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Abstract: Citizen Science (CS) and crowdsourcing are two potentially valuable sources of data for
Earth Observation (EO), which have yet to be fully exploited. Research in this area has increased
rapidly during the last two decades, and there are now many examples of CS projects that could
provide valuable calibration and validation data for EO, yet are not integrated into operational
monitoring systems. A special issue on the role of CS in EO has revealed continued trends in
applications, covering a diverse set of fields from disaster response to environmental monitoring
(land cover, forests, biodiversity and phenology). These papers touch upon many key challenges of
CS including data quality and citizen engagement as well as the added value of CS including lower
costs, higher temporal frequency and use of the data for calibration and validation of remotely-sensed
imagery. Although still in the early stages of development, CS for EO clearly has a promising role to
play in the future.

Keywords: earth observation; citizen science; crowdsourcing; citizen observatories; data quality;
citizen engagement

1. Introduction

Earth Observation (EO) is the collection of information about the Earth’s surface using remote
sensing and in situ surveying on the ground [1]. Hence, it encompasses imagery from a range of
satellite sensors, aerial imagery from airplanes and increasingly unmanned aerial vehicles, as well as
permanent ground-based sensors and field-based measurements collected using handheld sensors,
digital questionnaires or using paper-based formats. Once the domain of only professionals, the field
of EO has seen new inputs coming from Citizen Science (CS), which is the involvement of citizens in
scientific research, from data collection through to hypothesis generation [2]. This is clearly reflected
in the increasing number of publications that have appeared in the area of EO and CS as shown in
Figure 1, which is based on a search of the terms ‘Earth Observation’ and ‘Citizen Science’ in both
Scopus and Google Scholar.
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Figure 1. Number of publications in SCOPUS and Google Scholar over time addressing ‘Earth 
Observation’ and ‘Citizen Science’. 

Citizens generally provide inputs to EO in two main ways, i.e., through image interpretation 
and through collection of in situ data, both of which are useful for the calibration and validation of 
remotely-sensed imagery or products derived from EO [3]. Table 1 lists a number of different CS 
projects that are currently providing data useful for EO, classified by the type of data collected. 
Although the list is not exhaustive since this field is changing rapidly, it does serve to illustrate the 
vast breadth of projects that have emerged over more than four decades. Despite the long history of 
such initiatives, the majority of projects listed in Table 1 are much more recent and were started in 
the current decade.  

We have also indicated whether the data collection is carried out outdoors, i.e., field-based, and 
which ones are carried out online, i.e., usually indoors. Some projects combine both data collection 
options. The summary of projects in Table 1 shows that around 58% are field-based only, 25% are 
online only, while 17% have both a field and online component. This shows that the majority of 
projects (around 83%) are collecting in situ data, which can help to fill a much needed data gap [4]. 
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Observation’ and ‘Citizen Science’.

Citizens generally provide inputs to EO in two main ways, i.e., through image interpretation
and through collection of in situ data, both of which are useful for the calibration and validation
of remotely-sensed imagery or products derived from EO [3]. Table 1 lists a number of different
CS projects that are currently providing data useful for EO, classified by the type of data collected.
Although the list is not exhaustive since this field is changing rapidly, it does serve to illustrate the
vast breadth of projects that have emerged over more than four decades. Despite the long history of
such initiatives, the majority of projects listed in Table 1 are much more recent and were started in the
current decade.

We have also indicated whether the data collection is carried out outdoors, i.e., field-based, and
which ones are carried out online, i.e., usually indoors. Some projects combine both data collection
options. The summary of projects in Table 1 shows that around 58% are field-based only, 25% are
online only, while 17% have both a field and online component. This shows that the majority of projects
(around 83%) are collecting in situ data, which can help to fill a much needed data gap [4].
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Table 1. Examples of crowdsourcing and citizen science initiatives relevant to Earth Observation.

Data Collected Crowdsourcing and CS Projects and Initiatives
Year Project Started, Launch

Date or Earliest Date found on
the Website or in Publications

Field-Based or Online
Participation

Aerial imagery Public Laboratory Balloon and Kite Mapping
(http://publiclaboratory.org/tool/balloon-mapping) 2010 Field-based

Air pollution/quality, aerosols,
noise pollution

CITI-SENSE (http://www.citi-sense.eu/) 2012 Field-based
Omniscientis (http://www.omniscientis.eu/) 2012 Field-based
iSpex (http://ispex.nl/en/) 2012 Field-based
Noise Tube (http://noisetube.net/) 2008 Field-based

Clouds, sunspots, solar flares

The NOVA Labs: Cloud Lab and Sun Lab (http://www.pbs.org/wgbh/nova/labs) None given Field-based
Students’ Cloud Observations Online (S’COOL)
(https://www.nasa.gov/content/s-cool-students-cloud-observation-online) 1997 Field-based

SatCam (http://satcam.ssec.wisc.edu/) 2012 Online

Environmental data
Cobweb (Citizen Observatory Web) (http://cobwebproject.eu) 2012 Field-based
Global Learning and Observations to Benefit the Environment (GLOBE) (http://globe.gov) 1995 Field-based
FieldScope (http://education.nationalgeographic.com/education/programs/fieldscope) 2008 Field-based

Extreme events, hurricanes,
earthquakes, climate change

iSeeChange (https://www.iseechange.org/) 2012 Field-based
SkyWarn (http://www.skywarn.org/) 1970s Field-based and online
Did You Feel It? (http://earthquake.usgs.gov/earthquakes/dyfi/) 2007 Field-based

Flood levels and extent WeSenseIt (http://www.wesenseit.eu/) 2012 Field-based and online

Forest fires Mount Diablo Fire Monitoring (http://nerdsfornature.org/monitor-change/diablo.html) 2013 Field-based

Fracking Frack Finder (http://crowd.skytruth.org/) 2013 Online

Geotagged photographs of
landscapes

Field Photo Library (http://www.eomf.ou.edu/photos/) 2013 Field-based
Degree Confluence Project (http://www.confluence.org/) 2008 Field-based

Humanitarian and crisis
response, disaster mapping

Humanitarian OpenStreetMap (http://hot.openstreetmap.org/) 2010 Field-based and online
MicroMappers (http://www.micromappers.com/) 2013 Online
International Network of Crisis Mappers (http://crisismappers.net/) 2009 Field-based and online
Ushahidi (http://www.ushahidi.com/) 2008 Field-based and online
TOMNOD (http://www.tomnod.com/) 2010 Online
The Digital Humanitarian Network (http://digitalhumanitarians.com/) 2012 Field-based and online

Land cover, land use and land
change

Geo-Wiki (http://www.geo-wiki.org) 2009 Field-based and online
VIEW-IT (Clark and Aide [5]) 2011 Online
LACO-Wiki (http://www.laco-wiki.net) 2014 Online
LandSense Citizen Observatory (http://www.landsense.eu) 2016 Field-based and online
GroundTruth2.0 Citizen Observatory (http://gt20.eu/) 2016 Field-based and online
SCENT Citizen Observatory (https://scent-project.eu/) 2016 Field-based

Light pollution Dark Sky Meter (http://www.darkskymeter.com/) 2013 Field-based
Dark Skies ISS (http://crowdcrafting.org/app/darkskies/, http://www.citiesatnight.org/) 2014 Online
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Table 1. Cont.

Data Collected Crowdsourcing and CS Projects and Initiatives
Year Project Started, Launch

Date or Earliest Date found on
the Website or in Publications

Field-Based or Online
Participation

Mapped features (buildings,
roads, POIs, land cover, land

use, etc.)

OpenStreetMap (http://www.openstreetmap.org) 2006 Field-based and online
Google Map Maker (http://www.google.com/mapmaker) 2008 Online
The National Map Corps (http://nationalmap.gov/TheNationalMapCorps/) At least 2006 Online
Wikimapia (http://wikimapia.org/) 2006 Online

Northern lights Aurorasaurus (http://aurorasaurus.org/) 2014 Field-based

Ocean water colour Citclops (http://www.citclops.eu/) 2012 Field-based

Phenology USA National Phenology Network (https://www.usanpn.org/) 2005 Field-based

Photosynthesis Public Laboratory Infrared Camera (http://publiclaboratory.org/tool/near-infrared-camera) 2010 Field-based

Precipitation/snow depth

CoCoRaHS: Rain, Hail, Snow Network (http://cocorahs.org/) 1998 Field-based
Rainlog.org (http://rainlog.org) 2005 Field-based
Tracking Climate in Your Backyard
(http://www.priweb.org/outreach.php?page=citizenscienceed/TCYIB) 2008 Field-based

Precipitation ID Near the Ground (PING) (http://www.nssl.noaa.gov/projects/ping/) 2013 Field-based
Snow Tweets (http://www.snowtweets.org/) 2011 Field-based

Radioactivity of the oceans Our Radioactive Ocean (http://ourradioactiveocean.org/helpus.html) 2011 Field-based

Soil moisture (and land cover) GROW citizen observatory (http://growobservatory.org/) 2016 Field-based

Tree/forest cover, deforestation,
biomass

Deforestation Mapping in Canada (https://cfsnet.nfis.org/deforestation/) No date provided Field-based
Forest Watchers (http://forestwatchers.net/) 2012 Online
Treezilla (http://treezilla.org/) 2013 Online
Urban Forest Map (http://urbanforestmap.org) 2010 Online
EarthWatchers (http://dfa.tigweb.org/) 2012 Online

Water quality and biodiversity FieldScope (http://education.nationalgeographic.com/education/programs/fieldscope) 2008 Field-based

Weather
Weather Underground (http://www.wunderground.com/) 1995 Field-based
WOW (http://wow.metoffice.gov.uk/) 2011 Field-based
Citizen Weather Observer Program (http://www.wxqa.com/) 1990s Field-based

http://www.openstreetmap.org
http://www.google.com/mapmaker
http://nationalmap.gov/TheNationalMapCorps/
http://wikimapia.org/
http://aurorasaurus.org/
http://www.citclops.eu/
https://www.usanpn.org/
http://publiclaboratory.org/tool/near-infrared-camera
http://cocorahs.org/
http://rainlog.org
http://www.priweb.org/outreach.php?page=citizenscienceed/TCYIB
http://www.nssl.noaa.gov/projects/ping/
http://www.snowtweets.org/
http://ourradioactiveocean.org/helpus.html
http://growobservatory.org/
https://cfsnet.nfis.org/deforestation/
http://forestwatchers.net/
http://treezilla.org/
http://urbanforestmap.org
http://dfa.tigweb.org/
http://education.nationalgeographic.com/education/programs/fieldscope
http://www.wunderground.com/
http://wow.metoffice.gov.uk/
http://www.wxqa.com/


Remote Sens. 2017, 9, 357 5 of 13

CS is used here in the widest sense since most of the CS projects listed in Table 1 involve citizens
mainly in data collection rather than in scientific analysis of the data or project design. However,
there are documented examples of where citizens are involved in the full sequence or workflow of
a CS project, from project design, data collection, methodology development to data analysis and
interpretation of results [6].

The increased role that citizens are playing in the field of EO has been driven by a number of
factors. The first is the availability of very high resolution satellite imagery through initiatives like
Google Maps and Bing Maps, which have brought very high resolution satellite imagery much closer
to citizens and made it part of their daily lives. The second is technological, as advances in mobile
technology and Web 2.0 have resulted in an environment where citizens can literally map the world,
e.g., through OpenStreetMap (OSM) or Google MapMaker, or collect georeferenced data as they move
throughout their physical space. At the same time, new satellite sensors have been launched, resulting
in new big data streams from the Copernicus Sentinel satellites and through Planet, which will become
enablers for many new EO applications in CS in the future.

However, CS remains a challenge in itself due to numerous issues such as quality [7–10], data
interoperability [11,12], the engagement and motivation of citizens [13,14], strategies for retention
and sustainability of participation [15,16], and increasingly, legal issues related to privacy, ethics and
licensing [17], among others. This special issue includes papers that address some of these issues
in relation to the use of CS for EO, while other aspects associated with crowdsourcing, in particular
the value of crowdsourced data, are also considered within the different application-oriented papers.
In the next section, a summary of the findings presented in the special issue papers is given, which
represent some of the latest advances in CS and EO. In the final section, some ideas about the possible
future directions for CS and EO are presented.

2. Latest Advances in Citizen Science and Earth Observation

This special issue contains 11 publications that include 10 research papers and one review paper.
One of the 10 research papers focuses on the status of CS and is therefore summarized together with
the review paper in Section 2.1. The other nine papers of this special issue deal with applications in
the fields of disasters, the marine environment, biodiversity (species occurrence and phenology), land
cover and forest monitoring, which are summarized in Section 2.2.

2.1. Citizen Observatories and the Status of CS for EO

In the paper by Grainger [18], the author provides a review and analysis of citizen observatories,
which are described as a recent development facilitated through top-down funding by the European
Commission. The author further points out that citizen observation systems are much more complex
than traditional satellite-based observation systems and stresses that communication, the needs of the
end user, and their understanding and acceptance of the data are critical. Grainger [18] then proposes
a new framework for extending the current remote sensing framework to encompass all EO systems,
which includes citizen observatories, and how data collected in these systems can be converted into
usable information for decision makers. Finally, Grainger [18] divides the types of citizen contributions
into three different categories, namely data collectors, participatory science and co-creation. It should
be noted that the application papers in Section 2.2 fall primarily into the category of data collectors
rather than having citizens actively participating in or co-creating the scientific project. This is a similar
finding to the projects listed in Table 1.

Linking closely to [18], the paper by Mazumdar et al. [19] outlines a stakeholder analysis that
was undertaken as part of the ‘Crowdsourcing for observations from Satellites (Crowd4Sat)’ project,
which is one of the ESA’s (European Space Agency) current demonstration projects on CS for EO.
The stakeholder analysis investigated how CS and crowdsourcing impact the validation, use and
enhancement of observations from satellites. Some key findings of the analysis include: (1) the first
adopters that make use of CS are academia followed by civil protection agencies, tourism organizations
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and local authorities; (2) communication to citizens on how and for what their data are used is essential
as well as continued feedback, where social media can play an important role; (3) CS and crowdsourcing
can potentially verify and improve the spatial and temporal resolution of satellite observations, in
particular in the field of disaster response and environmental monitoring, and will play an increasing
role in the future; (4) the remaining challenges are data protection, privacy, standardization, clear
policies, quality and understanding the true value of CS data; and (5) user experience and the touch
and feel of applications play an essential role in engaging citizens.

2.2. Applications of CS and EO

2.2.1. Disaster Response

The paper by Albuquerque et al. [20] explores the value of crowdsourced data for humanitarian
mapping. The authors identify a typology of the tasks used in geographic information crowdsourcing,
including classification and digitization (both performed by citizens) and conflation (performed in
this article by the research team). These were applied to a case study in the area of humanitarian
aid, namely the “Map South Kivu” sub-project of the ‘Missing Maps’ project. The difficulty of the
tasks was assessed as well as the quality of the results obtained, which were compared with the data
available in OSM. The main findings were that: (1) 25% of the volunteers contributed 80% of the data
collected, similar to findings in other CS and crowdsourcing projects [16]; (2) tasks that involve the
creation of objects proved to be more difficult to execute than tasks that do not involve objects; (3) the
agreement between volunteers was shown to be a very good indicator of task difficulty and of the
reliability of the results; (4) task design was shown to be important for the performance of the results;
and (5) the crowdsourced classification of satellite imagery can produce geographic information about
human settlements with a high level of quality, achieving an accuracy of 89%, a sensitivity of 73%
and a precision of 89%, where these results are comparable to the use of automated approaches. The
advantages of the use of crowdsourced data over automated approaches were larger when mapping
small buildings, which were not detected automatically, and, in some cases, these can represent a
large percentage of the features. The authors suggest that crowdsourcing may be used in the future
to identify training sets and to complement automated classification, tackling difficult situations
in particular.

2.2.2. The Marine Environment

The paper by Busch et al. [21] illustrates the added value that citizens can bring when they
monitor ocean color, in particular along coastlines. They can fill observational gaps since remote
sensing methods are not accurate along coastal zones due to the mixed pixel problem of having land
and water. This paper presents tools and methods derived from the EU-funded FP7 Citclops citizen
observatory. The tools are attractive to a wide set of different users since they range from stand-alone
smartphone apps to devices with Arduino and 3D printing. From the different methods used, the
highest number of measurements collected by citizens was 1600 via the EyeOn Water-Color app, which
is the simplest method developed. The authors stressed that offering easy-to-use tools with different
levels of complexity is fundamental for engaging citizens. The methodologies implemented in the
paper enabled high quality data to be collected when compared with standard in situ or laboratory
measurements. Automatic quality control procedures were also implemented to guarantee the validity
of the contributions.

2.2.3. Biodiversity: Species Occurrence

The article by Heigl et al. [22] compares roadkill data collected by citizens with data collected by
hunters for hares killed in Lower Austria. The authors used road network data from OSM, Corine
Land Cover products and aerial photography to manually map structural landscape elements. The
results showed that hunters and citizens report roadkill in different areas, i.e., hunters report more
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often in rural areas, which have greater length of secondary roads and agricultural areas, compared
with citizens, while citizens report more often in urban land cover, where there is higher coverage of
motorways and residential roads. No significant differences in reporting between hunters and citizens
were found in relation to the amount of landscape structural elements. Thus, these results showed that
hunters and citizens cover different regions so should be viewed as complementary sources of data.
The authors plan to scale up the exercise to all of Austria and they recommend the collection of data
on the demographic and social background of the participants, since different types of people appear
to survey different locations.

2.2.4. Land Cover

The aim of the paper by Laso Bayas et al. [23] was to present results from the FotoQuest Austria
campaign, which ran during the summer of 2015 for several months. Data were collected via the
FotoQuest Austria mobile app at the same sample locations where EUROSAT commissions the
collection of ground data via the Land Use and Cover Area frame Survey (LUCAS) every three years.
The mobile app was designed to follow the LUCAS protocol as closely as possible and to make the
data collection as simple as possible. When comparing the official land cover and land-use classes
collected by LUCAS with those collected by volunteers, there was generally good agreement for level 1
land cover classes (e.g., artificial surfaces and cropland) and at the most aggregated level for land-use
(e.g., agriculture), but performance decreased at levels 2 and 3 (e.g., less common crop types). In
general, homogeneous areas also showed higher agreement than heterogeneous ones. The first results
from this initial campaign show that CS-based land cover collection can complement but not replace
the official survey. Other advantages are reduced costs and potentially a more frequent inventory.

The paper by Salk et al. [24] analyzed data from a Geo-Wiki campaign, which was run over the
summer with 30 students, and a second campaign using a Geo-Wiki game called Cropland Capture.
Cropland Capture is available on desktop or mobile devices where users are asked to identify evidence
of cropland from very high-resolution satellite imagery. During the Cropland Capture campaign, more
than 4.5 million classifications of cropland and non-cropland were acquired by over 3300 volunteers.
The paper focused on examining whether people who lived closer to an image performed better than
volunteers who lived further away, i.e., does local knowledge influence performance? The results from
the analysis showed that distance from a person’s hometown to the image being classified had no or
very little influence on the actual performance of the volunteers or students. For example, one difficulty
volunteers faced was to differentiate between managed pasture and cropland, but the results showed
little difference in the performance when comparing volunteers who lived in the same country from
where the images were sourced compared to those living outside that country. One reason why there
was little difference might be that most volunteers were living in cities rather than the countryside and
hence there was little local knowledge of the surrounding rural landscapes.

2.2.5. Forests

The article by Molinier et al. [25] presents the Relasphone mobile application (version 1.5, VTT
Technical Research Centre of Finland, Espoo, Finland), developed to collect in situ data for forest
inventories, namely, basal area and tree species, height, diameter and age, among other data of interest.
These data are expensive to obtain with traditional methods, and thus data collection is usually limited
to only a small number of samples. The authors describe the application and the data gathered with
the app in two study areas (with mixed forest from different biomes) located, respectively, in Finland
and Mexico, and then assess the accuracy of the data collected using reference forest inventory data.
The results showed a good agreement between the data collected by the Relasphone mobile application
and the reference data and also consistency between data collected by different observers. The data
collected regarding basal area and stem volume were used as training sets to classify optical satellite
imagery in order to create maps of basal area and stem volume. The maps obtained for the two study
areas were comparable to the maps obtained using other training areas. The authors also analyze the



Remote Sens. 2017, 9, 357 8 of 13

relevance of the application for CS, as well as its potential for EO and mapping biomass worldwide, in
particular for monitoring tropical forests.

2.2.6. Biodiversity: Phenology

The first paper on phenology is by Wallace et al. [26] and provides an example of the use of CS
to monitor invasive buffelgrass in Southern Arizona. Since treatment of buffelgrass is only efficient
after a 50% greening, both remote sensing and observations on the ground are needed to optimize
any interventions. CS was used to gather data on the phenological development of buffelgrass in
two different locations and in two different ways: observations made by one observer over several
years and observations made at the same place by 10 different citizen recruits for a shorter time
period. The crowdsourced data were then used to establish a relationship between greenness and
cumulative precipitation from remote sensing in order to determine the cumulative precipitation
threshold at which treatment can begin, which differed between the two locations. Moreover, CS was
used to validate the MODIS NDVI product, demonstrating a link between field observations and the
NDVI profile.

The second paper on phenology [27] describes how citizens contributed to identifying features
from images taken from a network of 300 phenology cameras as part of the CS project called ‘Season
Spotter’. Zooniverse was used as the platform to run the exercises. The Zooniverse network of
volunteers is set up to undertake visual interpretation of images that cannot be done at all or not very
well via automatic classification. In three exercises, citizens were asked to identify information on snow
and image quality, delineate trees and to identify phenological change between pairs of images when
they were a number of days apart. In general, citizens were able to identify the plant phases correctly
(except for grass seedheads), they could spot snow and poor quality images, and they were able to
demarcate trees as well as phenological changes. The information collected helped to identify the start
and end of the growing season, which could be compared with remotely sensed data and serve as
a calibration dataset. CS data in this application is particularly useful in complementing remotely
sensed data as well as traditional ground-based data collection, in order to validate remotely-sensed
vegetation indices and to help improve the phenophase detection algorithms.

The last paper on phenology by Elmore et al. [28] focuses on trees and examines if MODIS
resolution data can be used to characterize the phenology of individual trees. The study taps into
the Nature’s Notebook project to obtain ground observations on phenological stages of different tree
species including Poplar and Lilac. When processing the crowdsourced data, a number of quality
control rules were applied, which effectively filtered the data and helped to improve the correlation
between the observations on the ground and the time series of the MODIS indices. The findings
showed that some species are better suited for phenotyping using MODIS data than others since the
MODIS signal always represents the average over the pixel extent. Recommendations were given to
target homogeneous forest areas since heterogeneous landscapes influence the overall average tree
signal and affect the quality of the phenotyping. The paper showed that the data from citizens can
clearly complement data from remote sensing.

2.3. Summary of the Applications

All applications in the special issue show that citizens do have a clear role in EO. They cover a
wide range of fields from marine applications to disasters, as well as land monitoring applications
in the field of land cover, forestry, phenology and biodiversity. Depending on the application, the
added value of citizen observations ranges includes cost savings (S), making data available at a
higher frequency (F), contributing to calibration and validation activities (P) and complementing
traditional or RS-based methods (C). Table 2 provides a summary of the nine application papers in
terms of this added value as well as the type of data used (CS-based and other types of data) and
the maturity level of the application. Six applications involve outdoor activities while three could be
performed indoors, involving the visual interpretation of very high-resolution images from space or



Remote Sens. 2017, 9, 357 9 of 13

images derived from a ground-based camera. All applications involve citizens in performing data
collection tasks, eight use remote sensing data in one way or another and five make use of traditional
or authoritative data and compare them to the crowdsourced data. Three applications directly compare
remote sensing data with CS data. Most papers are in the initial research phase, with most at a low
level of maturity. All applications clearly demonstrate an added value of citizen observations, where
the majority complement RS data or traditional in situ data.

3. The Future Outlook for Citizen Science and Earth Observation

In the last decade, we have seen a massive increase in research on CS and EO (see Figure 1) and
this trend is expected to continue in the future. Moreover, as we showed in Table 1, there are already
many different ongoing CS projects that have relevance for EO, but most are not embedding their data
streams into operational EO applications, while others suffer from insufficient citizen participation.
One important element needed to make citizen observations an official data stream is legal recognition
by governments and local authorities that citizen-based data are a valid source of information and to
recognize that citizens are able to deliver data of sufficient quality that can potentially complement, but
not necessarily replace, existing observation networks. For example, in the USA, the Crowdsourcing
and CS Act, which came into force in January 2017, gives federal agencies clear authorization to use
CS and crowdsourced data. This recognition paves the way for the development of truly integrated
environmental monitoring systems involving citizens as a key contributor. No such legislation exists
in the EU or other countries around the world.

The ubiquitous dispersion of smartphone technology has acted as an enabler and allows citizens,
with little effort, using well-designed and user friendly apps, to collect observations of the environment,
which can then be stored in a data repository for curation and further analysis. A second enabler of CS
and EO is the sheer amount of new and freely available remotely-sensed data. When fully operational,
the Sentinel satellites of the European Copernicus program will collect several TB of data per day,
where Sentinel-2 images, for example, will be acquired every five days at a 10 m resolution. There are
also new commercial providers such as Planet, which will eventually provide daily observations of
the globe at a 3 m resolution, improving the chances of obtaining cloud free imagery. This will enable
near real-time monitoring of changes occurring on the Earth; such data are becoming increasingly
attractive since they can be used to build more applications for citizens that will potentially stimulate
their engagement and further mainstream the use of satellite data by citizens in their daily lives.
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Table 2. Summary of applications presented in the special issue.

Author Theme Place Data Used in Paper Is Derived From Analysis of CS Data in the
Paper Is

Maturity
Level

Added Value
of CS

Citizen
Science

Traditional
Authoritative

Remote
Sensing

Comparative
RS vs. CS

Comparative
Traditional vs. CS

Albuquerque el al. [20] Disaster Online ** - ** - - * F, C
Busch el al. [21] Marine Field-based ** ** * + + * F, P, C

Elmore et al. [28] Phenology Field-based *** ** + - * C
Heigl et al. [22] Biodiversity Field-based *** *** ** C

Kosmala el al. [27] Phenology Online *** ** * - + ** P, C
Laso Bayas et al. [23] Land Cover Field-based ** ** * - + * S, F, P, C

Molinier el al. [25] Forestry Field-based *** *** - - + * S, P
Salk et al. [24] Land Cover Online *** - ** - - * C

Wallace el al. [26] Phenology Field-based * - *** + - * P

*** high ** medium * low + applies – does not apply; S = cost savings, F = higher frequency, P = potential Cal/Val dataset, C = complements RS data or traditional in situ observations.



Remote Sens. 2017, 9, 357 11 of 13

The two biggest challenges for CS at present are related to the quality of the data and how to
engage and retain citizen participation in the longer term. Quality can be improved via training;
through the continuous monitoring of data quality with embedded feedback provided to citizens, the
volunteers can improve over time. In terms of engagement, Budhathoki and Haythornthwaite [29]
showed that there are several reasons why citizens participate, including a range of motivations such
as altruism, self-achievement and personal interest, among others. Successful CS or crowdsourcing
projects have been those where citizens were able to derive a direct benefit from the data collected by
others. One typical example is mountain bike tracks that are recorded at some locations in great detail.
For example, a new route entered by one mountain biker can be used directly by another one living
close by. Another increasingly popular way of engaging citizens is via gamification and making data
collection a fun experience. For the first time, Pokémon Go has managed to engage a massive crowd of
players to go outside their homes, sometimes to remote places, to collectively catch 88 billion monsters
(as of 1 March 2017). Had Pokémon Go also collected information about real objects found in the
environment, e.g., taking a picture of a tree while simultaneously catching a virtual monster, such data
could have been very valuable and an initial global database on tree species, health and location could
have been derived from such a game. Although the majority of observations would not have been in
remote or inaccessible places, this could have been used to document tree health in cities and towns
and benefited the CS applications of urban tree monitoring (see Table 1). The data would also have
been provided at an incredibly high temporal resolution, i.e., possibly seconds between observations,
which would allow for rapid infestations to be clearly identified.

This special issue dedicated to CS and EO includes some review-oriented publications but mainly
consists of research papers demonstrating applications in many diverse environmental domains.
As with much of CS today, the citizen contributions in the application papers are mainly in the form
of data collection and not in project co-design or data analysis. Moreover, many of the most relevant
aspects related to CS have been addressed in some way in this compilation of papers, such as the role
of citizens in collecting data, the quality of crowdsourced data, data conflation, and the combination
of CS with other technologies and methods applied by experts, to name just a few. Even though the
use of CS for EO is still at an early stage, the huge potential arising from the combination of both data
streams is already very clear.
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