incomparability in accordance with the
requirements of the decision maker. A decision maker can “play” with these weights
to study trade-offs between the number of pairs violating each condition.

Therefore, let (vP,vI ,vR) be an inconsistencies vector associated to a partition Pk
that will contain the pairs of alternatives that are not compatible with preference, indif-
ference and incomparability conditions.

Let αP, αI and αR denote the weights respectively assigned by the decision maker
to conditions of Preference, Indifference and Incomparability. The Quality Q(Pk) of
partition Pk is defined as follows

Q(Pk) = 1−2× αPvP +αIvI +αRvR

n(n−1)
(7)

with αP,αI ,αR ∈ [0, 1].
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5 Agglomerative method for a transitive partially or-
dered clustering

The goal of this new method is to obtain a set of n partitions Pk of A , k ∈ [1, n],
where a partition Pk contains k classes, together with relations on Pk denoting the
preference order of the classes composing the partition. These relations are not sup-
posed to be complete, but must be transitive and contain no cycles. A partially ordered
partition, with a structure of preferences (�,⊥), can be defined as follows:

• Cs �Ct ⇒Ct 6�Cs : � is asymmetric

• Cs �Ct ∧Ct �Cr⇒Cs �Cr : � is transitive

• Cs ⊥Ct ⇒Ct ⊥Cs : ⊥ is symmetric

Following the principle of agglomerative clustering, the proposed method starts
with Pn, the partition of n classes each containing a single alternative. Then it itera-
tively builds Pk−1 from Pk by choosing two classes to merge, until the n partitions
P1, . . . ,Pn are built. The two classes to merge are the ones that yield the highest
partition quality after merging.

Algorithm 1 - Agglomerative Method - extension

1. Enter outranking relation S as an input
2. Ci = {ai} with ai ∈A , ∀i = 1, ...n (n initial classes)
3. k=n (stage)
4. Pk ={C1, ...,Cn}

While k > 1 do
5. Determine the pair of neighbors (Cs, Ct ) ∈Pk×Pk such that Q(Pk−1) is minimum

when merging Cs and Ct to form a new class Cr =Cs⋃Ct

6. Merge Cs and Ct to form a new class Cr =Cs⋃Ct

7. Update preference structure of Pk−1
8. k=k-1

end while
Check the partitions that have the number of clusters indicated by the decision-maker
for the transitivity property, and make corrections.

Note that in this proposed method, the decision maker is not required to specify the
number of classes initially, which can be done in the end with the help of the method’s
results. Indeed, the decision maker may eventually decide the number of classes based
on the violations of conditions of Preference, Indifference and Incomparability or even
the relative size of the classes.

Another good point of this proposed method is that does not lead to major changes
between relations τ of Pk−1 and Pk. In fact, the only changes are in relations con-
cerning two classes. Thus it is easier for the decision maker to interpret and choose a
good partition according to his preferences.
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The aim of this method is to obtain a transitive partially ordered partition of a
given set of alternatives. Thus, to guarantee the transitivity of the final partition, it is
necessary to reassess the quality of the partitions that are not transitive and/or contain-
ing indifferent classes after taking the necessary corrective measures. This can be made
only at the end or along of the algorithm. However, this last option makes the algorithm
much slower which in our experiments was not compensated by better results.

A partition Pk derived from a nontransitive outranking relation (e.g., a relation
built according to an Electre method), might include classes such that:

∃{Cs,Ct ,Cr} ∈Pk: CsτCt ∧CtτCr ∧Cs 6 τCr

Schematically:

Cs // Ct // Cr

where each arc Cs // Ct represents the existence of the relation CsτCt .

To enforce transitivity on the triplet {Cs,Ct ,Cr} there are three solutions:

1. To require the arc CsτCr :

Cs // &&
Ct // Cr

2. To eliminate the arc CsτCt :

Cs Ct // Cr

3. To eliminate the arc CtτCr :

Cs // Ct Cr

If a partition is intransitive, one should evaluate the quality of the possible solutions
to restore transitivity (obtained by recursively considering the three ways of adjusting
each intransitive triplet) and the one that leads to better quality will be the final par-
tition. If the outranking relation between classes has a cycle (CsτCtτ...τCs) then all
partitions obtained by removing one of the relations of the cycle should be evaluated to
choose the one that leads to better final quality. For indifferent classes (CsτCt ∧CtτCs)
a further possibility is to merge the two classes.

We propose an algorithm to restore transitivity (see Algorithm 2). The relation ma-

trix W is an k× k Boolean (zero-one) matrix defined by wst =

{
1 iff CsτCt

0 otherwise . Let
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[W,s,t,r] denote the sub-matrix of W with the s-th, t-th and r-th rows and columns (di-
mension 3×3). For the algorithm to compute the best transitive and acyclic partition,
we proposed a FIFO (First-In-First-Out) queue data structure[18]. At the beginning,
the queue has matrix W. Every time that a new matrix W is removed from the queue,
we test if there exists a triplet (s,t,r) such that the [W,s,t,r] sub-matrix is intransitive
(wst = 1 and wtr = 1 and wsr = 0) or has at least one cycle ((wst = 1 and wts = 1) or
(wrt = 1 and wtr = 1)). If this occurs, new matrices are constructed replating W but
with the sub-matrix corrected to be transitive and without cycles, according to the so-
lutions presented above. If the new considered matrix has no cycles nor intransitivities
and has the best quality of partitions studied, then the algorithm updates the best parti-
tion as well as its quality.

As an example, let us consider the outranking degrees between classes presented in
Table 2. The corresponding relation between classes is depicted in Figure 2 and matrix
W. In this structure there are two problems: the intransitivity of (C2,C4,C5) and the
cycle in (C4,C5).

C1

��

C2

~~ ��
C3 C4

~~
C5

>>

W =


0 0 1 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0

 .
Figure 2: Preferred structure of P

To enforce transitivity, and starting with cycle, there are five possible solutions, cor-
responding to the matrices given by Algorithm 2 (Figure3). The successive iterations
of procedure Algorithm 2 would proceed as follows:
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Algorithm 2 - Transitive and acyclic partitions

Input: W is an adjacency matrix corresponding to binary relations on k elements.

Output: W*, Q(W*). % adjacency matrix and its quality

queue:=W;
W*:=W;
Q(W*):=Q(W):

While NotEmpty(queue) do

W := dequeue(queue); % remove first element from queue
for each triplet (s,t,r) do

if wst = 1 and wts = 1 then % Cycle
W1:=W; merge Cs and Ct ; update W1; W2:=W; w2st=0; W3:=W; w3ts=0;
insert (queue, W1, W2, W3);
exit this for loop;

end if

if wtr = 1 and wrt = 1 then % Cycle
W1:=W; merge Ct and Cr; update W1; W2:=W; w2rt=0; W3:=W; w3tr=0;
insert (queue, W1, W2, W3);
exit this for loop;

end if

if wst = 1 and wtr = 1 and Wsr = 0 then % Intransitivity

W1:=W; w1sr=1; W2:=W; w2st=0; W3:=W; w3tr=0;
insert (queue, W1, W2, W3);
exit this for loop;

end if

end for
if Q(W )> Q(W∗) then W*:=W; Q(W*):=Q(W) end if

end while

Table 2: Outranking degree θst of Cs on Ct , s,t=1,...,5
C1 C2 C3 C4 C5

C1 0.333 0.6 0.133 0.100
C2 0.333 0.6 0.583 0.125
C3 0.400 0.183 0.333 0.375
C4 0.167 0.333 0 0.583
C5 0.4 0.183 0 0.917
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Iteration 1 : w54=1 and w45=1

W1:=W; merge C4 and C5; update W1; Solution D
W2:=W; w254=0; Solution I (not displayed)
W3:=W; w345=0; Solution C
(queue = {D,I,C})
Iteration 2 :
W:=Solution D
update (W*, Q(W*))
Iteration 3: w24=1 and w45=1 and w25=0
W:=Solution I;
W1:=W; w125=1; Solution H
W2:=W; w224=0; Solution G
W3:=W; w345=0; Solution B
(queue = {C,H,G,B})
Iteration 4 :
W:=Solution C
(possibly) update (W*, Q(W*))
Iteration 5 :
W:=Solution H
(possibly) update (W*, Q(W*))
Iteration 6 :
W:=Solution G
(possibly) update (W*, Q(W*))
Iteration 7 :
W:=Solution B
(possibly) update (W*, Q(W*))
END
W* will be relation with highest quality Q(W*)

B C D G H
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~~ ��

C1

��
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~~ ��

C1

��
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|| ��

C1

��
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~~
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��

C2

~~ ��

��

C3 C4 C3 C4 C3 C4 ∪C5 C3 C4

~~

C3 C4

~~
C5 C5

>>

C5 C5

Figure 3: Possible solutions for intransitive partition Ps
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6 Illustrative Example
We will illustrate the use of the MPOC algorithm using data from an application for
sorting stocks listed in the Athens Stock Exchange ([13]), namely 20 alternatives from
the commercial sector, which were evaluated on 6 criteria (Table 3, where gt(ai) in-
dicates the performance of the i-th alternative according to the t-th criterion). The
criteria names are not relevant here, therefore we will note only that all criteria are to
be maximized, except g3(.), where the lower the values, the better.

To obtain an outranking relation we computed the credibility degrees of ELEC-
TRE III ([25]) and ELECTRE TRI ([27], [31]), as defined in the variant proposed by
Mousseau and Dias (2004). Alternatives are compared as pairs, and for each ordered
pair (ai,at ), a credibility degree S(ai,at ) is computed, indicating the degree to which ai
outranks at , taking into account the weights of the criteria that are in concordance with
the outranking assertion and the possible veto effect by criteria that are in discordance
with that assertion (for detailed formulas see Mousseau and Dias, 2004). The outrank-
ing relation is considered to hold if S(ai,at) ≥ λ . The cut-off point λ is defined by a
decision maker, such that it ranges between 0.5 and 1. In this illustration we considered
λ = 0.6.

Table 3: Evaluations on six criteria for 20 stocks.
g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6

a0 0,82 0,45 0,26 -4,7 -100 0,45 a10 0,8 0,58 0,62 13,7 34,6 1,54
a1 0,41 0,63 0,03 2,28 -20 2,04 a11 1,23 0,37 0,64 8,97 45,9 0,96
a2 0,57 0,2 0,1 6,08 -33,3 1,08 a12 0,24 0,28 0,73 -1,75 0 0,72
a3 0,24 0,02 0,08 2,41 -53,5 0,62 a13 0,26 0,65 0,58 4,88 7,14 0,9
a4 0 0,46 0,62 5,04 -76,5 3,02 a14 1,1 0,76 0,54 0,29 0 0,73
a5 0,93 0,02 0,14 2,82 6,38 0,72 a15 1,79 0,55 0,73 5,88 -100 2,69
a6 0,01 0,69 0,77 7,55 -40 3,23 a16 1,02 1,06 0,82 5,5 6,38 0,73
a7 0,86 0,86 0,86 4,28 3,71 0,57 a17 1,32 1,12 0,94 12,06 -61 2,69
a8 2,16 0,6 0,12 2,11 56,3 0,51 a18 1,36 0,04 1,02 1,79 110 2,31
a9 1,24 0,12 0,62 11,65 12,5 1,17 a19 0,57 0,17 0,23 -11,5 0 0,52

We used the original values ([13]) for the indifference and preference thresholds
(Table 4), but we will use veto thresholds that are not as tight as the original ones. This
occurs, in this particular example, because the original values for the veto thresholds
caused a high number of incomparability situations. Since the original data set ([13])
does not indicate any information about criteria importance, all criteria are considered
to have the same weight, i.e., ki = 1/6, i ∈ {1, ...,6}.

Table 4: Indifference, preference and veto thresholds.
g1 g2 g3 g4 g5 g6

q j 0,05 0,05 0 0,1 8,72 0,05
p j 0,25 0,2 0,2 0,5 10 0,25
v j 20 10 10 100 180 2,75

Evaluating the set of these 20 alternatives based on their performance, criteria
thresholds and weights, leads to the credibility matrix presented in Table 5. For λ =
0.6, 121 (63.7%) pairs of alternatives have a relation of Preference, 8 (4.2%) have a
relation of Indifference and 61 (32.1%) have a relation of Incomparability.

The results of the clustering procedure were computed considering αP =αI =αR =
1. Only for partitions with at least 12 classes we get a final quality Q*=100%. Con-
sidering that the decision maker is only interested in solutions with less than 7 classes
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Table 5: Credibility degrees S(ai,at ), i,j=1,...,20.
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20

a1 0 0.19 0.37 0.42 0.07 0.35 0 0.44 0.14 0.33 0.27 0.2 0.47 0.33 0.17 0.2 0.21 0.17 0 0.47
a2 0.83 0 0.74 0.99 0.67 0.5 0.62 0.33 0.61 0.5 0.5 0.5 0.83 0.67 0.58 0.5 0.33 0.33 0.29 0.74
a3 0.67 0.44 0 0.98 0.32 0.67 0.24 0.5 0.5 0.47 0.18 0.37 0.8 0.67 0.5 0.46 0.5 0.33 0.22 0.83
a4 0.67 0.36 0.19 0 0.14 0.5 0.06 0.33 0.41 0.28 0.17 0.17 0.63 0.33 0.45 0.27 0.28 0.27 0.1 0.56
a5 0.67 0.37 0.33 0.51 0 0.5 0.37 0.5 0.28 0.5 0.41 0.34 0.61 0.48 0.43 0.62 0.35 0.33 0 0.5
a6 0.83 0.57 0.49 0.95 0.18 0 0.1 0.67 0.48 0.44 0.33 0.18 0.83 0.56 0.73 0.31 0.63 0.31 0.45 0.89
a7 0.67 0.5 0.67 0.68 0.88 0.5 0 0.53 0.49 0.38 0.38 0.39 0.65 0.51 0.48 0.8 0.5 0.5 0.18 0.5
a8 0.83 0.51 0.5 0.83 0.12 0.73 0.04 0 0.5 0.32 0.33 0.17 0.81 0.5 0.58 0.25 0.45 0.25 0.4 0.83
a9 1 0.49 0.65 0.83 0.1 0.7 0.01 0.66 0 0.67 0.67 0.67 0.87 0.67 0.74 0.23 0.53 0.23 0.38 1
a10 0.67 0.5 0.8 0.83 0.36 0.83 0.28 0.83 0.33 0 0.33 0.67 0.88 0.8 0.77 0.49 0.83 0.49 0.49 0.83
a11 0.83 0.67 0.83 0.83 0.51 0.77 0.42 0.83 0.5 0.83 0 0.67 1 0.94 0.62 0.64 0.69 0.5 0.5 0.83
a12 0.8 0.5 0.78 0.83 0.28 0.83 0.19 0.83 0.33 0.68 0.48 0 1 0.78 0.75 0.41 0.83 0.41 0.56 0.83
a13 0.53 0.23 0.33 0.67 0.18 0.5 0.1 0.5 0.17 0.24 0.08 0.22 0 0.43 0.34 0.31 0.5 0.31 0.33 0.67
a14 0.67 0.58 0.39 0.83 0.25 0.67 0.17 0.67 0.5 0.5 0.33 0.49 1 0 0.73 0.38 0.5 0.33 0.45 0.67
a15 0.83 0.5 0.5 0.67 0.18 0.67 0.1 0.78 0.33 0.43 0.5 0.45 1 0.73 0 0.32 0.67 0.32 0.33 0.83
a16 0.83 0.59 0.63 0.67 0.58 0.43 0.4 0.45 0.14 0.4 0.27 0.2 0.47 0.43 0.47 0 0.43 0.5 0 0.47
a17 0.83 0.58 0.5 0.83 0.18 0.83 0.1 1 0.5 0.36 0.33 0.23 0.93 0.73 0.81 0.32 0 0.32 0.45 0.83
a18 0.83 0.67 0.67 0.83 0.67 0.66 0.53 0.68 0.37 0.63 0.5 0.43 0.67 0.66 0.67 0.67 0.66 0 0.05 0.67
a19 0.67 0.5 0.54 0.67 0.33 0.67 0.33 0.53 0.41 0.63 0.5 0.5 0.67 0.5 0.67 0.17 0.5 0.43 0 0.74
a20 0.5 0.33 0.56 0.67 0.1 0.47 0.02 0.5 0.24 0.33 0.18 0.17 0.64 0.5 0.37 0.23 0.37 0.23 0.33 0

Table 6: Partitions Quality with SSτ-Consistency
k Transitivity Quality (%) Inconsistences vector Structure

6
√

97.89 (0 0 0.0211 ) © © 33© // © // © // ©

5
√

97.37 (0 0.0053 0.0211) © © 33© // © // ©

4
√

96.32 (0 0.0053 0.0316) © © **© // ©

3
√

94.21 (0 0.0053 0.0526) © © // ©

2
√

88.95 (0 0.0053 0.1053) © ©

1
√

67.89 (0 0 0.3211 )

(which is reasonable taking into account that |A |=20), the results obtained by apply-
ing Algorithm 2, are shown in Table 6. In this example, all partitions are transitive.

The decision maker may need some help in order to determine the number of
classes. For this purpose we determine the inconsistencies vector for different values of
k (see Table 6) and the corresponding quality. From the Figure 4 we can see the gain in
quality that is achieved by increasing the number of clusters from k=2 to k=13. Above
k=4, the gain of quality is not substantial. Therefore, if the decision maker chooses
k=4 classes as a good solution, we obtain a partition with a quality of 96.32% resulting
from 0% of violations of the Preference conditions, 0.53% of Indifference and 3.16%
of Incomparability, with

• C1 = {a1,a2,a4,a7,a19},

• C2 = {a3,a6,a8,a13,a14,a20},

• C3 = {a5,a18}, and

• C4 = {a9,a10,a11,a12,a15,a16,a17}.

The application of a K-means algorithm leads to a partition without any relation
between the clusters. On the contrary, our method provides not only clusters but also a
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Figure 4: Partition quality as a function of the number of classes (Example 1).

partial order on these clusters. As a comparison, let us consider the strategy suggested
in Cailloux et al. (2007) and Rocha et al. (2012): first, the K-means algorithm is
applied on the data; in a second step, a partial order is sought on the set of the categories
obtained on the first stage. In the second step, the centroids of the k categories obtained
on the first stage (ρt , t=1,...,k) are compared using an outranking relation (see §2).
For each ordered pair of centroids (ρs,ρt ), the method decides if the first one outranks
the second one (ρs S ρt ) or not. The preference structure of the partition is defined
through the centroid relations {P, I,R}. Thus, a category Cs is preferred to Ct (Cs �Ct )
if the centroid ρs of category Cs is preferred to centroid ρt of category Ct , they are
indifferent (Cs =Ct ) if their centroids are indifferent and they are incomparable (Cs ⊥
Ct ) if their centroids are incomparable.

Applying the classical K-means clustering method on the data set constituted by the
20 evaluations and considering k=4, the K-Means algorithm yields four homogeneous
groups - C1,C2,C3 and C4:

• C1 = {a1,a2,a3,a4,a6,a13,a20},

• C2 = {a10,a11,a12,a19},

• C3 = {a5,a7,a16,a18}, and

• C4 = {a8,a9,a14,a15,a17}.

On the second stage, we will use the same indifference, preference and veto thresh-
olds used in MPOC and indicated in Table 4, the same weights and threshold cut-off
λ (0.6). For each of the obtained groups, we computed its centroid (ρ1, ρ2, ρ3 and ρ4
), and then ranked the resulting centroids based on the outranking relation in Table 7,
originating a structure of partially ordered categories (Figure 5).

After obtaining the partitions we analyzed the inconsistencies due to Indifference,
Incomparability and Preference conditions. The results are presented on Table 8 as well
as the results obtained with the MPOC algorithm. As we can see in Table 8, there exist
many more inconsistencies when applying the classical K-means clustering method in
this particular example.
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Table 7: Credibility degree between centroids.
centroid ρ1 ρ2 ρ3 ρ4

ρ1 - 0.3333 0.2884 0.3333
ρ2 0.8333 - 0.5348 0.7158
ρ3 0.6667 0.3522 - 0.4814
ρ4 0.7158 0.4767 0.2120 -

C2

��
C4

��

C3

~~
C1

Figure 5: Structure obtained with K-means and sorting centroids.

Condition MPOC K-means

Preference 0 (0.0%) 8 (4.2%)
Indifference 1(0.53%) 0 (0.0%)

Incomparability 6 (3.2%) 7(3.7%)
Total 7 (3.68%) 15(7.9%)

Q(P) 96.32% 92.10%

Table 8: Inconsistencies obtained for k=4.

7 Conclusions
In this work, we proposed an approach for the classification of a set A of alternatives,
based on multiple criteria, to a set of partially ordered classes with an unknown struc-
ture a priori. Formally, clustering with partially ordered classes consists in finding a
partition of A where the partial order relation is defined by the classes: one class can
be better or worse compared with other classes, but can also be incomparable to other
classes. This is an innovative feature in a literature where the prevailing problems ad-
dressed are those of (complete) ordered clustering and clustering without preferences
among classes.

This paper presents several ideas and contributions. One of the proposals is to
define preference relations between classes on the basis of weak majorities of pairs
supporting that a class should be seen as at least as good as another class. This provided
consistently better results that considering another natural option, which would be to
say a class outranks another class when the centroid of the former class outranks the
centroid of the latter one (results for this modelling option are not presented in this
paper).

Another contribution is the discussion of what principles should be pursued when
judging the quality of candidate partitions. The Strong Consistency principle is appeal-
ing: it intends to respect the outranking relation concerning both directions (ai,a j) and
(a j,ai) for each pair of alternatives. However, when S is intransitive it is never possible
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to fully comply with it. The Semi Strong Consistency principle is also appealing and
easy to understand: more modestly, it intends to avoid that the outranking relation is
respected in at least one of the directions (ai,a j) or (a j,ai) for each pair of alternatives.
S-consistency and τ-consistency are not recommended: S-consistency does not pose
any constraints to placing two alternatives in the same class, and that τ-consistency
does not pose any constraints to placing two alternatives in two incomparable classes.
Therefore it is trivial to find a (poor) solution.

To obtain candidate partitions, this paper proposes an adaptation of the agglomera-
tive hierarchical clustering algorithm. The notion of similarity between two classes is
replaced by an assessment of how the quality improves when the classes are merged.
Successive iterations yield possible partitions with a decreasing number of classes,
which avoids specifying at the outset the number of classes sought. These candidate
partitions can be evaluated by a decision maker based on the quality of the partition,
the respect of transitivity, and the way the partition matches her intuition. The quality
of a partition is defined by the ratio of pairs of alternatives that do not check the con-
ditions of Preference, Indifference and Incomparability. However, the decision maker
might not want simply to minimize the number of total violations. Indeed, the deci-
sion maker may reasonably decide that some violations are more serious than others
by placing more weight on those violations. The paper also discusses what might be
done to adjust a posteriori an intransitive partition to become a transitive one.

An acknowledged limitation of the MPOC approach is that does not guarantee an
“optimal” partition minimizing the violations, and so it can be regarded as a heuristic
approach (this is also true for iterative clustering methods in general, such as K-means
or hierarchical methods). Related with this topic, one field for future research would
be the development of optimization approaches to match the preferences of a decision
maker. The comparisons with other ways for multicriteria clustering is another field
for future research.
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