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Abstract

The development of depth sensing indentation equipment has allowed easy and reliable determination of two of the
most popular measured mechanical properties of materials: the hardness and the Young�s modulus. However, some
difficulties emerge in the experimental procedure to calculate accurate values of these properties. This is related to,
for example, the tip geometrical imperfections of the diamond pyramidal indenter and the definition of the contact area
at the maximum load. Being so, numerical simulation of ultramicrohardness tests can be a helpful tool for better under-
standing of the influence of these parameters on procedures for determining the hardness and the Young�s modulus. For
this purpose, specific finite element simulation software, HAFILM, was developed to simulate the ultramicrohardness
tests. Different mesh refinements were tested because of the dependence between the values of the mechanical properties
and the size of the finite element mesh. Another parameter studied in this work is the value of the friction coefficient
between the indenter and the sample in the numerical simulation. In order to obtain numerical results close to reality, a
common geometry and size of the imperfection of the tip of Vickers indenter was taken into account for the numerical
description of the indenter.
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1. Introduction

The ultramicrohardness test is commonly used to measure the materials mechanical properties. The most
obvious of these properties is the hardness, which can be defined by the equation:
H ¼ P
A
; ð1Þ
where P is the maximum applied load and A is the contact area of the indentation immediately before
unloading.

The experimental determination of the contact area, A, can be a hard task, when using ultramicrohard-
ness test. In fact, the high performance attained by the current depth sensing indentation equipment in load
and displacement resolutions allows for the use of ultra-low loads. However, the use of indirect methods is
needed as well as the consideration of specific aspects for the contact area evaluation (see, e.g., Trindade
et al., 1994; Antunes et al., 2002a; Oliver and Pharr, 1992), which are not common in the case of the classic
microhardness tests, for which the size of the indentation is measured by optical means. The main aspects to
be considered are related to the geometrical imperfections of the tip of the diamond pyramidal punch and
the formation of pile-up or the presence of sink-in, which influence the shape and size of the indentation.

The ability of the ultramicrohardness equipment to register the load versus the depth indentation, during
the test, enables us to evaluate not only the hardness, but also other properties, such as the Young�s mod-
ulus. Based on the Sneddon relationship (Sneddon, 1965) between the indentation parameters and Young�s
modulus, Doerner and Nix (1986) have proposed an equation that relates the Young�s modulus with the
compliance of the unloading curve immediately before unloading, C, and the contact area, A, such as:
ER ¼
ffiffiffi
p

p

2

1ffiffiffi
A

p 1

C
; ð2Þ
In this equation, ER, is the reduced Young�s modulus, which is a function of the Young�s modulus and the
Poisson�s ratio, m, of the specimen (s) and the indenter (i), through:
1

ER

¼ 1� t2s
Es

þ 1� t2i
Ei

: ð3Þ
Such as for the hardness calculation, the evaluation of the Young�s modulus needs the correct determina-
tion of the contact area. Moreover, the correct determination of the compliance is needed for the evaluation
of the Young�s modulus.

The use of the numerical simulation to study the deformation process involved in the indentation test
seems to be a useful tool for understanding the mechanical phenomena that takes place into the material
under indentation. In the last few years, many works have used the numerical simulation to describe the
indentation process. However, most of them use bi-dimensional analyses with spherical and conical inden-
ters, and sometimes a load distribution is used instead of the indenter (see, e.g., Murakami and Yuang,
1992; Laursen and Simo, 1992; Sun et al., 1995; Cai and Bangert, 1995; Kral et al., 1993; Bolshakov
et al., 1996; Taljat et al., 1998; Bhattacharya and Nix, 1988, 1991). Some works (see, e.g., Zeng et al.,
1995; Wang and Bangert, 1993; Antunes et al., 2002b), show results from three-dimensional numerical simu-
lations of the hardness tests with Vickers indenter, but in general do not take into account the friction,
between the indenter and the indented material, and the existence of the offset in the tip of the indenter.

In the present study specific simulation software, HAFILM was developed to simulate ultramicrohard-
ness tests. This home code enables us to simulate hardness tests with any type of indenter shape including
the offset imperfection of the indenter tip and takes into account the friction between the indenter and the
sample. A preliminary analysis on the influence of the finite element mesh refinements and on the friction
coefficient on the hardness and Young�s modulus numerical calculations is performed. In the following, a
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detailed numerical study about the size influence of the offset of the indenter on those mechanical properties
is presented, using indenters with five different offset values. Finally, the influence of the work hardening on
the indentation geometry and its consequences on the contact area, hardness and Young�s modulus evalu-
ation, is studied.
2. Mechanical model

The mechanical model, which is the base of the FEM home code HAFILM, considers the ultramicro-
hardness test as a process of large plastic deformations and rotations. The plastic behaviour of the material
can be described by the anisotropic Hill�s yield criterion with isotropic and/or kinematic work hardening (in
the present study the material is assumed as isotropic—Von Mises criterion—and described by an isotropic
work hardening law). The elastic behaviour is isotropic. It is assumed that contact with friction exists
between the sample and the rigid indenter. To model the contact problem, a classical Coulomb law is used.
To associate the static equilibrium problem with the contact with friction an augmented Lagrangean
method is applied in the mechanical formulation. This leads to a mixed formulation, where the kinematic
(material displacements) and static variables (contact forces) are the final unknowns of the problem. For its
resolution, the HAFILM code uses a fully implicit algorithm of Newton–Raphson type. All non-linearities,
induced by the elastoplastic behaviour of the material and by the contact with friction, are treated in a
single iterative loop (Menezes and Teodosiu, 2000).

2.1. Elastoplastic formulation

The elastoplastic constitutive equation can be written as (Oliveira et al., 2003):
_rJ ¼ C ep : D; ð4Þ
where Cep is a fourth order tensor designed as elasto-plastic modulus, D is the strain rate tensor and _rJ is
the Jaumann derivative of the Cauchy stress tensor r:
_rJ ¼ _rþ rW �Wr; ð5Þ
where _r is the temporal derivate of the Cauchy stress tensor and W is the rotation rate tensor defined by:
W ¼ _RRT; ð6Þ

R being the elastic rotation tensor.

The plastic behaviour is described by using the general yield condition:
f ð�r; Y Þ ¼ �r� Y ¼ 0: ð7Þ

In this equation Y is the flow stress in tension, which is a function of a scalar parameter that represents the
isotropic work-hardening, as described by the Swift law:
Y ¼ Cðe0 þ �epÞn; ð8Þ

where C, e0 and n are constants for a particular material, determined in classical mechanical tests and �ep is
the equivalent plastic strain. The yield stress of the material Y0, is given by the equation:
Y 0 ¼ Y ð�ep ¼ 0Þ ¼ Cen0: ð9Þ

In Eq. (7), the equivalent stress �r is defined by the quadratic form:
�r2 ¼ r : M : r; ð10Þ
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where M is a fourth order tensor. Their evolution along the deformation process is given as function of the
initial anisotropy tensor cM , corresponding to the Hill criterion:
Mijkm ¼ RinRjpRkqRms
bMnpqs: ð11Þ
2.2. Principle of virtual velocities

Let X0 denote the region occupied by the material at a current time t. It is assumed that the contact
boundary R0 of X0 can be divided into two parts: R0j1, where the rate of the nominal stress vector is pre-
scribed, and R0j2, on which the velocity vector is prescribed. Then, the principle of virtual velocities equi-
valent to the incremental boundary-value problem, formed by the equilibrium equations, boundary
conditions and constitutive equation (4), goes as follows (Menezes and Teodosiu, 2000):
Z

X0

Y
: d _E dX ¼

Z
R0j1

s�dvdR: ð12Þ
This Eq. (12) is fulfilled for any virtual velocity field dt (with dt = 0 on R0/2). � is the first Piola–Kirchoff
stress tensor, with respect to the configuration at time t, and s is a place and time known function.
2.3. Contact with friction

One of the most common difficulties on the numerical simulation of the indentation process is related to
the time dependence of the boundary conditions due to the contact with friction between the indenter and
the deformable body. To solve this problem, an augmented Lagrangian approach is used to define an equi-
valent problem that includes in its formulation the restrictions associated with the contact with friction
(Menezes and Teodosiu, 2000; Desaxce and Feng, 1991; Simo and Laursen, 1992). The formulated problem
leads to the following mixed non-linear system:
½F intðuÞ� þ ½Fequiðu; kÞ� � ½Fext�
½Fsupðu; kÞ�

(
¼ Rðu; kÞ ¼ 0; ð13Þ
Fint(u) and Fext represent the internal e external forces, Fequi(u,k) and Fsup(u,k) are two operators associated
to the contact with friction boundary conditions. Eq. (13) presents a system of six equations to six unknown
variables, three displacements (u) and three contact forces (k) (Oliveira et al., 2003).
3. Numerical simulation

3.1. Implicit algorithm

The finite element code HAFILM uses a fully implicit algorithm of Newton–Raphson type to solve the
non-linear system. All non-linearities, induced by the elastoplastic behaviour of the material and by the
contact with friction, are treated in a single iterative loop (Menezes and Teodosiu, 2000).

The evolution of the deformation process is described by an updated Lagrangian scheme, i.e., the con-
figuration of the deformed body at time t, and is taken as a reference for the time interval [t,t + Dt], Dt being
the time increment. When the solution for the current time increment is known, the configuration and the
state variables are updated and the result is taken as the reference configuration during the subsequent time
increment.
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3.2. Finite elements

The library of the FEM code HAFILM has three different types of isoparametric solid finite elements:
tetrahedron with four nodes, pentahedron with six nodes and hexahedron with eight nodes. The implemen-
tation of these elements is very easy, but it needs some cares when applied to problems with large plastic
deformations. When the numerical method uses a full integration scheme, the condition of constant volume
during plastic deformation, assumed in the mechanical model, leads to an artificial stiffness increase of the
elements, that affects the final solution. The use of a selective reduced integration enables to obtain a behav-
iour improvement of the elements when large deformations are assumed. In the present study, the hydro-
static components of the gradient and virtual velocity are considered constants within the element and are
evaluated for its central point (reduced integration point). The other remaining components are evaluated
with a full integration scheme.

The spatial discretization of the deformed body leads to a global linear system resulting from the linea-
rization of Eq. (13). This system is calculated and solved in each iteration of the implicit Newton–Raphson
algorithm (Menezes and Teodosiu, 2000):
½KAB�ijfduBgj þ ½T A�ij þ ½QA�ijfdkAgj ¼ ff 1
Agi

½T A�ijfduAgj þ ½PA�ijfdkAgj ¼ ff 2
Ag

(
ð14Þ
In this system, A and B are the global numbers of the nodes; du and dk are the nodal vectors of displace-
ment and contact force increments, respectively; [KAB]ij is the global stiffness matrix. The remaining terms
of Eq. (14) are directly related to the contact with friction conditions of each node. This system is not sym-
metric and usually it is ill conditioned, requiring robust methods for its resolution (Alves and Menezes,
2002).
4. Modulation of the indentation process

4.1. Indenter description

The Vickers indenters used in ultramicrohardness tests does not have a perfect geometry. Among the
geometric defects, the most important is the so-called ‘‘offset’’. The importance of this defect is related
to errors introduced in the experimental area evaluation. Bézier surfaces describe the indenter geometry
used in the numerical simulations, which allow obtaining a fine description of the tip, as shown in
Fig. 1. A detailed view of one fourth of the indenter tip, presenting a rectangular shape is also shown in
this figure, where the dimension, a, of the geometrical defect of the tip is indicated (Table 1).
Fig. 1. Vickers indenter and a detail of one fourth the indenter tip with the imperfection designed offset.



Table 1
Indenters offsets

Indenter Vickers 1 Vickers 2 Vickers 3 Vickers 4 Vickers 5

a (lm) 0.02 0.04 0.06 0.08 0.10

J.M. Antunes et al. / International Journal of Solids and Structures 43 (2006) 784–806 789
In order to accomplish the study of the aspects related to the indenter geometry, we perform numerical
simulations using two different flat indenters: one circular and other with a square geometry, both with
three different contact areas (7.1, 21.2 and 40.7 lm2).

4.2. Sample and materials description

A study concerning the influence of the mesh in the hardness results was performed, using three different
meshes, of three-linear eight-node isoparametric hexahedrons. Table 2 presents the size of the elements in
the indentation region and the total number of elements that compose each mesh. The mesh refinement was
chosen in order to guarantee a good estimation of the indentation contact area. Due to the symmetry along
the X- and Z-axis, only a fourth of the sample is used in the simulation as illustrated in Fig. 2. Four real
materials were studied, by simulation. Their mechanical properties are presented in Table 3. Also, in the
Table 2
Finite element meshes

Mesh Mesh 1 Mesh 2 Mesh 3

Element size (lm) 0.380 0.055 0.045
Number of elements 4680 5832 8008

Fig. 2. Finite element mesh used in the numerical simulations.

Table 3
Mechanical properties of the real materials

Material Y0 (GPa) n E (GPa) m

Steel AISI M2 4.0 0.010 220 0.290
BK7 3.5 0.010 82 0.203
Tungsten 2.0 0.010 410 0.289
Nickel 0.2 0.078 220 0.310



Table 4
Mechanical properties of the fictitious materials

Materials Studied cases n Y0 (GPa) E (GPa) e0 m

Minimum Maximum

Without work-hardening 10 �0 0.25 25 100 0.005 0.29
10 0.50 60 410

With work-hardening 6 0.6 0.05 6 100
6 0.15 6 410
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study, several fictitious materials with two different work-hardening coefficients (n = 0 and n = 0.6) and two
Young�s modulus (E = 100 GPa and E = 410 GPa) were used (Table 4).
5. Experimental and results

5.1. Numerical parameters: mesh and friction coefficient analysis

In order to evaluate the influence of the mesh size in the calculation of the mechanical properties, six
numerical simulations with a maximum load Pmax = 20 mN and the two indenters (Vickers 1 and 3) were
performed using three different meshes. The material used in this analysis was the steel AISI M2 and the
friction coefficient was equal to 0.16.

Fig. 3 presents the hardness results obtained with the three meshes (the hardness value marked in the
figure, 10.2 GPa, was obtained by experimental tests, at a maximum load equal to 50 mN, carry out with
an ultramicrohardness equipment Fischerscope H100; the indentation contact depth was determined from
the unloading curve (Oliver and Pharr, 1992), and the indenter shape function for the tip was obtained
using the atomic force microscopy (AFM) technique, as explain in previous work (Antunes et al.,
2002a)). The numerical values were determined from the projected contact area on the surface plan of
the sample, at the peak load; this area corresponds to the interior of the contour defined by the nodes that
contact with the indenter at the maximum load. For Vickers 3, the hardness values are almost independent
on the mesh size. However, for Vickers 1, the result for mesh 1 is lower than for mesh 2 or 3, for which the
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Fig. 3. AISI M2 hardness results obtained with the three studied meshes, for the cases of the indenters Vickers 1 and 3.
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Fig. 4. CPU calculation time spent in the numerical simulations with the three meshes.
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results are quite satisfactory. Fig. 4 presents the CPU time used on the simulations, for the same six cases.
From Figs. 3 and 4, we can conclude that mesh 2 presents a good compromise between hardness results
accuracy and CPU time.

The influence of friction coefficient between the indenter and the deformable body in the hardness results
was studied using mesh 2 and indenter Vickers 3. The materials used were the nickel and the steel AISI M2
that were loaded up to 10 and 20 mN respectively. These two materials have different mechanical behav-
iours: soft and hard material, respectively. In this analysis, the following friction coefficients were tested:
0.04 (only for AISI M2 steel), 0.08, 0.16 and 0.24. The choice of these values is related with the fact that
in the literature is common to consider a friction coefficient between the indenter (diamond) and most mate-
rials equal to 0.16 (Lynch, 1980; Bowden and Tabor, 1950). The evolution of the calculated hardness with
the value of the friction coefficient is presented in Fig. 5. The low variation of the hardness values observed
in this figure indicates that the overall behaviour is apparently independent of the value of the friction coef-
ficient used in the simulations. However, as show in Fig. 6(a) and (b) for the AISI M2 steel, the distribution
of the equivalent plastic strain under the indenter is quite dependent on the value of the friction coefficient.
For low values of the friction coefficient, the maximum value of the equivalent plastic strain is quite high
(�1.27), and it is located on a small area at the surface of the indentation (Fig. 6(a)). In the case of a high
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Fig. 5. Hardness results obtained for the different friction coefficients, using mesh 2 and Vickers 3.



Fig. 6. Equivalent plastic strain distribution on the steel AISI M2 sample: (a) for a friction coefficient equal to 0.04; (b) for a friction
coefficient equal to 0.24.
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friction coefficient (Fig. 6(b)), the maximum value of the equivalent plastic strain (�0.38) is lower and it is
located not only at the surface but also at a certain depth value under the indentation surface. Moreover,
the deepness of the plastic deformed region increases with the value of the friction coefficient. This behav-
iour, which is also observed for nickel, indicates that with increasing the friction coefficient the strain gra-
dient becomes smooth.

In spite these different behaviours, the hardness values seems to be only slightly influenced by the fric-
tion coefficient, at least for the values of the friction coefficient that are commonly used in the literature
(Fig. 5). In the following, the value retained for the friction coefficient was 0.16, which is the most common
used.
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5.2. Compliance evaluation

As mentioned above, it is possible to determine the Young�s modulus using the hardness test. To do so, it
is necessary to have the previous compliance evaluation, C = dh/dP calculated at the point of maximum
load, (Eq. (2)). Several experimental methods have been described, using the unloading curve of the hard-
ness test, to estimate C (Doerner and Nix, 1986; Oliver and Pharr, 1992). The stiffness, S = 1/C = dP/dh, at
maximum load during unloading, can be determined by two different ways. One of them takes at about 1/3
of the unloading data (starting from maximum load) and uses a linear fitting (Doerner and Nix, 1986):
Fig. 7.
Eqs. (1
P ¼ Shþ b; ð15Þ

where the stiffness, S, is defined as the initial unloading slope and b = � Shp, at P = 0, where hp is the inter-
ception of the linear unloading curve with the h axis. This method (linear fit) is strongly influenced by the
unloading curve fraction considered (see Oliver and Pharr, 1992). A second method, proposed by Oliver
and Pharr (1992), suggest the fitting of the unloading curve using the power law:
P ¼ Aðh� hfÞm; ð16Þ

where hf is the final depth after unloading, m and A are constants directly obtained from the fit.

In the present work, a fit of the unloading curve with a power law is used, but slightly different from the
method of Oliver and Pharr (1992). The term hf in Eq. (16) is changed in the new equation by h0, which is
the lower value of h used in the fitted region (the unloading curve was fitted by using the commercial soft-
ware Curve Expert 1.3.), corresponding to a load value P0. So, Eq. (16) can be rewritten as:
P ¼ P 0 þ Aðh� h0Þm: ð17Þ

A plot of stiffness versus fitted fraction of unloading curve, obtained by fitting Eqs. (16) and (17) to the

numerical results, is shown in Fig. 7. This figure shows that the results for both equations (16) and (17) are
very close, whatever the materials except for the case of the nickel and tungsten. It is also clear from Fig. 7
that the results of stiffness obtained using Eq. (17) are lower and present stabilization (horizontal dashed
lines) when the fraction of the upper part of the unloading curve taken into account in the fit is between
60% and 90%. Table 5 presents the Young�s modulus results obtained in numerical simulations and exper-
imental tests, for the four studied real materials (Table 3). The numerical Young�s modulus results, using
the compliance values obtained from Eq. (17), are close to the input values. In fact, the correlation
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Table 5
Young�s modulus results obtained in experimental and numerical tests using Eqs. (16) and (17) in the fits of unload curve for the
stiffness evaluation

Results BK7 Nickel Steel AISI M2 Tungsten

Eq. (16) Eq. (17) Eq. (16) Eq. (17) Eq. (16) Eq. (17) Eq. (16) Eq. (17)

Numerical

Pmax (mN) 10 10 20 20
EInput 82 220 220 410
E (GPa) 91.5 86.5 261.0 239.3 243.9 229.1 511.4 451.7
Error (%) 11.6 5.5 18.3 8.5 10.9 3.9 24.7 10.2
r 0.9999 0.9999 0.9996 0.9999 0.9991 0.9999 0.9988 0.9999

Experimental

Pmax (mN) 42 42 100 42
EReference 82 220 220 410
E (GPa) 90.1 81.0 251.3 243.5 298.2 208.0 541.8 515.3
Error (%) 10.0 �1.1 14.2 10.7 35.2 �5.7 32.1 25.7
r 0.9997 0.9998 0.9998 0.9999 0.9999 0.9999 0.9996 0.9998
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coefficients obtained in the fits are slightly better for the case of Eq. (17) than for Eq. (16). In order to check
the efficacy of this analysis for experimental cases, ultramicrohardness tests were performed on the mate-
rials of Table 3. The comparative results using Eqs. (16) and (17) are also presented in Table 5, showing the
improved performance of Eq. (16) also for experimental tests. In both cases, numerical and experimental,
the fit used 70% of the unloading curve. As it was explained above, the numerical contact area used in the
calculations corresponds to the interior of the contour defined by the nodes that contact with the indenter,
at the maximum load; the experimental contact area was determined from contact indentation depth
corrected with the indenter shape function.

This allows us to conclude that the stiffness evaluation, using a power law fit such as Eq. (17), enables us
to obtain results with good accuracy, considering the upper unloading points in the above-mentioned
range.

5.3. Indentation geometry

This section presents a study of the work hardening influence on the indentation geometry and conse-
quently on the evaluation of the contact area. Numerical simulations with the indenter Vickers 3 (see Table
1), using the finite element mesh 2 previously presented (Table 2), were performed up to the same depth,
hmax = 0.3 lm. A friction coefficient equal to 0.16 was assumed between the indenter and the sample.
The fictitious materials simulated had two different Young� modulus (100 GPa and 410 GPa) and a Pois-
son�s ratio of 0.29 (Table 4). The Swift Law (Eq. (8)) was used to model the material behaviour. Two dif-
ferent cases of work hardening coefficient, n, were studied: n � 0 (elastic-perfectly plastic materials) and
n = 0.6 (high work-hardening materials). The yield stress values of the materials investigated are shown
in Table 4.

Fig. 8 shows the indentation profiles obtained in the sample surface under indentation for each different
work hardening materials and Young�s modulus. In the figures, the indentation profiles appear related to
the ratio hf/hmax, between the indentation depth after unloading, hf, and the indentation depth at the maxi-
mum load, hmax. The use of the ratio hf/hmax as the analysis parameter is related to their simple determi-
nation based on the load–unload curves obtained in the numerical simulations or in the experimental
tests. Furthermore, the parameter hf/hmax apparently does not depend on the indentation depth, for a given
material (Bolshakov et al., 1997).
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Table 6
Calculated Young�s modulus obtained for the tested flat indenters

Material Indenter Estimated E (GPa) Input E (GPa) Differences

AISI M2 steel Circular 217 220 ��1.4%
Square 236 �7.0%

BK7 Circular 81 82 ��0.9%
Square 85 �3.8%

Tungsten Circular 404 410 ��1.3%
Square 439 �7.1%

Nickel Circular 216 220 ��2.2%
Square 237 �7.8%
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Fig. 8(a) and (b) show that the pile-up formation appear associated to low values of work hardening
(n � 0) and ratios hf/hmax > 0.8. On the other hand, for materials with high work hardening coefficient
(n = 0.6, in Fig. 8(c) and (d)), pile-up does not occur, whatever the value of hf/hmax for any value of the
indentation depth ratio hf/hmax. Qualitatively similar results were obtained by other authors (Bolshakov
et al., 1997), for a cone without friction between the sample and the indenter in 2D finite elements
simulation.

Fig. 9 presents the projected contact area, AEvaluated, obtained in the numerical simulations as a function
of the ratio hf/hmax. The contact area is normalized with respect to the projected reference area Areference (the
area function of the indenter was taken into consideration) obtained when the indentation geometry does
not present pile-up or sink-in formation. When the ratio hf/hmax < 0.6, the contact area almost does not
Fig. 12. Equivalent stress distribution at maximum load obtained in the steel AISI M2: (a) circular flat punch, with a contact area
equal to 7 lm2; (b) square flat punch, with a contact area equal to 7 lm2.
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depend on the work hardening coefficient and on the value of the Young�s modulus. The ratio AEvaluated/
Areference is always less than 1, except for the values of hf/hmax > 0.85, when n = 0. For hf/hmax > 0.6, the
normalized projected contact area depends on the work-hardening coefficient.

With the previous estimations for the contact area, an evaluation of the Young�s modulus, E, was per-
formed. These results are shown in Fig. 10, where the Young�s modulus values, E, are normalized with
respect to the input value, Einput, considered in the finite element simulations. From this figure, it is possible
to see that EEvaluated/Einput is always higher than 1, being approximately close to 1.05, except for
hf/hmax > 0.9. In this region, the values of the ratio EEvaluated/Einput can attain values higher than 1.10. Iden-
tical results were obtained with conical indenters (Oliver and Pharr, 2004).

The overestimation in the evaluation of Young�s modulus observed, whatever the value of hf/hmax, can
be related to the fact that the Vickers indenter geometry associated with large plastic deformations can not
be perfectly described by Eq. (2). In order to remove this difficulty, a factor b is introduced in Eq. (2) so to
take into account the fact that indentation experiments are performed with non-axisymmetric indenters and
involving large plastic deformations. This way, Eq. (2) is usually written as follows:
Fig. 1
hf/hma
ER ¼ 1

b

ffiffiffi
p

p

2
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p 1
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: ð18Þ
In a recent review Oliver and Pharr (2004) state different values for the former proposed factor b, which
they summarize as being in the range 1.0226 6 b 6 1.085, for the Berkovich indenter. Most of the previous
results concern circular geometries of the indenters, such as conical and flat-ended punches, 2D numerical
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simulations without friction (Oliver and Pharr, 2004; Bolshakov and Pharr, 1998; Hay et al., 1999; Cheng
and Cheng, 1998, 1999). The present results overcome such difficulties and concern a large range of
mechanical properties of the materials. The results in Fig. 10 indicate a mean value for the b factor close
to 1.05, excepted for materials for which hf/hmax > 0.9 for which b can be greater than 1.10. It must be
remembered that the present results for b were obtained in 3D numerical simulation of Vickers Hardness
tests of several materials with different Young�s modulus and work hardening coefficients, and considering
friction between the specimen and the indenter.

In order to better understand the role of the b factor and in which way its value is affected by the more or
less severe plastic deformation that alter the surface orientation during the hardness indentation, we used
the same materials that in Fig. 10 for tests with flat-ended punches, having circular and square shapes with
three different area values (�7, 21 and 41 lm2). Simulations were performed with flat punches, using a 0.04
lm displacement imposed, in such away that only elastic deformation occurs. A friction coefficient equal to
0.16 was used in all the numerical simulations. The finite element mesh used was the mesh 2 (Table 2). The
resulting Young�s modulus values E are shown in Fig. 11 for each shape. This study was also performed in
real materials and the conclusions are similar (Table 6). The value of E is always higher in the case of the
square punch. This is certainly related with the stress and strain distribution under the indenter. Fig. 12(a)
and (b) show the equivalent stress distribution at maximum load for both geometries, circular and square,
and smaller areas for the case of the AISI steel. In the case of square geometry (Fig. 12(b)), the highest
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stresses are observed near the corners. Considering that Equation (2) results from the Sneddon�s analysis
(Sneddon, 1965), for purely elastic contact of a rigid cone, the present results indicate that its use for the
case of a square flat punches needs a correction, by using the b parameter. This study with flat indenters
shows the simple consideration of a square geometry (b mean value equal to 1.085) instead of a circular
one: (b mean value equal to 0.99) which is quite close to 1.

Results by Giannakopoulos et al. (1994) and Larsson et al. (1996), with 3D numerical simulations shows
that for the Berkovich and Vickers indenters the value of b depends on the Poisson�s ratio m and its values
for m = 0.3 are b = 1.14 and 1.095, respectively. Moreover, most of the results presented in the literature
show that the b value is higher for the Berkovich than for the Vickers indenter, increasing with the apical
half-angle, which are in agreement with our b values (1.05 for the real Vickers indenter and 1.085 for the
Fig. 15. Equivalent plastic strain distribution at maximum load for the materials with E = 100 GPa: (a) yield stress equal to 0.25 GPa
and n � 0; (b) yield stress equal to 0.05 GPa and n = 0.6.
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square flat punch). The difference between b values for square flat punch and for the Vickers indenter can
be related with the fact that in the flat ended punch only the material elastic deformation occurs. On the
other hand, for the Vickers indenter, severe plastic deformation appears which distorts the surface during
the hardness indentation.

5.4. Stress and strain distributions

Stress distributions of rxx and ryy (see Fig. 1) obtained with the tested materials, are presented in Figs. 13
and 14. For the different cases studied (four combinations of: E = 100 and 410 GPa; n � 0 and n = 0.6),
only the minimum and the maximum values of hf/hmax tested in each case are presented. The results
Fig. 16. Equivalent plastic strain distribution at maximum load for the materials with E = 100 GPa: (a) yield stress equal to 4 GPa and
n � 0; (b) yield stress equal to 0.75 GPa and n = 0.6.
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presented in the figures correspond to the absolute values of the compressive stresses, which were obtained
at the surface of the indentation, at the same indentation depth.

The stress distributions presented in the figures show that the zones with compressive stresses correspond
to the total length in contact with the indenter (the vertical dashed line in figures represents the contact
boundary). For high values of the ratio hf/hmax, which correspond to materials with relatively low yield
stresses, the obtained stress level is low and rather horizontal as shown in Fig. 13(b) and (d) and Fig.
14(b) and (d). For the cases of Fig. 13(b) and (d) (n = 0), pile-up appears in the indentation, which is
not the case of Fig. 14(b) and (d) (n = 0.6). For low values of the ratio hf/hmax, which correspond to mate-
rials with relatively high yield stresses (sink-in occurs for n = 0 and for n = 0.6), the stress distributions
obtained are triangular and quite similar for all cases (Fig. 13(a) and (c) and Fig. 14(a) and (c)).

Fig. 15(a) and (b) show the equivalent plastic deformation obtained with hf/hmax values close to one for
the two work hardening considered in the materials with E = 100 GPa (hf/hmax = 0.95 and 0.96 for n � 0
and 0.6, respectively). From Fig. 15(a), it is possible to see pile-up formation where there is low work hard-
ening (and low yield stresses hf/hmax = 0.95). Among all studied cases, this one presents the highest value of
equivalent plastic deformation. It must be mentioned that the figures present a difference between maxi-
mum values of the plastic deformation around 71%. Moreover, the plastic strain region is deeper than lar-
ger, when n = 0.6, being larger than deeper for n � 0. In Fig. 16(a) and (b) are shown the cases of ratios
hf/hmax equal to 0.6 and materials with highest yield stresses (among all studied cases) and E = 100 GPa
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(hf/hmax = 0.61 for n � 0 and hf/hmax = 0.63 for n = 0.6), the maximum values of equivalent plastic strain
becomes lower, as well as the difference between both cases (�25%). Qualitatively similar results were
obtain for the case of the materials with E = 410 GPa. Being so, we conclude that for a given value of
the ratio hf/hmax, the maximum value of plastic deformation involved in the indentation process increases
with the decreasing of the work hardening. This suggests that a high value of the work-hardening coefficient
distribute the deformation under the indentation in a more homogeneous way than a low value of the work-
hardening coefficient. Furthermore, for the low work hardening value (n = 0), the maximum values of the
plastic deformation appear at the surface in contact with the indenter, which can lead to the pile-up forma-
tion through the material dislocation along the surface of the indentation.
Fig. 18. Equivalent plastic strain distribution at maximum load obtained for the AISI M2 steel: (a) Indenter Vickers 1; (b) Indenter
Vickers 5.
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5.5. Indenter tip imperfections

Numerical simulations were performed using the five offsets and the four real materials above men-
tioned (see Tables 1 and 3, respectively). This allows us to study the influence of the size of the Vickers off-
set on the mechanical properties evaluation. The maximum loads applied were chosen in such a way
that the indentation depths are approximately equal, for all the considered materials (�0.25 lm, for Vickers
3).

Fig. 17(a) shows the curves load (P) versus the depth (h) for the five cases of Vickers indenters up to
Pmax = 20 mN, for the case of M2 steel. The maximum value of the indentation depth (hf/hmax) increases
as the size of the indenter offset decreases. The same curves, with the offset correction are presented in Fig.
17(b). The correction was carried out by taking into consideration the function area of each indenter. The
curves become closer to each other, but not coincident. This behaviour was observed for the other three
tested materials (Table 3). Fig. 18(a) and (b) present the equivalent strain distribution, at maximum load,
for the tests with Vickers 1 and 5, respectively. From these figures, it can be concluded that the maximum
values of the equivalent strain (�0.42) are about the same for both cases. Also under the centre of the offset
region, the deformation is almost zero, for Vickers 5. This fact can be justified by the presence of a hydro-
static stress state, in this region, which increases with the increasing of the value of the offset. In a region
below the indentation, a higher plastic deformation appears, for the cases of low values of offset
(Fig. 18(a)).

For the five indenters offsets tested, the Young�s modulus of the four studied real materials was evaluated
from the load–unload curves, following the considerations described above, and using Eqs. (2) and (3). In
Eq. (2) the term C, represents the compliance at the beginning of the unloading curve; these values were
determined by fitting 70% of the unloading curve with Eq. (18). The Young�s modulus results obtained
for the four tested materials are shown in Fig. 19.

The values of Young�s modulus obtained for the AISI M2 steel and BK7 are always 5.5% and 3.9%
higher than the one used as the input data (E = 220 and 82 GPa) of the simulations (Table 3). In the case
of the nickel and tungsten, the values are 5.5% and 10.2% higher than the input Young�s modulus values
equal to 220 and 410 GPa, respectively. These results of Young�s modulus were obtained with the indenter
Vickers 3 (Table 1). These deviations are in agreement with the ones obtained for the virtual materials with
the same hf/hmax and indenter offset values (Fig. 10).
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Table 7
Values of evaluated hardness (GPa)

Indenter Steel AISI M2 BK7 Tungsten Nickel

E (GPa) H (GPa) E (GPa) H (GPa) E (GPa) H (GPa) E (GPa) H (GPa)

Vickers 1 230.2 9.5 85.9 6.7 447.5 5.8 236.8 2.4
Vickers 2 230.5 9.6 86.4 7.3 445.5 5.7 238.7 2.4
Vickers 3 229.1 9.9 86.5 7.1 449.9 5.8 238.3 2.4
Vickers 4 225.2 10.1 87.4 7.1 456.9 5.8 237.4 2.5
Vickers 5 224.5 10.1 83.5 6.9 449.9 5.8 237.5 2.5

Differences 2.7% 5.9% 4.5% 8.2% 2.5% 1.7% 0.8% 4%
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Young�s modulus and hardness values evaluated for the four materials with the five Vickers indenters are
presented in Table 7. The differences obtained for Young�s modulus and hardness values with the five
indenters, can suggest an apparent independence from the Vickers offset dimension.
6. Conclusion

Results of finite element simulations of ultramicrohardness tests presented highlight the ability of finite
element code HAFILM to simulate this type of tests. The analysis of the refinement of the finite element
mesh presented, show the importance of this parameter on the evaluation of the mechanical properties.
The results of the finite element simulations enable us to state that a friction coefficient equal to 0.16
can be used to describe the contact with friction between the indenter and the sample material. The com-
pliance results obtained with the method proposed, allows us to conclude that the consideration of 60% to
90% of the unload curve enable to obtain good accuracy.

The special care taken in the Vickers indenter modulation, enable us to better understand the influence of
geometric imperfections, such as, the offset on the evaluation of the mechanical properties. Moreover, re-
sults from numerical simulations flat punch of different geometry and size show the influence of the geo-
metry on the refereed properties. Finally, the study of the indentation geometry presented has shown the
importance of its consideration in the contact area evaluation and consequently in the mechanical proper-
ties results. It also shown that the parameter hf/hmax, can be used as an indicator when pile-up or sink-in
may be an important factor, that can be easily determined from the experimental curves.
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