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Abstract

Relations between scattering and production amplitudes are studied in a microscopic multichan-
nel model for meson–meson scattering, with coupling to confined quark–antiquark channels. Over-
lapping resonances and a proper threshold behaviour are treated exactly in the model. Under the
spectator assumption, it is found that the two-particle production amplitude shares a common
denominator with the elastic scattering amplitude, besides a numerator consisting of a linear com-
bination of all elastic and some inelastic matrix elements. The coefficients in these linear combina-
tions are shown to be generally complex. Finally, the standard operator expressions relating
production and scattering amplitudes, viz. A ¼ T=V and ImðAÞ ¼ T �A, are fulfilled, while in the
small-coupling limit the usual isobar model is recovered.
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1. Introduction

In a very recent article [1] we have shown that several hadronic three-body decays of
J=w;D and Ds mesons can be well described, up to moderately high energies, in a model
for production processes derived from the so-called Resonance-Spectrum Expansion
(RSE) [2]. The RSE formalism amounts to an effective description of non-exotic
meson–meson scattering, based upon quark–antiquark pair creation and annihilation
allowing transitions between an infinity of confined q�q states and the meson–meson con-
tinuum. An essential feature of the RSE is that it gives rise to closed-form expressions for
the S-matrix and even the fully off-shell T-matrix. Hence, exact analyticity and unitarity
properties, as well as a correct (sub)threshold behaviour, are manifestly satisfied. More-
over, the resulting meson–meson production amplitude can be derived exactly, too, by
summing the corresponding two-body Born series, the only assumption being that the
third particle acts as a mere spectator [1].

In the present paper, we shall further develop the formalism introduced in Ref. [1], so as
to cover the most general multichannel case in mesonic three-body decays. Clearly, at
higher energies competing inelastic two-meson channels require that the production ampli-
tude be described by a vector and not a scalar function. The underlying two-body scatter-
ing T-matrix is then a true matrix. Furthermore, also the quark–antiquark sector needs an
extension, as there can be mixing of different q�q channels that couple to the same meson–
meson channels. This is the case in, e.g., the production of I ¼ 0 pp and K �K pairs, which
both couple to the n�nð¼ ðu�uþ d�dÞ=

ffiffiffi
2
p
Þ and s�s channels, giving rise to the isoscalar scalar

resonances f0ð600Þ ðalias rÞ and f 0ð980Þ. Finally, having a general and exact—within the
model assumptions—expression for production amplitudes at hand, we may carry out a
detailed comparison with the ansatzes employed in other approaches, focusing on com-
mon features as well as clear differences.

Under the spectator approximation, we assume that a pair of mesons is created out of
one q�q pair emerging from the original decay, accompanied by a non-interacting spectator
meson. In this process, we only consider OZI-allowed [3] strong transitions to pairs of
mesons. The intensities of transitions between the initial q�q pair (its quantum numbers,
including flavour, are abbreviated by a) and the various meson–meson pairs i allowed
by quantum numbers are given by coupling constants gai determined via the recoupling
scheme of Ref. [4]. In Section 3, we derive the matrix elements tði! m;EÞ of the scattering
amplitude at total CM energy E ¼ ffiffi

s
p

, for transitions between the meson–meson channels
i and m. In the same section, we establish a relation between the common denominator
DðEÞ of all matrix elements tðanything! anything; EÞ and the numerators of diagonal
matrix elements of tðEÞ, the latter representing elastic scattering. The production ampli-
tude aða! i;EÞ, which is related to the probability of producing a meson–meson pair i,
assuming that a q�q pair emerges in the initial—here not described—stages of the decay
process, is determined in Section 4. Note that the process giving rise to the initial q�q pair
plus the spectator meson can be either weak or strong yet OZI-suppressed (see Ref. [1] for
some examples).

The central result of the present paper is a relation between the production and scatter-
ing amplitudes which can be formulated as

aða! i;EÞ / gai

DðEÞ þ i 2
X

m

gaixmðEÞtðm! m;EÞ � gamxiðEÞtði! m;EÞf g; ð1Þ
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where the xi stand for momentum distributions that will be specified in Section 4 (Eq.
(19)).

We thus obtain the result that the production amplitude is in the first place given by the
common denominator of the scattering amplitudes. This implies that, within the RSE for-
malism, resonance poles are identical for production and scattering, at least in the specta-
tor approximation. Secondly, we find that the remainder of the production amplitude to
the ith two-meson channel is proportional to the sum of the differences between all
possible elastic scattering amplitudes tðm! m;EÞ and the inelastic amplitudes for the ith
channel, tði! m;EÞ. This does not spoil our conclusion about the resonance poles, since
all T-matrix elements share the common denominator. Note, however, that the contribu-
tion of the term m ¼ i vanishes in the expression between braces on the r.h.s. of Eq. (1).
Consequently, the amplitude aða! i;EÞ for the production of a two-meson pair i does
not carry any dependence on the amplitude for elastic scattering i! i. In those cases
where the coupling to different meson–meson channels vanishes or can be neglected,
implying a 1� 1 T -matrix, the resulting production amplitude is solely determined by
the common denominator DðEÞ [1].

Some words are due about the K-matrix formalism. In general, and so also here, the T-
matrix can be written as T ¼ K=ð1� iKÞ, where K is a real symmetric matrix. So, at first
sight, it seems that the common denominator of all T-matrix elements is given by 1� iK.
However, this is not the case. First of all, K is a matrix and not just a real function. But
even in the 1� 1 case, where K can be represented by a real function, it has a denominator
itself, the zeros of which are the K-matrix poles, located at the real energies where some
eigenphase shift passes through 90�. The common denominator above is then the sum
of the denominator of K plus �i times the numerator of K. In general, when K is a matrix,
this relation involves the determinant of K. Hence, comparing K-matrix poles, lying on the
real axis in the complex energy plane, and resonance poles, which are usually in the second

Riemann sheet with respect to the nearest ‘‘open’’ threshold, is far from trivial. Moreover,
for some resonances, like the r and the j ðK�0ð800Þ ½5�Þ, the respective K-matrix poles, cor-
responding to an elastic phase shift d ¼ 90�, lie about 350–600 MeV higher in energy that
the real parts of the respective S-matrix poles, while mixing with other resonances
ðf0ð980Þ and K�0ð1430ÞÞ further complicates the picture. So rather than making ad hoc

assumptions about poles of the production amplitude, we shall straightforwardly derive
the latter, and then see what its properties are.

A final remark here concerns Watson’s [6] theorem for production. This theorem
implicitly relies on having a potential which is energy independent or only weakly energy
dependent. However, this is not the case here, because the energy dependence of our effec-
tive meson–meson potential is far stronger than that of the scattering T-matrix. As a con-
sequence, the energy dependence of the production experiment does not resemble at all the
one of the T-matrix, and all exercises imposing the Watson ‘‘theorem’’ or theorems derived
from it are inappropriate here. This issue is analysed in more detail in Ref. [7].
2. The Resonance-Spectrum Expansion (RSE)

Scattering from a weakly coupled resonant source has been studied in a variety of dif-
ferent approaches. For such systems it is observed that resonances occur at energies that
are close to the unperturbed spectrum of the resonant source. Widths and mass shifts can
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be determined by perturbative methods, and expressed in terms of pole positions of the
resonances in the complex energy plane.

Intuitively, however, perturbative methods do not offer the correct strategy for strong
interactions. Since in the present paper we are interested in obtaining exact relations between
scattering and production amplitudes, which are moreover based on a microscopic descrip-
tion in terms of quarks, we rather fall back upon an approximate yet exactly solvable theory
or model. Such a manifestly unitary and analytic framework is provided by the RSE.

The RSE aims at describing the scattering of meson pairs in non-exotic channels, thereby
assuming that in the interaction region a meson pair may temporarily transform into a
quark–antiquark pair through q�q annihilation and subsequent creation. The transitions of
the system, from meson–meson pairs to q�q pairs and vice versa, are described by an off-diag-
onal potential V t in the RSE, linking these two sectors to each other. It has a maximum at an
interquark distance r0 which depends on the average effective quark mass and runs from
slightly less than 0.2 fm for b�b to about 0.6 fm for light quarks. Furthermore, we assume that
this mechanism gives rise to the dominant meson–meson interaction in non-exotic channels.
Here, we limit ourselves to the case where V t is considered the only interaction.

The intermediate q�q states are supposed to have an unperturbed confinement spectrum
depending on the quantum numbers of the system. Its energy eigenvalues are all contained
in the two-meson scattering matrix, which, consequently, develops corresponding CDD
resonance poles.

An additional nice feature of the RSE, which will turn out to be crucial for the con-
struction of the production amplitude, is the possibility to obtain the closed-form scatter-
ing T-matrix both in configuration and in momentum space. In the former representation,
coupled-channel Schrödinger equations with the proper boundary conditions directly lead
to the full solution, while in the latter picture individual Born terms can be explicitly cal-
culated and then exactly summed up owing to the general separable nature of the effective
meson–meson potential, with no need to solve the Lippmann–Schwinger [8] integral equa-
tions. This allows to verify the correctness of the momentum space approach in the scat-
tering case, which is the only method at our disposal to describe production. As we shall
see below, a similar Born series can then be written down and summed up.
3. Scattering

The building blocks of the RSE meson–meson scattering amplitude are the effective
meson–meson potentials and the free two-meson propagators, which are graphically rep-
resented in Fig. 1. It is the philosophy of the RSE that confinement and decay can be sep-
Fig. 1. Graphical representation of the building blocks of the RSE two-meson scattering amplitude. The solid
lines represent valence quarks and antiquarks as in usual Feynman diagrams. In contrast, the grey areas stand for
all possible confining interactions, like gluon exchange, sea-quark loops and their higher orders. The effective
meson–meson interaction is represented by V. Furthermore, although the mesons in the two-meson propagators
are considered point-like in the RSE, for clarity they are here represented by double quark lines connected by
confining interactions.
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arated. Hence, in the interaction region, a two-meson system can appear as a permanently
confined system consisting of a valence quark and a valence antiquark. Possible interme-
diate crypto-exotic multiquark states are not considered in the RSE.

The dynamics of the intermediate q�q states is described by a permanently confining
Hamiltonian H c, which has a complete set of eigenstates at eigenvalues representing the
confinement spectrum. The other part of the strong interactions, generating transitions
between a two-meson system and a q�q state, is given by a transition potential V t. Conse-
quently, the effective meson–meson interaction in Fig. 1 is described by the operator

V ¼ V T
t ½E � H c��1V t; ð2Þ

where E is the total invariant mass of the coupled-channel system. These interactions and
the free two-meson propagators, both depicted in Fig. 1, can then be used in an ordinary
Lippmann–Schwinger [8] approach to scattering. Nevertheless, in constructing the Born
series, quark-loop contributions to all orders are automatically accounted for, as becomes
clear from Fig. 2.

The RSE scattering amplitude depicted in this figure has the Born term

V ði! jÞ ¼ hi;~pijV T
t ½EðpÞ � Hc��1V tjj;~pji: ð3Þ

In Ref. [2] it was shown how, under the RSE assumptions, the integrations can be done
analytically. For the present discussion, it is only necessary to mention the generic form of
the RSE expression, given by

V ði! jÞ ¼
2

4p2

X1
‘¼0

ð2‘þ 1ÞP ‘ðp̂i � p̂jÞj‘ðpir0Þj‘ðpjr0ÞZð‘Þij ðEÞ: ð4Þ

The overall coupling and the interaction radius r0 represent the total probability of
quark-pair creation/annihilation and the average interquark distance at which such pro-
cesses take place, respectively; j‘ stands for the spherical Bessel function for the relative
meson–meson angular momentum ‘; ~pi and ~pj are the relative linear momenta in the
two-meson channels i and j, respectively. The matrix Z is a real and symmetric function
of the total invariant mass of the system.

The intermediate q�q systems may have different orbital angular momenta, for the same
quantum numbers. For example, a meson–meson system with J PC ¼ 1�� couples to q�q sys-
tems in either an S or a D wave. On the other hand, isosinglet mesons can be mixtures of
different quark flavours, usually n�n and s�s. In such cases, more than one type of q�q states
are involved in the quark loops of the process depicted in Fig. 2. However, since the recur-
rencies of the permanently confined q�q systems are automatically included by the defini-
tion of the Born term (4), the number of q�q channels that couple to a specific set of
two-meson quantum numbers is limited, usually to one or two. Nevertheless, the number
of two-meson scattering channels is in principle not restricted.

For any number of coupled confinement and scattering channels, the general structure
of the amplitude reads ðE ¼ EðpiÞ ¼ EðpjÞÞ
Fig. 2. Graphical representation of the RSE scattering amplitude.
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tði! jÞ ¼ hi;~pijtjj;~pji ¼ hi;~pijðV þ VGV þ VGVGV þ . . .Þjj;~pji

¼
2

4p2

X1
‘¼0

ð2‘þ 1ÞP ‘ðp̂i � p̂jÞj‘ðpir0Þj‘ðpjr0Þ
Að‘Þij ðEÞ
Dð‘ÞðEÞ

; ð5Þ
where A and D are functions of the total invariant mass E satisfying the unitarity condi-
tion

ImðDð‘ÞAð‘Þij

�Þ ¼ 2 2
X

m

lmpmj
2
‘ðpmr0ÞAð‘Þim A

ð‘Þ
jm

�
: ð6Þ
The denominator D contains the full pole structure of the coupled two-meson states. In
order to be a bit more specific, let us consider the scattering of charmed mesons, i.e.,
D�D;D� �D;D� �D�;Ds

�Ds;D�s �Ds and D�s �D�s , all coupled to c�c. For such a process, D has in
the RSE the form

Dð‘ÞðEÞ ¼ 1þ 2i 2
X

m

g2
m

X1
n¼0

jF ðnÞc�c ðr0Þj2

E � En

( )
lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þ; ð7Þ
where the outer sum runs over all two-meson channels, and the inner sum over all recur-
rencies n for the operator H c describing confinement in the c�c system. F ðnÞc�c and En repre-
sent the eigenstate and eigenvalue of the nth recurrency of the of Hc spectrum, respectively.
Furthermore, the gm stand for the relative couplings of each of the two-meson systems to
c�c, while hð1Þ‘ is a spherical Hankel function of the first kind.

The denominator DðEÞ vanishes for E near En and small overall coupling . In this case,
the scattering cross sections in all channels display narrow spikes for values of E in the
vicinity of Enðn ¼ 0; 1; 2; . . .Þ. Hence, for small , the theoretical cross sections repro-
duce—up to small shifts—the hypothetical c�c confinement spectrum.

However, for larger values of the zeros in D are no longer near the eigenvalues of H c,
but move deeper into the complex E plane, farther away from the real axis and with appre-
ciable shifts for the real parts as well. Then, the resonance spectrum does no longer repro-
duce the spectrum of Hc: resonances start overlapping and even the number of zeros in D
that lie close enough to the real energy axis to be observed experimentally may change. We
believe this describes quite accurately the true situation in hadron spectroscopy.

Below the lowest threshold, poles, i.e., zeros in D (Eq. 7), come out on the real axis,
because the expression ij‘h

ð1Þ
‘ turns real. In that case, expression (5) describes bound c�c

states, such as gc; J=w; vcð1P Þ and wð2SÞ, yet with an admixture of two-meson compo-
nents. The energy eigenvalues of these ‘‘dressed’’ states then depend on the value of .
It has been observed [9,10] that charmonium mass shifts with respect to the pure confine-
ment spectrum can be surprisingly large in the RSE, as well as in other approaches [11].

In the present work, we intend to derive relations among Að‘Þij ;D
ð‘Þ and Zð‘Þij . In princi-

ple, this could be achieved by just performing the calculus outlined in Ref. [2]. However,
here we shall allow more general expressions for the Z matrix in the Born term (4). Hence,
apart from the unitarity condition (6), we must construct a second relation. For that pur-
pose, we write the identity
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0 ¼ hi;~pijðT � V � TGV Þjj;~pji ð8Þ

¼
2

4p2

X1
‘¼0

ð2‘þ 1ÞP ‘ðp̂i � p̂jÞj‘ðpir0Þj‘ðpjr0Þ

�
Að‘Þij

Dð‘Þ
� Zð‘Þij þ 2i 2

X
m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þ
Að‘Þim

Dð‘Þ
Zð‘Þmj

( )
;

which yields the relation

Dð‘ÞZð‘Þij ¼ Að‘Þij þ 2i 2
X

m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0ÞAð‘Þim Zð‘Þmj : ð9Þ

Furthermore, if we assume

Að‘Þij ¼ Að‘Þð0Þij þ 2Að‘Þð1Þij þ 4Að‘Þð2Þij þ � � � ; ð10Þ

then we obtain the following solution to relations (6) and (9):

(1) The denominator D can be fully expressed in terms of the numerators A, according
to

Dð‘Þ ¼ 1þ 2i 2
X

m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0ÞAð‘Þmm : ð11Þ

(2) The zeroth-order term of (10) is evidently given by the Born term (4):

Að‘Þð0Þij ¼ Zð‘Þij : ð12Þ

(3) For the higher-order terms of the expansion (10) we obtain the recursion relation

Að‘Þðnþ1Þ
ij ¼ 2i

X
m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þ Að‘ÞðnÞmm Zð‘Þij �Að‘ÞðnÞim Zð‘Þmj

n o
: ð13Þ

From Eq. (5) we then get a partial-wave scattering amplitude of the form

t‘ði! jÞ ¼ 2 2j‘ðpir0Þj‘ðpjr0Þ
Að‘Þij ðEÞ
Dð‘ÞðEÞ

: ð14Þ

For a full definition of this amplitude, satisfying the unitarity conditions for scattering, see
Eq. (A.1).
4. Production

Various opinions exist on how to analyse the final-state interactions of pairs of hadrons
emerging from a decay process [12–15]. In particular, the production of pion pairs has
been studied from many different angles. Several resonances have been discovered and
established in this channel. However, there still are many open questions, of which the
most intriguing one probably is the formation of the f0ð980Þ resonance [16–26]. As such,
this resonance seems to be one of the key issues for understanding strong interactions. It
lies close to the K �K threshold, couples relatively weakly to pions, comes on top of a much



1222 E. van Beveren, G. Rupp / Annals of Physics 323 (2008) 1215–1229
broader structure, namely the f0ð600Þ, and is furthermore not very distant from a broad
resonance around 1.35 GeV, viz. the f0ð1370Þ [15].

It is our understanding that mesonic resonances, like the f0ð600Þ and the f0ð980Þ, form
an integral part of the whole meson family. Therefore, we have developed a model for all
q�q phenomena, including those involving charm and bottom. Here, we wish to develop a
new tool for data analysis, which is an amplitude for the description of final-state interac-
tions in two-meson subsystems emerging in decay processes involving other particles. This
production amplitude is based on the two-meson scattering amplitude given in Eq. (5).

For the description of the final-state interactions of meson pairs in production pro-
cesses, it is common practice to make the spectator assumption, according to which the
other emerging hadrons do not interact strongly with the pair. Evidently, this is an
approximation, which is justified by the observation that in most production processes res-
onances involving the third (or fourth, . . .) hadron are much higher in mass than the ener-
gies considered for the pair. Here, we moreover assume that the meson pair is generated
from an initially produced q�q pair. Our amplitude for the production of a meson pair,
including all higher-order contributions from final-state interactions, is depicted in
Fig. 3. Also using expression (5) for the scattering amplitude, we are led to define for
the production amplitude

aða! iÞ ¼ hi;~pijð1þ TGÞV tjðq�qÞa;Ei

¼ hi;~pijV tjðq�qÞa;Ei þ
X

m

Z
d3kmhi;~pijT jm;~kmiGð~kmÞhm;~kmjV tjðq�qÞa;Ei

¼ ffiffiffi
p
p

X
‘;m

ð�iÞ‘j‘ðpir0ÞY ð‘Þm ðp̂iÞQðaÞ‘q�q
ðEÞ

� gai � 2i 2
X

m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þgam

Að‘Þim ðEÞ
Dð‘ÞðEÞ

( )
: ð15Þ

Here, QðaÞ‘q�q
represents the overlap with the initial q�q distribution, having quantum numbers

a and relative interquark angular momentum ‘q�q. Notice that the latter quantum number is
related—though unequal—to the relative two-meson angular momentum ‘, because of to-
tal-angular-momentum and parity conservation. Below, we shall discuss the properties of
production amplitude (15) for pairs of interacting mesons.
4.1. P i ¼
P

mcmT mi?

The result (15) agrees to some extent with the expression proposed in Refs. [27,28]. Like
here, the authors of Ref. [28] based their ansatz on the OZI rule [3] and the spectator pic-
ture, so as to find that the production amplitude can be written as a linear combination of
Fig. 3. Graphical representation of the RSE production amplitude. The transition q�q! MM , denoted by V t in
the text, is here represented by v; the resulting effective MM interaction is denoted by V.
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the elastic t‘ði! iÞ and inelastic t‘ði! m 6¼ iÞ scattering amplitudes, with coefficients that
do not carry any singularities, but are rather supposed to depend smoothly on the total
CM energy of the system.

Indeed, if we carry out the substitution (14), we find for our production amplitude the
expression

aða! iÞ ¼ ffiffiffi
p
p

X
‘;m

ð�iÞ‘Y ð‘Þm ðp̂iÞQðaÞ‘q�q
ðEÞ

� gaij‘ðpir0Þ � i
X

m

lmpmh
ð1Þ
‘ ðpmr0Þgamt‘ði! mÞ

( )
; ð16Þ
which contains a linear combination of elements of the scattering amplitude, with coeffi-
cients smooth in E.

However, Ref. [28] concluded from the relation

ImðAÞ ¼ T �A ð17Þ

that the production amplitude must be given by a real linear combination of the elements
of the transition matrix. A similar conclusion, based on a K-matrix parametrisation, can
be found in Ref. [29]. In contrast, we arrive at a different conclusion, namely that, as the
Hankel function of the first kind is a complex function for real arguments, the coefficients
must be complex, in agreement with experimental analyses [13,30,31] as well as with the
theoretical work of the Ishidas [32,33].

Relation (17), which can be also found in Ref. [34] basically stems from the operator
relations AV ¼ ð1þ TGÞV ¼ V þ TGV ¼ T , the symmetry of T, the realness of V and
the unitarity of 1þ 2iT , which gives ImðAÞV ¼ ImðAV Þ ¼ ImðT Þ ¼ T �T ¼ T �AV . This
leads, for non-singular potentials V, to relation (17). In Appendix A, we show that not-
withstanding the complex coefficients in Eq. (16), relation (17) is satisfied for the scattering
and production amplitudes of Eqs. (5) and (15), respectively. Consequently, relation (17)
does not impose a realness condition on the coefficients in Eq. (16).
4.2. The lowest-order term

Besides the sum over transition matrix elements, our production amplitude (16) also
contains an extra term / gai j‘ðpir0Þ. Such a term was not considered in Refs. [27–29].
However, in the works of Graves-Morris [35] and Aitchison and collaborators [36–38],
the possible existence of an additional real, or even complex, contribution was considered
within the K-matrix formalism. Here, an inhomogeneous real term follows straightfor-
wardly from the reasonable assumption that the produced meson pair originates from
an initial q�q pair.

It is generally agreed that production and scattering have the same singularity structure
in the complex energy plane. At first sight, this is not obvious from expressions (15) and
(16). However, the second term between braces in Eq. (15) can, using Eq. (11), be rewritten
as follows:
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gai � 2i 2
X

m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þgam

Að‘Þim

Dð‘Þ

¼ 1

Dð‘Þ
gai þ 2i 2

X
m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þ gaiA
ð‘Þ
mm � gamA

ð‘Þ
im

h i( )

¼ gai

Dð‘Þ
þ 2i 2

X
m 6¼i

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þ gai
Að‘Þmm

Dð‘Þ
� gam

Að‘Þim

Dð‘Þ

" #
: ð18Þ

From this equation it is obvious that, in our approach, scattering and production have ex-
actly the same poles in the complex energy plane, as they share the global denominator D.
4.3. The central result

The pole structure of our production amplitude is exhibited very explicitly in formula
(18), and shows that it is completely given by D, the very same denominator that deter-
mines the pole structure for elastic scattering. The conclusion is that resonance shapes
are different for production and scattering because they are largely determined by the
respective numerators. Moreover, precisely the numerator Aii describing elastic scattering
in the ith two-meson channel has dropped out of expression (18). Hence, when restricted
to a one-channel model, our production amplitude is completely determined by just the
denominator D.

The result (18) may be substituted into relation (15). Moreover, using expression (14)
for the partial-wave amplitudes, we arrive at

aða! iÞ ¼ ffiffiffi
p
p

X
‘;m

ð�iÞ‘j‘ðpir0ÞY ð‘Þm ðp̂iÞQðaÞ‘q�q
ðEÞ

� gai

Dð‘Þ
þ i
X
m 6¼i

lmpmh
ð1Þ
‘ ðpmr0Þ gai

t‘ðm! mÞ
j‘ðpmr0Þ

� gam

t‘ði! mÞ
j‘ðpir0Þ

� �( )
: ð19Þ

Eq. (19) is the central result of our paper. It explicitly relates the ingredients of elastic scat-
tering to the amplitude for production in the spectator approximation. We were able to
achieve this because in the RSE one can determine in an analytically closed form all terms
of the perturbation expansions (5) [2] and (15). Hence, relations (11)–(13) can be derived
and explicitly verified. We may thus conclude that at least for a non-relativistic (NR)
microscopic model, i.e., at low energies, production and scattering are related to one an-
other through Eq. (19).
4.4. P ¼ T=V

Expression (18) takes an extremely simple form in the case that all inelasticity is either
absent or neglected. For the ‘th partial wave of the production amplitude (15), we then
obtain

að‘Þ / j‘ðpr0ÞQ
ðaÞ
‘q�q
ðEÞ 1

Dð‘Þ
: ð20Þ
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This is exactly the generic form of the production amplitude used in a paper by Roca et al.
[7], when at the f0ð600Þ resonance the inelastic contribution KK ! pp is neglected, result-
ing in a / T=V . Here, we get in the 1-channel case from Eq. (12) that A ¼ Z, which then
precisely yields T=V ¼ 1=D.
4.5. The meson-loop phase

In the one-channel approximation, we obtain from the scattering amplitude (5) for the
cotangent of the scattering phase shift dð‘ÞðEÞ the expression

cotg ðdð‘ÞðEÞÞ ¼ n‘ðpr0Þ
j‘ðpr0Þ

� 1

2 2lp j2
‘ðpr0ÞAð‘Þ

; ð21Þ

where the spherical Neumann function is represented by n‘.
Now, D in formulae (20) is related to A in formula (21) through Eq. (11). After some

algebra, we get

að‘Þ / j‘ðpr0ÞQ
ðaÞ
‘q�q
ðEÞ 1� tanðdð‘ÞðEÞÞ

j‘ðpr0Þ=n‘ðpr0Þ

( )
cosðdð‘ÞðEÞÞeidð‘ÞðEÞ: ð22Þ

For S-waves ð‘ ¼ 0Þ this becomes

að0Þ / j0ðpr0ÞQ
ðaÞ
‘q�q
ðEÞ 1þ tanðdð0ÞðEÞÞ

tanðpr0Þ

( )
cosðdð0ÞðEÞÞeidð0ÞðEÞ: ð23Þ

With respect to the dependence on the phase dð0ÞðEÞ, this expression has exactly the same
form as the S-wave production amplitude given by Boito and Robilotta [39], which is
based on Watson’s formalism [6] via the work of Pennington [40]. For the meson-loop
phase xðsÞ defined in Ref. [39], we obtain here pr0. However, our resonance poles are
determined in quite a different manner than in Ref. [39]. Whereas in the RSE the resonance
poles are all contained in A in expression (21) for the cotangent of the phase shift, in the
formalism employed in Ref. [39] each of the resonance poles for S-wave production has to
be put into the corresponding expression by hand, one by one.
4.6. Breit–Wigner resonances

Again in the one-channel case, one deduces from Eq. (7) for D the form

Dð‘ÞðEÞ ¼ 1þ 2i 2
X1
n¼0

jF ðnÞðr0Þj2

E � En

( )
lp j‘ðpr0Þh

ð1Þ
‘ ðpr0Þ: ð24Þ

For small one finds a zero of D in the vicinity of En, say at En þ DEn, where

DEn � 2 2jF ðnÞðr0Þj2lnpn j‘ðpnr0Þn‘ðpnr0Þ � ij2
‘ðpnr0Þ

� �
: ð25Þ

Here, ln and pn are the reduced mass and relative linear momentum of the two-meson sys-
tem at E ¼ En, respectively. Note that the imaginary part of DEn is negative, as it should be
for resonance poles in the second Riemann sheet. Below threshold we obtain poles on the
real energy axis, since ij‘h

ð1Þ
‘ becomes real for purely imaginary arguments. The latter poles
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represent two-meson bound states, as argued above. For the following discussion we shall
only consider poles above threshold.

For D we obtain

Dð‘ÞðEÞ /
Y

n

ðE � En � DEnÞ: ð26Þ

Consequently, denoting the residue at the nth pole by an, we get

1

Dð‘ÞðEÞ
/
X

n

an

ðE � En � DEnÞ
; ð27Þ

which is nothing but a Breit–Wigner [41] expansion over a series of resonances, as em-
ployed in the isobar formalism [38,42–45].

4.7. Overlapping resonances

Of course, things become more involved than in Eq. (27) when is not small and res-
onances start to overlap. Overlapping resonances have been studied extensively in the past
[46]. Here, it is no longer possible then to deduce simple approximations for expression
(24).

Besides extending the formalism of Ref. [6] to coupled channels and overlapping reso-
nances, our work also seems to interpolate between the results of Ref. [40] and Ref. [7].

4.8. The K-matrix

The K-matrix, which is related to the tangent(s) of the scattering phase shift(s), is
defined by

K ¼ T ½1þ iT ��1
: ð28Þ

As follows from the unitarity condition, K is a real (symmetric) matrix for real CM energy
E.

In the one-channel approximation and in a particular partial wave, K is given by the
inverse of expression (21) for the cotangent of the scattering phase shift. For more chan-
nels, relations like Eq. (21) become very complicated expressions in terms of A and D. The
reason is that the inverse of the expression (5) has to be determined. Numerically this is no
problem, of course, but analytically it is extremely tedious in the general multichannel
case. In particular, for a relation between the common denominator D and K, which is
needed for the leading term in expression (19), nothing simple follows. Moreover, the pole
positions for both scattering and production stem from D, and not from K. Hence, the
exercise to express the production amplitude in terms of the K-matrix seems pointless.

5. Summary and concluding remarks

The two-meson production amplitude (19) has been rigorously calculated, to all orders,
from a relatively general expression for a two-meson scattering amplitude (Eq. (5)) dom-
inated by s-channel resonances. The latter had already been successfully tested for c�c and
b�b states, mesons with open charm and bottom, and also in the light-quark sector.
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One might object that a model with no t-channel exchanges is too restricted for drawing
general conclusions. However, one should be aware of the—quoting Törnqvist [47]—
‘‘well-known dual-model result for �qq resonances that a sum of s-channel resonances also
describes t- and u-channel phenomena.’’ In the context of duality, Harari [48] formulated a
necessary condition for an s-channel description to reproduce certain t-channel effects,
namely the existence of ‘‘strong correlations between the different s-channel resonances.’’
Well, this is exactly what our infinite RSE sum over confinement states guarantees. Fur-
ther proof showing the RSE model to be realistic is its correct threshold behaviour in elas-
tic pp scattering [49].

Another possible critique of our method could be its NR nature. Nevertheless, in prac-
tical phenomenological applications to spectroscopy and elastic scattering, relative
momenta and reduced masses in the two-meson channels have been consistently defined
in a relativistic way, thus ensuring proper kinematics at much higher energies than the
underlying NR formalism seems to support. Such a minimal treatment of relativity is
indeed common practice in many relativised quark models. Our successful description
of the spectroscopy and scattering properties of the light scalar mesons [50] provides addi-
tional evidence that this approach to relativity is reasonable. This is also supported by our
very recent first application of the present production formalism in the single-channel case
[1].

It thus seems fair to conclude that production amplitudes can in general contain terms
which are not proportional to scattering T-matrix elements and, moreover, that the pro-
portionality coefficients are complex.
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Appendix A. Generic relation between production and scattering

In order to arrive at a relation equivalent to Eq. (17) for the here proposed scattering
and production amplitudes, we define

T ð‘Þij ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lipiljpj

p
t‘ði! jÞ ¼ �2 2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lipiljpj

p
j‘ðpir0Þj‘ðpjr0Þ

Að‘Þij

Dð‘Þ
: ðA:1Þ

For this object, also using relations (6), one easily finds

X
m

T ð‘Þ�im T ð‘Þmj ¼ 4 4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lipiljpj

p
j‘ðpir0Þj‘ðpjr0Þ

X
m

lmpmj
2
‘ðpmr0Þ

Að‘Þ�im Að‘Þmj

jDð‘Þj2

¼
2

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lipiljpj

p
j‘ðpir0Þj‘ðpjr0Þ

Að‘Þ�ij

Dð‘Þ�
�
Að‘Þij

Dð‘Þ

( )
¼ 1

2i
T ð‘Þij � T ð‘Þ�ij

n o

¼ ImðT ð‘Þij Þ: ðA:2Þ
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Furthermore, we define

Að‘Þai ¼
ffiffiffiffiffiffiffiffi
lipi
p

j‘ðpir0Þ gai � 2i 2
X

m

lmpmj‘ðpmr0Þhð1Þ‘ ðpmr0Þgam

Að‘Þim

Dð‘Þ

( )
; ðA:3Þ

for which, by substituting definition (A.1), we may also write

Að‘Þai ¼ gaij‘ðpir0Þ
ffiffiffiffiffiffiffiffi
lipi
p þ i

X
m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p

hð1Þ‘ ðpmr0ÞT ð‘Þim : ðA:4Þ

For this object we study, in accordance with relation (17), the imaginary part

ImðAð‘Þai Þ ¼
X

m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p 1

2i
ihð1Þ‘ ðpmr0ÞT ð‘Þim þ ihð2Þ‘ ðpmr0ÞT ð‘Þim

�n o
ðA:5Þ

¼ 1

2

X
m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p

j‘ðpmr0ÞðT ð‘Þim þ T ð‘Þim

�
Þ þ in‘ðpmr0ÞðT ð‘Þim � T ð‘Þim

�
Þ

n o

¼
X

m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p

j‘ðpmr0ÞReðT ð‘Þim Þ � n‘ðpmr0ÞImðT ð‘Þim Þ
n o

;

where we denote the spherical Hankel function of the second kind by hð2Þ‘ ¼ hð1Þ�‘ ¼ j‘ � in‘.
Next, we use the fact that ReðT Þ ¼ T � þ iImðT Þ, and, moreover, substitute subse-

quently relations (A.2) and (A.4):

ImðAð‘Þai Þ ¼
X

m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p

j‘ðpmr0ÞT ð‘Þim

�
þ ihð1Þ‘ ðpmr0ÞImðT ð‘Þim Þ

n o
¼
X

m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p

j‘ðpmr0ÞT ð‘Þim

�
þ i
X

m0

X
m

gam
ffiffiffiffiffiffiffiffiffi
lmpm
p

hð1Þ‘ ðpmr0ÞT ð‘Þm0mT
ð‘Þ
im0
�

¼
X

m

T ð‘Þim

�
gamj‘ðpmr0Þ

ffiffiffiffiffiffiffiffiffi
lmpm
p þ i

X
m0

gam0
ffiffiffiffiffiffiffiffiffiffiffi
lm0pm0
p

hð1Þ‘ ðpm0r0ÞT ð‘Þmm0

( )

¼
X

m

T ð‘Þim

�
Að‘Þam : ðA:6Þ

This demonstrates that for our amplitudes a relation exists which is equivalent to the one
shown in Eq. (17).
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