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Abstract – The deformation behaviour of prestrained metal sheets is analysed in this work. The non-uniform deformation observed during reloading
in tension was studied, by following deformation in different regions of the samples. It takes into account the presence of geometrical defects in the
samples and explains the importance of mechanical behaviour. A simplified analysis was used, to model the behaviour in tension of a metallic specimen
with geometrical imperfection. The flow behaviour is described using a Swift law equation, which includes strain-rate sensitivity. A modified law was
used for prestrained materials and this incorporates the plastic prestrain value, adjusted to the path change. The model predicts imperfection growth
kinetics with strain, and strain saturation in the homogeneous region, due to the onset of necking. 2000 Éditions scientifiques et médicales Elsevier
SAS
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1. Introduction

During complex strain paths, the tensile instability and necking behaviour of metals presents some particular
facets. From experimental results, a phenomenological model has been put forward (Vieira et al., 1990), in
order to explain the occurrence, in some cases, of early plastic instability in tension after prestrain. It has
been suggested (Schmitt et al., 1991; Fernandes et al., 1993) that the plastic instability, occurring in tension
after prestrain, is a mechanical consequence of the drop in strain-hardening behaviour, which takes place at
the beginning of reloading. Furthermore, macroscopic non-uniform deformation was clearly observed, at the
beginning of reloading in tension of copper samples, prestrained up to low values (>0.06). No connection
between this non-homogeneous deformation and the slip behaviour inside the grains was found. But, this can
be explained by the flow behaviour in tension, which depends on the deformation history. In fact, when the strain
path is changed during the plastic deformation of metals, the flow behaviour diverges from that which is typical
of a monotonic deformation. A transient in the work hardening occurs after the change of strain path. Results
from previous research on mechanical behaviour after reloading have been summarised as follows (Ghosh and
Backofen, 1973; Wagoner and Laukonis, 1983; Chung and Wagoner, 1986; Zandrahimi et al., 1989):

– low initial flow stress (compared with stress at equal equivalent strain in the monotonic path) is followed
by a relatively high work hardening rate;

– high initial flow stress is followed by a low work hardening rate.

The former case corresponds mainly to strain path changes, associated with Bauschinger experiments
(inversion of loading conditions). However, most behaviour in complex strain paths involves the second case,
where the active slip systems change partially or totally after reloading. When a strain path change occurs, the



210 J.-V. Fernandes et al.

reloading behaviour of metals depends on the amplitude in the change of strain path, but is independent of
the nature of prestrain conditions, such as: uniaxial tension, rolling, equibiaxial stretching and shear (Vieira et
al., 1990). An equation has recently been proposed, to describe the mechanical behaviour of prestrain metals
samples (Fernandes et al., 1998). This equation was deduced from the one commonly used in monotonic
deformation: the Swift law (Swift, 1952). The adjustable parameters determined by fitting this equation to the
experimental curve without prestrain, remain the same in the modified law. This one contains a new parameter,
which depends on the path change.

Several theoretical and numerical approaches ((Hart, 1970; Miles, 1975; Jonas and Baudelet, 1977; Ghosh,
1977; Hutchinson and Neale, 1977; Ghosh, 1980; Lin et al., 1981; Barata da Rocha et al., 1985; Lian and
Baudelet, 1986; Tvergaard, 1993; Rees, 1994; Esche and Shivpuri, 1998) for example), including those
involving instability and flow localisation, have been used to study ductility. Most of these instability and flow
localisation analysis are based on the assumption that the samples have an initial small imperfection, which
is source of non-uniformity of deformation along the gauge length of the sample. As has been highlighted,
imperfections grow at an increasing rate from the start of plastic deformation. The present work is an analytical
study of the tensile ductility in reloading; in particular, the experimentally observed non-uniform deformation
is studied (Fernandes and Vieira, 1997). This was achieved by using a simplified macroscopic two-zone model,
to simulate initial material imperfection. The validation of the results was made by performing experimental
tensile tests on non-prestrained copper and steel samples, with imperfections of different sizes. The mechanical
behaviour of copper and steel sheets during tension of cold-worked samples is examined and the influence
of the presence of geometrical defects in the prestrained samples is discussed. The importance of mechanical
behaviour without prestrain is considered. In addition, the influence of the type of change of strain path and the
level of the prestrain is also studied. The development of diffuse necking is also analysed as a consequence of
instability corresponding to the maximum load.

2. Analysis

2.1. Strain hardening law

In this paper, material flow behaviour in simple strain paths is described by the Swift equation. In the case of
reloading, the modified form of the Swift law for prestrained materials, as previously proposed, is used. In its
original formulation, the Swift equation can be written as (Swift, 1952):

σ = k(ε0+ ε)n, (1)

whereσ andε are the equivalent stress and plastic strain;k, n andε0 are constants for a particular material,
determined in uniaxial tension tests. Based on this, a modified equation for prestrained materials has been
formulated as follows (Fernandes et al., 1998):

σ = k[g(ε0+ εp)+ hε]n. (2)

In this equationεp is the von Mises equivalent prestrain value andε is now the plastic strain in reloading. The
parameterg represents the alteration of the reloading yield stress after the path change (g = 1 in its absence),
andh characterises the work-hardening behaviour after reloading, when compared with the one in the simple
strain path (h= 1 in this case).
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Figure 1. Schematic representation of true stress (σ ) — true strain (ε) curves in tension without prestrain and after a prestrain value toεp.

The above equation can have a formulation identical to that of the Swift law as was originally formulated,
for simple strain paths:

σ = khn
[
g

h
(ε0+ εp)+ ε

]n
= k∗(ε∗0 + ε)n, (3)

wherek∗ = khn andε∗0 = (g/h)(ε0+ εp). In this context, the termε∗p = (g/h)εp, in some way, represents the
plastic prestrain value adjusted to the path change.

Experimental evidence allows us to describe the strain hardening behaviour in reloading as shown infigure 1
(the reference curve, without prestrain, is also shown for comparison). In this figureσbe (the stress at pointA)
is the back-extrapolated stress, measured on the reloading curve (σbe= σ (ε = 0)) andσr is the reference stress,
measured at the same equivalent strain on the curve without prestrain (σr = σ (ε = εp)). The term (σbe/σr) is
called the normalised reloading yield stress (Raphanel et al., 1986). The parameterα, as shown infigure 1
characterises the influence of the strain path change on the work-hardening behaviour in reloading (α is such
that the two curves meet at pointB).

It is now possible to determineg andh as follows:

g = (σbe/σr)
1/n (4)

and

h= (ε0+ αn)− (σbe/σr)
1/n(ε0+ εp)

αn− εp
. (5)

Equations (3), (4) and (5) model the material behaviour in reloading for several complex strain paths. Thus,
it is necessary to know the monotonic behaviour, which allows us to determine the values of the parametersk,
n andε0, and to define the normalised reloading yield stress(σbe/σr). The parameterα was found to be equal
to 0.8, in agreement with experimental results for copper and steel (Fernandes et al., 1998).
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Similarly to other cases ((Ghosh, 1977; Barata da Rocha et al., 1985) for example), a constitutive law, which
considers the strain rate sensitivity can be formulated, as follows:

σ = k∗(ε∗0 + ε)nε̇m. (6)

This equation is obtained from Eq. (3), assuming that the strain rate sensitivity coefficientm is not dependent
on the path change, i.e.m is unique for a given material.

2.2. Strain distribution relations

During the tensile deformation of metals, non-uniform strain distribution can be observed. In the case of
complex strain paths, experimental results clearly show that the deformation in tension after path change often
starts from a limited region in the sample, spreading over the length of the sample before necking takes place.
The strain gradient increases during deformation and is related to the presence of fluctuations in the cross
section area of the sample, occuring even when allowed by standardisation. The non-uniform deformation
depends on the prestrain value and path change, which determines subsequent work-hardening behaviour,
for a given material. The effect of the area fluctuations becomes important for materials with relatively low
work-hardening rate and high reloading stress (Fernandes and Vieira, 1997). The way in which the strain
gradient develops as a function of the size of the geometrical defect and of the work hardening behaviour
after path change, will be subsequently discussed. The analysis carried out here follows the one used by
Ghosh (1977) to study the tensile instability and necking development in materials with strain hardening
and strain rate sensitivity. It is considered that the specimen has a pre-existing geometrical imperfection. This
means a simplified model of a two zones sample. It considers that the strain path is in tension for both regions.
Tensile deformation is defined as stable as long as it is accompanied by load rise, even though the geometrical
imperfection may be growing during this stage. The onset of instability is therefore at the maximum load. It
should be noted that the present model does not take into account the localised necking process, in pure uniaxial
tension, which occurs along a line inclined to that normal to the tensile direction. However, it can predict, with
no major error, the macroscopic strain levels in both regions during the development of diffuse necking, along
the tensile axis, i.e. clearly after the Considère point. Moreover, this is a reasonable approach, regarding the
growth of the imperfection in the case of prestrain materials and its dependency on the combined effects of the
strain hardening parameter, prestrain level and type of path change.

The initial cross-section of the imperfection is assumed to be less than the one outside by a fraction
f0 = S in

0 /S
out
0 , whereS in

0 andSout
0 are the initial cross-section areas of the tensile sample, inside and outside

the imperfection region, respectively. Under these conditions, the applied forceF at the tensile sample is given
by the equation:

F = σ inS in = σ outSout, (7)

whereσ in andσ out are the true stress inside and outside the imperfection, andS in andSout are the current
cross-section areas in the same regions, respectively. The following conditions can now be written:

S in = S in
0 exp(−εin),

Sout= Sout
0 exp(−εout),

(8)

whereεin andεout are the strain values inside and outside the imperfection region. Equation (7) can now be
written as follows:

f0σ
in exp(−εin)= σ outexp(−εout). (9)
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Considering Eq. (6) to characterize the material behaviour in reloading, Eq. (9) becomes:

f0
(
ε∗0 + εin

)n(
ε̇in
)m

exp(−εin)= (ε∗0 + εout
)n(
ε̇out
)m

exp(−εout) (10)

or, in the differential form:[
f0
(
ε∗0 + εin

)n
exp(−εin)

]1/m
dεin = [(ε∗0 + εout

)n
exp(−εout)

]1/m
dεout. (11)

Equation (11) can be solved with resource to numerical methods such as the Newton–Raphson iterative
technique, used in this work. The strain increments used are1εin = 0.001 and it was considered that:

εin =
∫ εin

εcin

dεin and εout=
∫ εout

0
dεout, (12)

εcin being an estimated value ofεin, for which deformation starts in the outside region. The value ofεcin can be
obtained using Eq. (9) forεout equal to zero, which leads to the condition forεcin:

εcin = ε∗0
{[

exp(εcin)

f0

]1/n

− 1
}
. (13)

In a recent work (Fernandes and Vieira, 1997), non-uniform deformation was clearly observed, by optical
microscopy, during the reloading of a sample, which was previously prestrained in rolling and polished. It was
concluded that, the fluctuations in the cross-sectional area become important for materials with a relatively low
work-hardening rate and high reloading stress. In fact, the cross-section area inside the imperfection deforms
faster than outside. Since an area difference spreads over different axial distances, the gradient of imperfection
profile may be a good indicator of necking growth (Ghosh, 1977). An analytical way to study this effect is to
follow the evolution, during deformation, of the difference between the square root of the cross-sectional areas
in both regions (

√
Sout−√S in) with respect to their current separation distance1x. This can be approximately

determined by (Ghosh, 1977):

1x =1x0
exp(εout)+ exp(εin)

2
. (14)

Thus, the neck profile gradient can be defined, for example:

√
1S

1x
=
√
Sout

0

1x0

{
2
[
exp(−εout

2 )−√f0 exp(−εin
2 )
]

exp(εout)+ exp(εin)

}
. (15)

Next, this method is tested, to study the effect of the strain path change (by means of the value of the
respective reloading yield stress(σbe/σr)) on tensile instability, and diffuse necking development. In order to
do this, a two region imperfect sample is used. After this, the results obtained after reloading are discussed,
taking the respective flow behaviour into account, as described below.

3. Experimental validation

Oxygen-free copper (99.95% Cu) and steel sheets, 1 mm thick, as-received under cold-rolled and annealed
conditions, were used in this research. The two sheets present equiaxed grain with approximately the same
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Figure 2. Schematic representation of the specimen with cross section imperfection used for experimental tests and the simulation of samples without
prestrain. The value ofa was considered as equal to 0.25, 0.50 and 1.00 mm, which corresponds to,f0= 0.96, 0.92 and 0.84, respectively.

mean grain size: 20 and 15µm, respectively. Samples of both sheets, copper and steel, were cut accordingly
with an ISO 50 (gauge length and width of 75 mm and 12.5 mm, respectively), their axis being normal to the
rolling direction. Tensile tests were performed at room temperature, using an initial strain rate

.
ε= 7× 104 s−1.

The true stress (σ ) — true strain (ε) curves were obtained in tension, for copper and steel sheets. The fitting of
these curves by Eq. (1) allowed us to determine the adjustable parameters, as follows:

– copper sheet:k = 510 MPa,n= 0.41 andε0= 0.0150,
– steel sheet:k = 585 MPa,n= 0.25 andε0= 0.0075.

For both sheets, copper and steel, some other samples were cut also accordingly using an ISO 50, but with
geometrical imperfection. This consists of a reduction of width in the central area, which is a length of 1/3 of the
total gauge length of the sample, as shown infigure 2. The consequent reduction of the section is characterised
by the dimension ofa as follows:a = 0.25, 0.5 and 1.0 mm, which corresponds to fraction areasf0 = 0.96,
0.92 and 0.84, respectively. The tensile tests were performed using an Instron machine, equipped with a 50
mm strain gauge and using an initial strain-rate as described above, for the uniform samples. In the case of the
samples witha = 0, the strain amounts were deduced from extensometer data. A microcomputer was interfaced
with the tensile testing machine and signals from load, and extension were stored and analysed digitally. For
the cases ofa 6= 0 the plastic strain measurement was performed in both regions of the samples. Previous to
deformation, reference lengthsl in0 and lout

0 , inside and outside the imperfection, respectively, were marked in
the samples (figure 2). It was then possible to follow the evolution of the deformation in both regions during
the test. In order to do this, the reference lengths were measured before and after several steps of deformation,
using a travelling microscope, which had an accuracy of 1µm.

The results are shown infigure 3, consideringεin as a function ofεout. Whatever the value of the imperfection
parametera = 0.25, 0.50 or 1.00 mm (f0= 0.96, 0.92 and 0.84, respectively), the strain gradient between the
two regions increases during deformation. Infigure 3, the results of numerical computation are also shown.
Based on Eq. (11), they allow comparison with the experimental results. The numerical computation results are
considered in two cases: takingm= 0 and in the case ofm= 0.012, as indicated for steel and copper. The case
m= 0.012 shows perfect agreement with the experimental results. The strain-rate hardening exponentm, has
an effect of slowing the growth rate of the imperfection, as was argued by Ghosh (1977). For this reason, we
consider the following value ofm as always being equal to 0.012, for both materials, which corresponds to the
experimental values usually indicated (Barata da Rocha et al., 1985; Gracio et al., 1987).

In figure 4, the numerical computation results for the cases off0 = 0.995, 0.990, 0.985, and 0.980 are
shown. These cases are allowed by standardisation (the last one being near the allowable limit). The case
of f0 = 0.96 is also considered, in order to show a case for which experimental results have been obtained
(for f0 lower than 0.96, the experimental measurement of the dimensions of the sample becomes relatively
inexact; this is the reason why these cases were not experimentally considered). In all cases, the profile
gradient(

√
1S/1x) develops slowly, at the beginning, and increases with deformation. The imperfection
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Figure 3. Comparison between experimental (EXP) and numerical computational results (NCR), for copper and steel, on the evolution of the strain
inside the imperfection region as a function of the strain outside this region, for: (a)f0= 0.84; (b)f0= 0.92 and (c)f0= 0.96.
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Figure 4. Numerical computational results showing the strain within the imperfection and the necking profile gradient, as functions of strain outside

imperfection. The necking profile gradient is normalised with respect to the initial gradient: NPG= (√Sout/1x)/(
√
Sout

0 /1x0). The size of the
imperfection isf0= 0.995,f0= 0.990,f0= 0.985,f0= 0.980 andf0= 0.960. Both materials are considered: (a) copper and (b) steel.

growth kinetics are influenced by the values ofn andf0. The increasing value of the strain-hardening exponent,
n, and the increasing value off0 also slow the spread of the imperfection.

The above results show that, the strain value attained in the outside region is dependent on the imperfection
size. We believe that in most of the cases, the tensile samples present imperfections withf0 = 0.99. In fact,
this value represents approximately half of the imperfection allowed by standardisation. Moreover, in general,
the uniform strain obtained by tension is close to the value of the hardening coefficientn, at least for low
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strain rates (usually used for classical tensile tests). Or, in the case off0= 0.99, the strain in the region outside
the imperfection has approximately the same maximum strain value as the hardening coefficientn, for both
materials (maximumε0 equal to 0.39 for copper (n= 0.41) and 0.24 to steel (n= 0.25)). So,f0= 0.99 must
be representative of most cases of tensile tests and it will be always considered in the following discussion.

4. Flow localisation in prestrained materials

In tension, the phenomenon of flow localisation is recognised as a precursor to failure. During complex strain
paths, an early flow localisation is often observed ((Vieira et al., 1990; Schmitt et al., 1991; Fernandes et al.,
1993) for example). In this context, it is useful to emphasise the correlation between the hardening behaviour
and the strain distribution along the subsequent path. The effect of the strain path change can be analysed
by means of the parameter(σbe/σr). This parameter characterises the strain path change:(σbe/σr) = 1 when
there is no strain path change and its value can attain 1.12 or even 1.15 for the harder strain path change as,
for example, in tension normal to previous rolling (Fernandes and Vieira, 1997). Latent hardening effects can
explain the behaviour in reloading, particularly, the range of values of(σbe/σr). In fact, the differences between
monotonic and subsequent work-hardening behaviour are related to different microstructural evolutions at the
beginning of reloading. These are dependent on the prestrain mode and path change. Microstructural analyses
during reloading confirmed this point (Schmitt et al., 1991).

The present study concerns copper and steel sheets, whose flow behaviour laws are described in the former
paragraph (n= 0.41 for copper andn= 0.25 for steel;m is considered equal to 0.012 for both materials). The
Swift equation (Eq. (1)) describes the behaviour in simples strain path, and the Eq. (6) describes the behaviour
in reloading. The numerical computation method proposed by Ghosh (1977) was adapted for the present case
(Eq. (10) to (15)), as has been described above.

In figures 5and6 numerical computational results show the evolution of the strain within the imperfection,
and the necking profile gradient. These are demonstrated as functions of strain outside imperfection, during
deformation in reloading, for different(σbe/σr) values. For both materials, copper (figure 5) and steel (figure 6),
two prestrain values are presented. For the low prestrain values, the curves are not significantly influenced by
the (σbe/σr) value. When the prestrain is higher (at about half the value ofn), the prestrain value strongly
influences the evolution of the strain within the imperfection and the necking profile gradient.

A final exercise, shown infigures 7and8, explains the conjoint effect of prestrain and strain path change
on strain localisation in reloading. This is evaluated by the residual strain defined by (i) the maximum strain
attainned in the outside regionεres

out, and (ii) the strain inside the imperfection region up to unstable flowεres
in ,

such that the critical value dεout/dεin is chosen equal to 0.1. Both figures show the evolution of the residual
strain as a function of(σbe/σr), for six cases of prestrain values. For low prestrain values (εp up to 0.06, for
copper, and 0.03, for steel) a homogeneous deformation is observed in the tensile sample, when a large amount
of strain is being applied. This effect is only slightly dependent on the strain path change through the value
of (σbe/σr). For higher prestrain values rapid strain localisation within the imperfection is often observed.
Finally, the comparison between both materials allows us to conclude that the imperfection growth kinetics in
prestrained samples is highly influenced by the work-hardening parametern.

5. Conclusion

A simplified analysis was used to model the behaviour in tension of a metallic specimen, with a geometrical
imperfection. The flow behaviour is described by a Swift law equation including strain-rate sensitivity. A
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Figure 5. Numerical computational results showing the strain within the imperfection and the necking profile gradient, as functions of strain
outside imperfection, during the deformation of copper. The necking profile gradient is normalised with respect to the initial gradient: NPG=
(
√
Sout/1x)/(

√
Sout

0 /1x0). The size of the imperfection isf0= 0.99 and the change of strain path is such that: (a)εp= 0.03 and (b)εp= 0.18.

modified law was used for prestrained materials, which incorporate the plastic prestrain value adjusted to
the path change. Experimental results obtained in simple tension of samples with large imperfection and in
prestrained samples with imperfections as allowed by standardisation, were used to validate the method used.
The main study concerns the combined effects of the strain-hardening exponent, the prestrain value and the
type of path change. In this context, the following conclusion can be drawn:
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Figure 6. Numerical computational results showing the strain within the imperfection and the necking profile gradient, as functions of strain
outside imperfection, during the deformation of steel. The necking profile gradient is normalised with respect to the initial gradient: NPG=
(
√
Sout/1x)/(

√
Sout

0 /1x0). The size of the imperfection isf0= 0.99 and the change of strain path is such that: (a)εp= 0.02 and (b)εp= 0.08.

– The evolution of the strain in both zones of the sample and the strain saturation in the region outside
the imperfection due to the onset of necking, can be well predicted by the model, as was experimentally
confirmed.

– The model predicts that the imperfection growth kinetics is influenced by the strain hardening exponentn,
obtained in simple strain path. The spread of the imperfection slows down with increasingn values, even
after path change.
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Figure 7. Evolution of the residual strain in the outside region(εres
out), in the reloading of copper, with the parameter(σbe/σr), for different cases of

prestrain values:εp = 0.06, 0.12, 0.18, 0.24 and 0.30. For the same cases, the evolution of the residual strain inside the imperfection region up to
unstable flow(εres

in ) is also shown. This is defined by the critical value dεout/dεin chosen equal to 0.1.

Figure 8. Evolution of the residual strain in the outside region(εres
out), in reloading of steel, with the parameter(σbe/σr), for different cases of the

prestrain values:εp= 0.03, 0.06, 0.09, 0.12, 0.15 and 0.18. For the same cases, the evolution of the residual strain inside the imperfection region up to
unstable flow(εres

in ) is also shown. This is defined by the critical value dεout/dεin chosen equal to 0.1.
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– For low prestrain values (less thann/3) the strain path change has a minor effect on strain localisation. In
this case, a homogeneous deformation is always observed in the tensile sample, when a large amount of
strain is being applied. For higher prestrain values, the strain distribution behaviour is quite dependent on
the value(σbe/σr) and therefore, on the strain path change.
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