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Received 26 July 2001; received in revised form 14 December 2001; accepted 10 January 2002

Abstract

This paper presents a study on fatigue life predictions in three polymer particle composites with different volume fractions of
filler and different particle sizes. Central hole notched specimens were analysed using a fracture mechanics approach. A solution
for the stress intensity factor of corner cracks at a hole was obtained using the finite element method and considering quarter-circular
and quarter-elliptical cracks of different sizes. The solution was compared with a literature solution and significant differences were
found. Fatigue crack propagation tests were performed at room temperature and constant loading amplitude, for stress ratiosR=0
andR=�0.75. Finally, fatigue lives, crack shape evolution and final crack length were predicted assuming an initial crack size and
considering that the crack maintains a quarter-elliptical shape. The comparison with experimental fatigue lives indicated the presence
of initial defects larger than the silica particles; however, these large sizes can be explained by the residual stresses measured near
the hole. 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The PMMA/Si acrylic casting dispersion is a com-
posite used as a substitute for many indoor household
ceramics, such as kitchen sinks, sanitary ware or sanitary
furniture. In kitchen sinks the PMMA/Si combines the
ease of moulding of the PMMA with the stiffness and
wear-resistance improvement provided by the reinforce-
ment particles of silica (SiO2). In general, the addition
of rigid particles to polymers or others materials can also
produce a reduction in thermal expansion, an improve-
ment in creep resistance and fracture toughness, and so
on. However, some failures had been observed in service
in kitchen sinks with these materials. The cause for these
fractures is probably thermal stresses due to alternated
flows of cold and hot water [1,2], which can produce
thermal fracture or thermal fatigue. Naturally these fail-
ures must be avoided.

Studies on fatigue of particulate composites are scarce
in the literature, particularly on silica-filled PMMA poly-
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mers. McMurray and Amagi [3] studied the effect of
temperature and stress ratio on fatigue strength of a sil-
ica-filled epoxy resin. They studied only one volume
fraction (60%) of silica with an average size of 7µm.
The temperatures used were significantly higher (T=60,
80 and 100°C) than those considered here.

Fatigue crack growth patterns and lives can be studied
numerically using experimental results of fatigue crack
growth rate and fracture toughness. A first approach con-
siders only some crack front key points (usually the sur-
face and deepest points) and assumes a particular crack
shape during all crack growth (usually circular or
elliptical) [4]. The crack is only allowed to change its
aspect ratio with crack growth. The constantsC and m
of the Paris law equation are determined experimentally
at the desired stress ratio. An effective�K can be used
to account for crack closure. This methodology has been
widely used in practical assessments of fatigue crack
propagation and good agreement was found with experi-
mental results [5,6]. Smith and Cooper [7] proposed an
alternative approach that considers several points along
the crack front and studies its propagation with the appli-
cation of load cycles.K along the crack front is calcu-
lated by a three-dimensional finite element analysis or
boundary element analysis, and an appropriate Paris law
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Nomenclature

a, c crack depth at the hole and at the front surface
af, cf crack depth at final fracture
C constant of Paris law equation
da/dN fatigue crack growth rate
E Young’s modulus
K stress intensity factor
Ka, Kc stress intensity factor at hole corner point and at front surface corner point
m exponent of Paris law equation
N number of fatigue cycles
PMMA polymethylmethacrylate
W width of specimen
R stress ratio (=smin/smax)
T temperature
Ya, Yc geometric factors at hole corner point and at front surface corner point
s remote stress
smax, smin maximum and minimum values of remote stress
n Poisson’s ratio
�K range of stress intensity factor

equation is integrated to obtain several local crack
growth increments, from which a new crack front can
be defined. The first approach will be used here because
Lin and Smith [8] showed that symmetric corner cracks
at a hole maintain a quarter-elliptical shape during
their growth.

The main objective of this paper is to assess the risk of
fatigue failure of PMMA reinforced with silica particles.
Three different volume fractions of filler and different
particle sizes were considered. Fatigue lives, crack shape
evolution and final crack length were predicted for cen-
tral hole specimens using a K solution, da/dN–�K curves
and assuming a quarter-elliptical shape and an initial size
for the defects. Two solutions of K were considered: a
numerical solution obtained here using the finite element
method and a solution found in the literature. Fatigue
lives were also determined experimentally and compared
with predictions.

2. Materials and testing conditions

The materials studied in this work were acrylic casting
dispersions with different volume fractions and sizes of
silica particles. Table 1 presents the chemical and physi-
cal composition for the three composites, whose trade-
marks are Asterite, Amatis and Ultra-Quartz [9]. Table
2 presents the mechanical properties of these materials.
The increase in volume fraction and size of the silica
particles increases Young’s modulus but reduces tensile
strength. The fracture toughness is lower for Asterite,
the material with a lower content of silica, and higher
for Amatis.

Table 1
The chemical and physical composition of the materials tested [9]

Material Components and Particle size Density (g/cm3)
(trade mark) volume fraction (% (µm)

vol)

PMMA SiO2

Asterite 56 44 10 1.69
Amatis 52 48 350 1.74
Ultra-Quartz 36 64 590 1.92

Table 2
Mechanical properties of the three materials at room temperature [2]

Material Tensile Young’s Poisson’s Fracture
strength modulus, E ratio, n (–)b toughness,
(MPa)a (MPa)b Kc (MPa

mm�1/2)c

Asterite 65 8875 0.24 48
Amatis 38 8056 0.26 77
Ultra-Quartz 22 13449 0.22 60

aObtained according to ASTM D638. Standard test for tensile
properties of plastics.
bDetermined by extensometry, testing a rectangular cross-section
tension specimen with four strain gauges bonded along longitudinal
and transverse directions.
cObtained according to EGF task group on polymers and
composites. A linear elastic fracture mechanics standard for
determining Kc and Gc for plastics. Testing protocol for Kc/Gc

standard, May 1988.
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Specimens of the three materials were submitted to
constant amplitude fatigue tests in order to obtain their
fatigue lives. The geometry of the specimens used in the
tests is shown in Fig. 1. They were obtained from the
bottom of kitchen sinks taken from a production line.
Tungsten carbide tools were used to machine the speci-
mens due to the abrasive nature of these materials. After
machining, the specimens were polished mechanically.
All tests were carried out in tension in a servo-hydraulic
machine Instron (model 1341) in load control, at room
temperature. A sinusoidal waveform was used with fre-
quencies in the range 30–40 Hz. Thermal stresses were
obtained experimentally by extensometry in another
study (in preparation). The ratio between the com-
pression and the tension stresses were close to �0.75.
Therefore, it was this R ratio that was used in the fatigue
tests. The stress ratio R=0 was also used because it is
always an important value for material characterization.
The results will be presented on the form of S–N
Wohler curves.

Fatigue crack propagation tests were also carried out
using MT specimens according to the ASTM E647 stan-
dard [10]. These tests were conducted under the same
conditions used in the above tests. The compliance tech-
nique was adopted to measure the crack length. Pre-
viously, a crack length calibration curve was generated.
For this, several crack lengths were artificially created
with the aid of a small bandsaw. For each crack length
a load versus strain plot was generated to obtain the ratio
�s/(E �e), �s/E being the applied remote strain and �e
the local strain measured by a strain gauge bonded to the
specimen above the specimen hole. Then the calibration
curve was plotted as the ratio �s/(E �e) against crack

Fig. 1. Specimen with central hole and symmetrical corner cracks.

Fig. 2. Calibration curves for R=0.

length 2a. Fig. 2 presents the calibration curves for
Asterite, Amatis and Ultra-Quartz loaded at R=0. Similar
results were obtained for R=�0.75.

The average residual stresses in the inner points of
central hole specimens, introduced by the manufacture
of the hole, were measured in some of the specimens of
Asterite using the hole-drilling technique. This technique
consists in the application of a gauge rosette onto the
specimen. Then, special tools are used to drill a hole in
the centre of the strain gauge. Following this action,
residual stresses change the strains on the surface of the
specimen, which is detected by the strain gauge rosette,
and then used for calculating the residual stress state.

3. Results

3.1. Stress intensity factor (K) solution

It is important to have accurate stress intensity factor
solutions, otherwise incorrect fatigue lives will be pre-
dicted. A K solution was determined numerically for the
corner crack studied here. Fig. 3 presents the physical
model considered in the finite element method analysis.
Only a quarter part of the geometry was analysed, con-
sidering adequate symmetry conditions. A static load of
1350 N was applied to this model for calculation of K,

Fig. 3. Physical model considered in the finite element method analy-
sis.
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which corresponds to a remote stress of 10 MPa. Since
the load is normal to the crack section, mode I defor-
mation occurs along all of the crack front. Rotation and
flexure of the head of the specimen was restrained,
which was intended to simulate the boundary conditions
imposed by the grips of the loading machine. The linear
elastic properties considered were E=13 000 MPa
(Young’s modulus) and n=0.225 (Poisson’s ratio).

The finite element code used was MODULEF [11].
The calculations were made with double precision num-
bers to reduce round-off errors. Isoparametric pen-
tahedric singular elements (with mid-side nodes pos-
itioned at quarter-point positions) were considered
around the crack front. 3D isoparametric elements were
considered elsewhere: 20 node hexahedral elements and
15 node pentahedric elements. A full Gauss integration
was used for these elements, i.e. 3×3×3 integration
points for the hexahedric elements and 21 integration
points for the pentahedric elements. Fig. 4a presents the
mesh used in the analysis of a 1 mm quarter-circular
crack, which has 948 elements and 4346 nodes. Fig. 4b
presents the finite element mesh around the crack front.
The mesh was refined near the free surfaces to account
for surface effects. The nodes along the crack front were
positioned on a cubic spline, which provides a good
simulation of the real shape (better than a polygonal
line). This mesh was adapted for different sizes and
shapes of crack. The stress intensity factor (K) was cal-
culated using a direct method proposed by Zhu and
Smith [12], which considers two nodes and the distri-
bution of displacements near the crack tip divided into
two terms (a singular term and a non-singular term).

Figures 5a and 5b present the results obtained for
quarter-circular cracks (a/c=1), while Figs 5c and 5d
present the results obtained for quarter-elliptical cracks
with a/c=2 (see Fig. 1). The stress intensity factor was
also calculated using the external forces method [13]. In
this method, several virtual crack increments are con-
sidered and the work of external forces (WE) is calculated
for each crack configuration using the finite element
method. The values of WE and �A, the virtual increment
of the crack area, are used to calculate the energy release
rate, from which K can be obtained. A good agreement
was found with the results of Tables 3 and 4, the differ-
ences being lower than 2.5%. The numerical results were
compared with a solution proposed by Newman and
Raju [15], based on numerical results published earlier
[14] (Fig. 5). Differences within �15.8% to +14.5%
were found for Yc, while for Ya the differences varied
from �10.1 to 3.3%. These differences can be explained
by extrapolation difficulties of Newman’s solution. In
fact, the results of reference [14] were obtained for
specimens with large width (b/(r+c)�5, b being the half-
width of the cracked plate, r the radius of the hole and
c the crack length at the front surface) and in solution
[15] an approximate finite-width correction parameter

Fig. 4. Finite element mesh used in the analysis of a 1 mm quarter-
circular crack (948 elements and 4346 nodes).

was considered which extrapolates the results to geo-
metries such that b/(r+c)�2.

To obtain a stress intensity factor solution several
cracks were considered, with different sizes and shapes,
and the surface values of K (Ka, Kc) were obtained. The
shapes analysed were a/c=0.75, 1, 1.25, 1.5, 1.75 and 2,
while the crack lengths were a/t=0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7 and 0.8, where a is the crack length at the
hole, c is the crack length at the front of the specimen
and t is the thickness of the specimen (6 mm), as rep-
resented in Fig. 1. Tables 3 and 4 present the results
obtained for the geometric factors at the front surface
corner point (Yc) and at the hole corner point (Ya). Two
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Fig. 5. Geometric factor at: (a) front surface corner point (Yc) and (b) hole corner point (Ya) for a/c=1 (quarter-circular cracks); (c) front surface
corner point (Yc) and (d) hole corner point (Ya) for a/c=2.

Table 3
Geometric factor for front surface corner point, Yc

a/c

a/t 0.75 1 1.25 1.5 1.75 2

0.05 1.987 2.022 1.986 1.927 1.86 1.792
0.1 1.776 1.849 1.842 1.811 1.767 1.718
0.2 1.519 1.612 1.635 1.627 1.604 1.574
0.3 1.394 1.475 1.506 1.505 1.49 1.468
0.4 1.36 1.415 1.428 1.422 1.405 1.384
0.5 1.378 1.403 1.399 1.383 1.362 1.338
0.6 1.396 1.419 1.394 1.367 1.34 1.312
0.7 1.475 1.448 1.372 1.365 1.329 1.295
0.75 – 1.45 1.392 1.326 – 1.29
0.8 – 1.465 1.386 1.325 – –

Table 4
Geometric factor for the corner point at the hole, Ya

a/c

a/t 0.75 1 1.25 1.5 1.75 2

0.05 2.384 2.192 2 1.831 1.683 1.554
0.1 2.319 2.143 1.965 1.811 1.674 1.553
0.2 2.218 2.058 1.902 1.762 1.638 1.527
0.3 2.156 1.996 1.853 1.72 1.603 1.499
0.4 2.14 1.968 1.813 1.683 1.571 1.469
0.5 2.138 1.949 1.796 1.665 1.554 1.453
0.6 2.135 1.942 1.779 1.648 1.538 1.439
0.7 2.174 1.952 1.778 1.637 1.525 1.428
0.75 – 1.964 1.787 1.641 – 1.426
0.8 – 1.977 1.797 1.649 – –
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polynomial functions were fitted by regression to these
results. For the front surface corner point (crack length
c):

Yc � 1.871 � 1.063x2�0.884x2
2 � 0.179x3

2

�12.927x1 � 13.954x2·x1�7.22x2
2·x1

� 1.486x3
2·x1 � 47.697x2

1�72.579x2·x2
1

� 43.773x2
2·x2

1 � 9.408x3
2·x2

1 � 69.24x3
1 (1)

� 123.298x2·x3
1�79.475x2

2·x3
1 � 17.389x3

2·x3
1

� 37.433x4
1�72.051x2·x4

1 � 47.494x2
2·x4

1

�10.339x3
2·x4

1

where Yc=Kc/(s·(p·a)1/2), x1=a/t, x2=a/c. For the corner
point at the hole (crack length a):

Ya � 3.227�3.075x1 � 5.613x2
1�2.519x3

1�1.15x2

� 2.446x1·x2�5.845x2
1·x2 � 3.103x3

1·x2 � 0.161x2
2 (2)

�0.514x1·x2
2 � 1.508x2

1·x2
2�0.886x3

1·x2
2

where Ya=Ka/(s·(p·a)1/2), x1=a/t, x2=a/c. The maximum
differences between the numerical results (Tables 3 and
4) and solutions (1) and (2) were found to be 1% and
0.6%, respectively. These solutions can be used for
0.5�a/c�2.5 (extrapolation outside 0.75�a/c�2) and
for 0�a/t�1 (extrapolation outside 0.05�a/t�0.8). The
error is probably within 3%.

3.2. da/dN–�K curves

Figures 6a and 6b present the fatigue crack propa-
gation rate da/dN against the stress intensity factor range
�K for R=0 and R=�0.75, respectively, at room tem-
perature (T=20 °C). For R=�0.75, �K was obtained con-
sidering only the positive range of �s. These composites
did not exhibit a sigmoidal variation consisting of the
three regimes (near-threshold, intermediate growth rate
and high growth rate), typical of ductile solids. However,
no results were obtained below 3×10�7 mm/cycle, where
the near-threshold regime could be observed. The Paris
law was fitted to these results by regression, m and C
being presented in Table 5.

The composites materials present a great improvement
in the fatigue crack growth strength relative to the
PMMA matrix [16]. In the case of the Asterite composite
this improvement was of about two orders of magnitude
while the Ultra-Quartz shows an even greater improve-
ment of three orders of magnitude. The Amatis shows
crack growth rates intermediate between Asterite and
Ultra-Quartz Paris curves. Hence, it can be concluded
that the addition of the filler particles increases signifi-
cantly the fatigue crack growth resistance of these
materials. Also, both the size and the volume fraction of
filler seem to improve the crack growth resistance. The
difference between the results for different materials

Fig. 6. da/dN–�K curves for (a) R=0 and (b) R=�0.75 (T=20 °C).

Table 5
Paris law constants ([da/dN]=mm/cycle; [�K]=MPa m1/2)

Material R m C

Asterite 0 12.47 4.83×10�5

�0.75 9.75 4.803×10�5

Amatis 0 12.91 5.938×10�6

�0.75 10.10 5.657×10�5

Ultra-Quartz 0 13.34 3.736×10�6

�0.75 11.53 5.838×10�5

decreases from R=0 to R=�0.75. Only the positive range
of �s was considered for R=�0.75, which can partially
explain this trend.
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3.3. Experimental S–N curves

Fig. 7 presents the S–N curves obtained experimen-
tally for R=0. The total fatigue life is lower for the Ultra-
Quartz composite, which has the greater size particles
(590 µm), a trend that can be explained by an increase
in the initial crack size with particle size. The Asterite
composite is the material with the greater total fatigue
life, and presents the particles with lower size (10 µm).
This trend is in agreement with the static strength of the
three materials.

3.4. Numerical predictions

Assuming the presence of a crack created in the
initiation phase (c0, a0,), a fracture mechanics analysis
was undertaken to estimate the crack size at which speci-
men failure occurs, the number of cycles required to
grow the initial crack till the fracture, and the evolution
of crack shape. The predictions were carried out
assuming that the corner cracks maintain an elliptical
shape during their growth at the central hole, and carry-
ing out the following procedure:

First, define an initial crack, i.e. c0 and a0. The particle
size was considered a reference value for the initial
flaw size.

Second, calculate the geometric factors at the front
surface and hole corner points (Yc and Ya, respectively)
using Eqs. (1) and (2). The solution proposed by New-
man and Raju [15] was also used for comparison. Calcu-
late �Kc and �Ka:

�Kc � Yc·�·s�p·a
�Ka � Ya·�·s�p·a
At this step the maximum values of K, i.e. (Kc)max and
(Ka)max, were compared with the fracture toughness of

Fig. 7. S–N curves for R=0.

the material (Table 2). If (Kc)max or (Ka)max were greater
than fracture toughness the analysis was stopped.

Third, calculate the crack increment using the Paris
law material constants obtained in the present work
(Table 5):

�c � C·(�Kc)m·�N

�a � C·(�Ka)m·�N

The value considered for �N was 1, to reduce the error
introduced by considering that �K is constant during a
crack advance.

Fourth, calculate the new crack front:

ci+1 � ci � �c

ai+1 � ai � �a

and update the number of fatigue cycles:

Ni+1 � Ni � �N

These new crack lengths were then considered at step
2 and the procedure was repeated until the toughness of
the material (given in Table 2) was attained. The size of
the crack at that time is the final fatigue crack length
and Ni+1 is the number of fatigue cycles.

3.5. Final crack length

Fig. 8 presents the final fatigue crack lengths (af and
cf, respectively) for Asterite, Amatis and Ultra-Quartz.
The initial crack lengths were chosen small enough to
eliminate their influence on the shape at fracture. The
increase in maximum load decreases the final crack
lengths for all materials, as expected. The material sig-
nificantly influences the final crack length, which is a
consequence of different values of toughness (Table 2).
For Asterite, the material with the lowest value of tough-
ness, the final crack lengths are very small, shorter than

Fig. 8. Crack lengths at fracture.
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0.6 mm. The solution proposed in [15] was also used to
obtain the final crack lengths and maximum differences
of �12% and +22% were found for Amatis.

3.6. Fatigue life predictions

Figures 9a, 9b and 9c present the life predictions
obtained for Asterite, Amatis and Ultra-Quartz, respect-
ively. For Asterite, the initial sizes predicted vary from
90 to 150 µm, that is much higher than the size of silica
particles (10 µm). For Amatis, the initial sizes predicted
are within 300 to 450 µm, therefore similar to the par-
ticle size. For Ultra-Quartz, the initial sizes predicted are
within 1.5 to 2.5 mm, and are therefore higher than the
particle size. These predictions are for propagation lives
only, but if an initiation life phase was considered the
initial crack sizes would be greater. The slope of the S–
N curves predicted is equal to �1/m, resulting from the
integration of the Paris law equation: � s=N-1/m f̃ (Y
�pa, C). Therefore, the slope is independent of the K
solution and only the intercept of the curve with the
stress range axis (Y-axis) is affected by this.

Fig. 9b compares the predictions obtained with the
two K solutions being considered. The solution
developed here gives fatigue lives slightly lower than
those predicted with Newman’s solution.

3.7. Crack shape evolution

Fig. 10a presents the evolution of crack shape with
crack length for Asterite at R=0. It can be seen that the
crack shape tends to about 2 with crack growth. The
solution proposed by Newman and Raju [15] gives final
crack shapes of about 1.5. Unfortunately, the experi-
mental crack shapes were not detectable on the fracture
surface. The experimental aspect ratio change reported
by Grandt and Macha [17] in transparent PMMA is also
presented in Fig. 10. The results fall between the shapes
obtained with both K solutions. It should be noted that
the fatigue results reported by Grandt and Macha were
obtained from a specimen with a single corner crack,
while symmetrical cracks were considered here. In
addition, the ratio r/t was 1.06, where r is the radius of
the hole and t the thickness of the plate, that is slightly
higher than considered here. Finally, parameter m of the
Paris law obtained by these authors was 6.1 while the
experimental value of m for Asterite at R=0 is 9.8. Fig.
10b compares the evolution of crack shape for different
values of m. It can be seen that a/c decreases with m as
the crack approaches the opposite surface of the plate,
which can explain the difference between the experi-
mental results of Grandt and Macha [17] and the results
obtained here with Eqs. (1) and (2). Lin and Smith [8]
also observed a decrease in a/c with m.

Fig. 9. (a) Asterite loaded at R=0. (b) Amatis loaded at R=0. (c)
Ultra-Quartz loaded at R=0.
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Fig. 10. (a) Evolution of crack shape for Asterite at R=0. (b) Influ-
ence of m on crack shape evolution.

4. Discussion

This discussion focuses on the analysis of fatigue lives
because the crack fronts were not detectable on the frac-
ture surfaces.

Fatigue life is the summation of the life spent to
initiate a crack, Ni, with the life expended in subsequent
propagation, Np. Sometimes, the total fatigue life
becomes almost dependent on only one of these phases.
In the case of particulate composite materials with a
brittle matrix, like PMMA, the fatigue resistance is very
dependent on the initial crack size. Hence, these
materials are very sensitive to the introduction of a crack
initiation site (e.g. fillers). As the particle size increases,
the filler is more detrimental to overall fatigue resistance.
The numerical analysis performed here only provides the
propagation life, as an initial crack is assumed. The
influence of particle volume fraction on fatigue crack

growth rate and on fatigue strength was not analysed
because it was impossible to separate this influence from
the particle size influence for the three materials under
analysis. However, we consider that the influence of par-
ticle size is more important, because it varies by about
60 times between Asterite and Ultra-Quartz, while the
particle volume fraction vary only by about 1.5 times.

Fig. 11 present predictions of smax versus initial crack
size for a propagation life of 104 cycles. The experi-
mental results for 104 cycles are also presented,
assuming that this reduced life is mainly due to propa-
gation, i.e. that initiation life can be disregarded. These
experimental results indicate an initial size for the
defects.

The fatigue lives predicted for Amatis (Figs 9b and
11b), considering an initial flaw size identical to silica
particle size, are similar to those obtained experimen-
tally. This indicates that the fatigue life is almost totally
spent in the propagation phase, which can be explained
by the importance of the size of the silica particle. The
values of the fracture toughness and the consequent final
crack length (Fig. 8) also explain the reduced importance
of the initiation phase. However, the results obtained for
Ultra-Quartz (Figs 9c and 11c) indicate the presence of
large defects, about four times larger than the size of
the filler particles. That is acceptable if one assumes the
joining of several silica particles where a larger defect
can exist.

Finally, the fatigue lives predicted for Asterite (Figs
9a and 11a) indicate the presence of defects about 10
times higher than the size of silica particles. However,
this prediction must be analysed with caution. In fact,
the crack lengths are very small (Fig. 8), therefore the
propagation occurs in the range of short cracks where
da/dN is higher than expected using the fracture mech-
anics approach valid for long cracks. Considering this
aspect, lower values of the initial crack length would be
obtained, closer to the size of the silica particles. The
different slopes of curves S–N obtained experimentally
and numerically (Fig. 9a) can be explained by the
initiation life. For smax=20 MPa the initial crack length
predicted is about 100 µm, while for smax=14 MPa the
life predicted numerically for 100 µm is lower than the
life obtained experimentally. This difference can be
explained by an increase in initiation life with the
decrease in load, which is not considered in the numeri-
cal analysis. However, another possible explanation is
the presence of traction residual stresses introduced by
the manufacture of the hole. This would explain the high
value predicted for the initial crack size because the
residual stresses increase the stress ratio, increasing the
fatigue crack growth and reducing the experimental
fatigue life.

The average values of residual stress obtained at sur-
face points close to the hole were about 30 MPa for
Asterite and 12 MPa for Ultra-Quartz and Amatis, which
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Fig. 11. Sizes predicted for initial defects: (a) Asterite; (b) Amatis;
(c) Ultra-Quartz.

reduce to zero at depths larger than 300 µm (Asterite) or
500 µm (Ultra-Quartz and Amatis). This is particularly
important for Asterite in which almost all propagation
occurs inside the zone affected by residual stresses (Fig.

8). In the case of Ultra-Quartz the level of maximum
stress approaches the tensile strength, the real stress ratio
will be quite high and consequently the fatigue crack
growth rate will be significantly higher. Therefore, the
initial defects are substantially lower than predicted in
Fig. 11, particularly for Asterite and Ultra-Quartz.

5. Conclusions

1. A K solution was obtained for symmetrical corner
cracks at a hole using the finite element method. This
solution was compared with a literature solution and
important differences were found.

2. da/dN–�K curves were obtained. Ultra-Quartz has the
lowest fatigue crack growth rate while Asterite has
the worst resistance to crack growth, but still has a
crack propagation rate of about two orders of magni-
tude below the PMMA. In fact, the addition of filler
particles significantly increases the fatigue crack
growth resistance of these materials relative to the
PMMA matrix.

3. Tensile fatigue strength was obtained experimentally
for three particulate composites using notched speci-
mens. The material with the finest particle size
(Asterite) shows a better fatigue strength while Ultra-
Quartz with a particle size of 590 µm shows the worst
resistance. This trend is in agreement with the relative
static strength of the three materials.

4. A fracture mechanics approach was used to predict
the fatigue lives, the final crack lengths and the crack
shape evolution. The final crack length was found to
be very small for Asterite, in some cases below the
validity of application of fracture mechanics. In the
cases of Amatis and Ultra-Quartz the final crack
lengths predicted were significantly higher.

5. The comparison of numerical and experimental
fatigue lives indicates that for Amatis the initial crack
size was similar to the size of the silica particles. In
the case of Ultra-Quartz the initial crack size was pre-
dicted to be about three times higher than the size of
the filler particles, which was explained by the joining
of several particles. The initial defect predicted for
Asterite was found to be significantly higher than the
size of the silica particles, which was explained by the
presence of traction residual stresses or by the short
dimension of the cracks within the range of short
cracks. The accuracy of the K solution cannot explain
the trends observed.
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