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ABSTRACT 
Radial heat conduction in insulated pipes under external convection is usually dealt with 
great detail in several heat transfer publications. However, an analysis carried out through 
the graphical representation of the dimensionless characteristic parameters, will allow a 
better understanding of the phenomenon. Here the dependence of the convection 
coefficient on the external radius and external surface temperature, typical of forced and 
free convection, is taken into account. Assuming a power law variation of the convection 
coefficient [l] and using the results of Sparrow [2], all the important dimensionless pa- 
rameters, including the critical radius, are explicitly represented and compared with those 
arising in the case of the insulated sphere [3]. Q 201~1 Elpevier Science Ltd 

Introduction 

The well-known problem of radial heat conduction in insulated pipes is revisited in this work. The 

use of a dimensionless approach, similar to that employed by Branco et al. [3] in the study of heat 

conduction in the hollow sphere, allows a comprehensible graphical representation of the heat transfer 

process. The analysis is not restricted to constant convection coefficient, which is extensively treated in 

several heat transfer books (e.g. Incropera and Dewitt [4]). The cases of forced and natural convection, 
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assuming a power law variation of the external convection coefficient, are also considered and the 

presented equations are simpler than the previously available in the literature. 

Sparrow [2] and Simmons [5] used this kind of variation of the convection coefftcient 

h, w romp ITo - T,I (1) 

with p 2 0 and n 2 0, in the study of the critical insulation radius; however their results depend on the 

unknown insulation surface temperature -T,- as in the case of Sparrow’s [2] equation 

l-p k 
Lir = I+n h,,$,, 

Balmer [6] used the correlation developed by Churchill and Chu [7] for free convection around a 

horizontal cylinder to develop another equation for the critical insulation radius; in spite of being a more 

general equation, it is, as well, an implicit one. Russo and St. Cyr [8] presented equations for the 

minimum amount of insulation necessary to minimize the heat loss; however the only considered cases 

were of h,=const. and h,arO.p. Another equation for the critical radius, under conditions defined by 

Eq. (1), was also developed by the authors [9]; the approach used then is now extended to the other 

parameters arising in radial heat conduction. 

Forced and Natural Convection Over Cvlindrical Bodies 

Experimental data show that, in many cases, the external convection coefftcient on cylindrical 

pipes can be calculated through a power law equation. For example McAdams [1] correlates data for 

forced convection around a cylinder in cross-flow using a power law; a similar and widely used 

correlation [lo] is 

Nu, = B (Re, )” Pr’l’ (3) 

For natural convection around a horizontal cylinder McAdams [I] presents simplified dimensional 

equations for air and water. Morgan [ 111 suggests an equation of the type 

Nu, = C( Ra,) (4) 

Values for B, m, C and n can be found in the literature (e.g. [4, lo]) as a function of the Reynolds 

(Re,) or Rayleigh (Ra,) number, respectively. 

Heat Conduction Under Free External Convection 

A semi-infinite tube of external radius ri, protected with an insulation layer of thickness e = r, - r, 

and thermal conductivity k, loses heat in natural convection regime. In the following analysis, the same 

set of dimensionless parameters used in [3] are employed 
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Sic!!!.? r’-1 T-T 

k’ -c’ 
,==L, T’=_~L, 

I; T-T, 
q*d and h’=f 

9, I 

where Bi is the characteristic Biot number and r* , T’ , q* and h’ are the radial coordinate, temperature 

difference, heat-transfer rate and heat transfer coefficient, all in dimensionless form. The subscript i 

designates the inner insulation surface, a the outer one and 00 the surrounding fluid, away from the pipe. 

In the definition of the Biot number, the convection coefficient in the absence of insulation, h,, is used for 

convenience. 

A dimensionless equation, similar to Eq. (1) 

h,’ = (r; )m-’ (To’) (6) 

may be used instead of Eqs. (3) and (4). The forced convection case may be represented taking n = 0, 

whereas in free convection m = 3n. The same simplifying assumptions used in [3] are considered: constant 

m, n and fluid properties, calculated at an average film temperature. This means that the changes in Re, or 

Ra,, as the insulation thickness increases, are inside de intervals defined by Welty et al. [IO]; or that new 

exponents m and n can be defined, covering the range of the characteristic number - Re, or Ro,. 

TemDerature Distribution, Heat Transfer Rate. Critical and Minimum Insulation Radius 

Assuming constant overall properties for the insulating material and in the absence of heat genera- 

tion, the steady-state conduction equation in cylindrical coordinates takes the form 

-+IdT’=O d2T’ 

dr’2 r* dr’ 
(7) 

the boundary conditions being the inner temperature and the external convection coefficient (r , h,) 

. 
T’(I;.‘)=l and 5 = -Bih,‘E* 

t r’=,i 

The resulting temperature distribution in the insulation layer 

ln(r’) 
T*=l-BiT,h,‘r~ln(r’)=l-(l-T,‘)- 

ln(0 

depends on the external surface temperature; this can be easily found introducing Eq. (6) into Eq. (9) to 

obtain an implicit equation, which can be easily solved using a standard numerical method. 

To* = 1 - Si(ro*)m (~‘)“” In($) (10) 

The dimensionless heat-transfer rate 

q’ = (rl)m (<*)I+” (11) 

may be casted with Eq. (10) to obtain 
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q’ = (<)m(l-Biln(r~)q*)‘+n (12) 

Equation (12), graphically represented in Fig.1, shows that the heat loss depends on the defined 

Biot number, which controls the trend of the different curves, and on the thickness of the insulation. 

Figure 1 also shows that with low Bi the heat loss may increase. 

2 

- m=0.618, n=O 

1.5 

0 
1 5 10 50 100 

ro* 

FIG. 1 
Dimensionless heat transfer rate as a function of the insulation radius and the Biot 

number, for: m=l, n=O; m=0.618, n=O; m=0.75, n=0.25. 

The critical radius [l] may be found differentiating Eq. (12) and setting the result to zero, to get 

q’ = 
mOX Bi (Cl+ n>lm + W&J 

(13) 
1 

n 

(14) 

These equations show that, under a power law variation of the external convection coefficient, the 

limiting value of Bi for which a critical radius exists is 

Bi<fi (15) 

When this occurs (small tube radius, large thermal conductivity of the insulation and small convection co- 

efficient) the heat loss can only be reduced when r, > r,,,,,, Chapman [12]. The minimum insulation 

radius, r,,,“, is indicated with “x” marks in Fig. 1 and can be obtained solving the equation 

(ro~min)‘“(l-Biln(ro~,,,))‘+” = 1 (16) 
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FIG. 2 
Critical insulation radius as a function of the Biot number, for: m=l, n=O; m=0.618, n=O; 

m=0.75, n=0.25. 

The critical and the minimum insulation radius are represented in Figs. 2 and 3, which, with Fig. 1, 

show that r,,,,, can be much greater than r,,,,. Practical applications can be found in electricity and 

electronics [8]. 
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FIG. 3 
Minimum insulation radius as a function of the Biot number, for m=l, n=O; m=0.6 18, n=O; 

m=0.75, n=0.25. 
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Comuarison With Forced Convection and Constant Convection Coeffkient 

Equations for forced convection and for constant heat transfer coefficient may be immediately 

found setting n = 0, or m = 1 and n = 0, respectively, in Eqs. (9)-(16). Table 1 summarizes the obtained 

results. 

TABLE 1 
Heat Conduction in an Insulated Pipe: Forced Convection and Constant Heat Transfer Coefficient 

Forced convection (n = 0, O< tn< 1) h,=const. (n = 0, m = 1) 

1 _ Bi (r,‘) m ln(r’) 

l+Bi(r~)mln(r~) 

(<)” 
l+Bi(r~)“ln(r~) 

l_ Bir,‘ln(r’) 

1 + Bi ri ln(ri) 

< 
I+Birlln(rO*) 

4’ “OX 

m/Bi 

1 + In(m/Bi) 

l/Bi 

1 + ln( l/Bi) 

Figures l-3 show the dimensionless heat flux,Eq. (12), critical radius, Eq. (14), and minimum in- 

sulation radius, Eq. (16), for ho= const. (m=l, n= 0), forced (m=0.618, n=O) and natural convection 

(m = 0.75, n = 0.25). The insulation surface temperature, Eq. (lo), is represented in Fig. 4. 

5 10 20 

ro* 

FIG. 4 
Minimum insulation radius as a function of the Biot number, for m=l, 

m=0.618, n=O; m=O.X, n=0.25. 

n=O; 



TABLE 2 

Sphere 

Radial Heat Conduction: Free Convection, Forced Convection and Constant Heat Transfer Coefficient 

Free convection (0~ n < 1, m = 3n) Forced convection (n = 0, O< m < 1) hO=const. (n = 0, m = 1) 

1 

l+Bi(T,)“(rgI-1) 

(r,‘) I+” 

l+Bi(~*)‘+“(l-l/r,) 

l+m “” 

(-1 Bi 

1 

1 + Bir,‘(ri - 1) 

(57’ 

l+Bi(~*)2(l-llr~) 

2 

Fi 

r* 0.“” 

41, 

Cylinder 

(cm,. 1 “-“(c:,,, - Bi ki:,, - 1)) ‘+” = 1 

r* O,C”I 

Bi((1 + n)/(l +m) + (&,, - 1)) 

Free convection (0~ n < 1, m = 3n) 

(%~“,.)“(~I”,. - Bi(<,“,, - 1)) = 1 

(1 + m)(“+‘V” 

Bi((1 + m)(“+‘)‘” - m Bi”“) 

Forced convection (n = 0, O< m < 1) 

1 

Bi-1 

4 

Bi(4 - Bi) 

h,=const. (n = 0, m = 1) 

To* =1-Bi(~*)“(TO*)“+‘ln(r~) 
1 1 

l+Bi(~*)mln(~*) 1 + Bi ri ln(ri) 

q’ = (ri)” (1 - Bi ln(r~)q’)‘+” (C)” 
l 

‘0 

l+Bi(r,‘)” In(<) 1 + Bi ri ln( ri ) 

1 
n 1 

(r&r,, ) ” = 5~ 

m ‘1” 

l+n BI ( 
1 + -!!!- ln(&i,) 

l+n ( 1 si Bi 

(r~“in)m(l-Biln(r~“i,))‘+” =I (r,‘“,,)“(1-Bi1n(&,,,)) = 1 (<““)(l - Bi ink’,“,, )) = 1 

1 m/Bi l/Bi 

Bi ((1 + n)/m + ln(&,,)) 1 + ln(m/Bi) 1 + ln(l/Bi) 
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Conclusion 

Using a more a realistic model of the convection coefficient, Eqs. (3) and (4), than the constant 

one, it can be seen that the heat-transfer rate diminishes, the insulation temperature increases and the 

minimum insulation radius decreases. These conclusions are in agreement with the expected trends, since 

the external convection coefficient, given by Eqs. (3) and (4), decreases as the insulation thickness 

increases. Comparing with the case of h,= const. the critical radius has a different behavior (Fig. 2). For 

Bi close to unity, it assumes a smaller value. But for lower values of Bi an inversion may be observed. 

This can be detected looking at Eq. (2): although the corrective factor is smaller than unity, the influence 

of h,, which decreases with the insulation radius, reverses the situation. The error made when considering 

h,= const. diminishes with increasing Biot numbers. Thus this kind of simplification can be made in some 

practical situations, but in the evaluation of the critical or minimum insulation radius, it is not reasonable. 

Table 2 summarizes the obtained results for the cylinder and for the sphere [3]. 
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Nomenclature 

B, C 

Bi 

D 

e 

h. h* 

k 

m, n. p 

WI 

Pr 

9,9* 

r, r* 

J&J 

Re, 

T, T’ 

proportionality constants in equations (3) and (4), dimensionless 

Biot number, hir, lk, dimensionless 

external diameter, m 

thickness of the insulation layer, m 

convection coefficient (W/m2K) and dimensionless convection coefficient 

thermal conductivity of the insulation, W/mK 

exponents in equations (1), (3) and (4), dimensionless 

Nusselt number based on diameter, dimensionless 

Prandtl number, dimensionless 

heat transfer rate across the insulation (W) and dimensionless heat transfer rate (q/q,) 

radial coordinate (m) and dimensionless radial coordinate (r/r,) 

Rayleigh number based on diameter, dimensionless 

Reynolds number based on diameter, dimensionless 

temperature (K) and dimensionless temperature difference 
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Subscripts and Suuerscriuts 

crit critical radius 

i inner insulation surface 

max maximum heat loss 

min minimum insulation radius 

0 outer insulation surface 

l dimensionless variable 

cc surrounding fluid 
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