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ABSTRACT. A variational derivation of the Liouville—von Neumann equation of quantunm statistical mechanics is

presented, in order to fommulate mean-field appraximations appropriate to mixed states. The Hartree-Fock

theory at finite temperatures is a particular case of the gereral fomalism. A themal boson expansion is
def ined, which allows to derive the RPA and to describe anhamonic motion around & thermal execited state. In

a numerical application on the basis of the Lipkin model, temperature deperdent phase transitions are chserved.

The decay of high excitedstates above the
yrast line has been cbserved L.2)
of the compound nucleli fommed in heavy ion reactions.
These states have been interpreted on the basis of

in recent studies

mean field theories as collective osciliations of
mixed states. A renewed interest ° /) in the quantum
mechanics of mixed states has originated fram the
new dimension which such studies have added to the
field of nuclear structure.

On the present. talk a variational derivation
of static and dynanic mean field theories appropri-
ate to mixed statesa) is presented.

Let H denote the hamiltonian of a general
N particle system. Accordirg to the principles of
quantim - mechanics, an arbitrary mixed state of the
system is described by a density matrix D whose
trace is unity,

Tr b= 1. (1}

In order to introduce the important notion
of equilibrium for mixed states we consider the

statistical matrix DU unitarily similar to D,

DU=UI)U+, 2)

where U is an arbitrary unitary matrix, (we remark,
in passing, that transformations generated by unitary
matrices do not change the entropy, i.e. they are
adiabatic in the themmodynamic sense) . The density

matrix DD = Dy describes an equilibrium state if
o

and only if

g =Tr (D) H & Tr (O B) {3)

for all unitary operators U, Fram this property it
follows that

(H, D ] =0. (4)
iF

indeed, let D, = e~ D —
o

nitesimal hermitian operator such that U = e
expansion

, where F is an infi-
1F. e

iFH]

jl?‘ -
Tr (e" D e B+ Tr (F/D)] B +... > B0

leads to

Tr ([F, D ] 8 =t (F [D ,H]) =0.

Since F is arbitrary, eqg. (4) follows trivially.

We will discuss now the time evolution
of D. According to quantum mechanics, the operator
D satisfies the Licuville-von—Neumann egquation

D=1 [ D, H]. (5)
Qur aim is to obtain a variational formulation of
eqg. (5} which can be used as a source of reliable
appraximation schemes to the exact dinamical equa-
tion. We begin with writing the time—dependent den-
sity matrix in terms of the stationary density ma-
trix DO which satisfies eqg. {4):

D {t) = U (£) D ut o,

vhere U {t) is a variational unitary operator.

Let us consider the action integral
t, .
= [ 2L at

%
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where the lagrangian L is given by
L:i'I‘r(UDOﬂ+)+TT(U{)OU+I1]. (6)
e variation of the action integral induced by
arbitrary variations of the unitary operator U at
intermediate instants of time (tl <t o< t2) may
be written

t ) .
M:;;jtidt*m suuyt -1 o 8D

gince the skew-hermitian time-dependent operator
&U U+ is arbitrary, the action principle ¢ I =0

is eguivalent to the Liocuville-von-Neumann eguation.

We are now in a position to discuss the
linear response function for mixed states.

If a quantal system stays in a stationary
state described by the time independent density
matrix Do and at some cccasion is slightly pertur-
bed, the density matrix of the perturbed system may
be written
~iF () D, o3F {t)

D (k) =e (7}

where F {t) is a hemitian infinitesimal operator.
Since F is infinitesimal, the lagrangian (6) may
be replaced by its leadirg order tems. The follo-
wing quadratic lagrangian is cbtained (the linear
terms give no contribution)

2) _ i :
L = t.r(DO {F: F])
-2 m (Rl FID (8)

From the action cordition

)
8 ftl 1@ g =0 @)
wa cbtain the eguation

iwo[w F ) -w ole [(HF]]D =0,
(10}
or, since §F is arbitrary,

EE"‘,DO]=—,’1 (e [rop ]]. (11
Here, the Jacabi identity for double ocmutators
has been used together with the short term equi-
libriim condition {(4}.

We consider now the eigermode solution of
{11). We insert the appropriate ansatz

- I L P iw t
I‘r(t) =e T r Or

+ e r Or (12}

ardd obtain

w [o, n]=1[n (o .0 1] {13)

-

- = e =
w. (0., D] {n Lo o 135,

we may rmequire, withowt loss of generality, that
W, # 0. The following nomalization condition for
the operators Or may then be imposed

i}
£n

+
™ (0, [, 6. ] {14)

rs

-

™ o, (o, 0,1 =™ @, [ Gy =e. as)

The general sclution of eqg. (11} may be
written as

- —iw t _+ * iw ot
F(t)—g(fre roo_+f e r 6 (16)
where,
fr = tx (DO [@r . F{O) 3. (17

The energy—weighted sun rule for these
transition amplitudes may now be derived. Indeed,
from eq. (10) with 6F replaced by F we conclude
that

ite o (PP = o [F, [BF3ID. 08

It may easily be checked that

. - 2
= {
itr (D [FF ) =2 szwr B (19)
Therefore
2_ 1 -
E"’r |£.17 = 5 tr (O (p, {HEDT D). {20)

We emphasize that this sum rale is exact and not
restricted to the RPA in which log DO ard F are
cne body operators.

Irdeed, the RPA describes small amplitude
oscillations around the Hartree-Fock ground state.
Now, the Hartree-Fook approximation for mixed states
is cbtained when the variaticnal space in (3) only
includes independent - particle density matrices.
Therefore, in order to arrive at the FPR, log DO

should be a one body hemitian operator which may
be writtem in the form
n,
B3 +
- 2
log D, = log K + E log (g _ni) a; a, (z2n

where K is a nommalization factor, ng is the

ocoupaticon mumber of level i, and a. az are
£ 3
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fermion operators.
If the hamiltonian is given by

H—Et a: a

(22)
i3 R

= }: a+aaak
3 2 ike 13}\e:L

it is easy to arrive, in the framework of the inde-

pendent particle approximation, at the following
Hartree-Fock equations

A -
tij + E n, Vik,]k =6y éij (23)
where
A = e
Viske = Vigke T Vij,ek ° (24)

These equations are obtained if we recuire that

_ is -i$
Eo—tr(DoH)<tr(e D e ™) (25)

for all hemitian one body operators S.

We will now derive the RPA for mixed states
by the method of boson expansions. This implies
replacing the equilibriun density matrix in the
; by a boson
vacuum state vector (0) and substituting operators

indeperdent particle appraximation, D

on the Hilbert space of femmion state vectors by
boson images with the same comutation properties.
More specificaly, if i,j are such that o, £Fn, we
introduce the boson operators Aij with the follo-
wing properties

+

Aij = Aji ; (26)
P Bl T jk tn; - nj), (27
Alj}O) = O if n; > nj . {28)
Havirg in mind that
+ + _ _
T (0 [ a; a3y a, 1) = 6, 850y = ny) (29)
we cbtain the following expansion for ng # n}.
+ _ + (2
(a:.L aj) == (a:L aJ)B + (a\:.L aj)B + .. (30}
vhere
(1 _
ta; ajlg 13 (31)
(2) 1 1 1
(a; a.). =~ ) A (- =) +
i'B 3 ¥ ik Akj n, -n nj n
1 2 O(n.‘l. - nkJ
MR T 2
I K i T Tk

whith @ (x}) =1 if % > 0, © (x) 0 if x < 0.
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On the other hard, if ni = nj,

(9}

+ _ + + (2)
{aiaj)B = (aiaj) +(a\ia}.)B Faaay (33
where

+ oy 4
(ai aj) 5 = ni 6ij (34}
(atan 21 = 1 LSS § i W (35)

3B pme-ong o g “k'“

The boson image of H, denoted HB’ is
constructed so as to preserve the following relations

Tr (D, H) =E (36)
o [s]
+ —
Tr (D, [B,oajay ] =0 (37)
+ +
Tr (Do[:[:H, a; a}.}, a, agj) =
= (EJ - Ei) (ni - I‘lj) 6jk 612 (38)
+ v {n, -~ n, [, -n.)
Vik,32t% T Rp) g mongd
We require, therefore,
©f By [ 0) =E, (39)
OIC Ciigag]s B, 1100 = (o5~ &) 0= ney s,
Vi, 300 T ) (g - mg) {41)
ik, g2 Tk T Tl Py T Ry
and find
=g +n+~.1._zej_€1 A a
i 2 13 n.— n i3 31
1 A
T = (42)
2 ijks rJ" AkQ.
vihere
_. .1 . )
b= 1):[ EyTE 13 31 My BILICH -ng). (43)

The diagyonalization of Hy is straightforward and
leads to the well known RPA equations for mixed
states

(44
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Here, the matrices A and B have the following

elements

A
Pg,ij = G 651j i) * ki, 1 (n, nj), (45)

where i,3,k,4 are such that ng > n., n > nj, and

_ A
Big,i3 T kil i
where i,3,k,% are such that ns2 >y, nj » ni.

(46}
it may

be shown that the stability condition (25) insures
that the eigenvalues w_ are real.

As an example of the ideas involved in this
approach we are going to consider the schematic
wo-level model which is due to Lipkin et al (18},

The hawiltonian of the Lipkin model reads

as
v
HeJ, e 32452 ) (a7
where Jz, J, are the SU(2) generators
B, ]=-29,, 00,3 1=93. (48)

The density matrix in the independent par-
ticle appraximation can be written as an exponential
of a one~body operator

D=C ewz, {49)

wnere C and o are chosen such that the occupation
mmber of the upper level is P . and the occupation
number of the lower level is P_ =1~ P,.

The density matrix (49) does not describe
an exactly staticnary state because | H, D | = 0.
Such a state is described by DC> = U+ DU, with

sut=utus= 1, provided we choose U in order to.
have Tr {DO H) as a minimum of the energy.

Iet us take U to be the hermitean one-body
oparator
v=e®g | (50)

Y
The quantity to be minimized with respect to @ is
then
E=Tr {(DH =1r {DOUHU+) =

2
"—“——%~NPoose+sin26VNT(NP2—l;P

with P the difference between the cccupation pro—
babilities of the two levels,P =P_ - P, . Assuning
themmal eguilibriue, there is a well-defined relation
between P and the temperature T (P = 1 corresponds
tT=10; P=9 corresponds to T = = , for the extre-
mal values).

) (51)

The parameter which detemmines the ground-
-state phase transition is

1 1
x {P :V]T(P+--P-—) - NP .
The solution of the minimization problem is

6=0. x B,] <1,

cos 8=~ X (B Ly (B | > 1.

The ground-state energy can then be calculated

E = -5 .| x @52
g o=- 2E ¢ L Ly ) 3, i x (ot s
o 3 T X 1 | .

We dhserve temperature-dependent seconde—
-~order phase transitions. With |x(P}|> 1 the
abnommal chase, wich corresponds to a "deformed”
ground~state, is cbtained. These phase-transitions
have a thermal origin and, although analogous, differ
fram the ground state phase transitions that are
chtained varying the interaction strength V or the
mmber of particles N.

In the model under study the T = 0 RPA
results can be extended to finite temperatures
through the temperature renomalization of the
parameter y that has been derived. The following
collective excitation energy is cbtained

w={l-ox2 @ M2 x| g

(2 o2 - )2

3
I

if |y (Y | > 1.

We may implement in the model the method
of thermal boson ewpansions,which is more ambitious
than the RPA.

For the present parpose this method consists
in replacing the operators Jz, I, and J_ by adequate
boscn operators, preserving the cammutation relations
(48) order by order. This prescription is complemen—
ted by the requirements

(0 [(JZ)B] 0) = Tx {0 J,), (0 |(Ji)BIG) = Tr {DJ,),

where | 0) is the boson vacwm. In this way the
conditions expressed in (27} and (29) are fulfilled.

let us assume, for simplicity, that the
reference stationzry state is a nommal state (6 = 0).
Then, the boscn expansions for {J+)B and (J_)B
contain only odd powers and [JZ)B contains only even
pPowers of boson operators. Moreover,

. . WP ”
0 (305100 = - 5—.0 | )y 10 =0
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It is staightforward to verify that the oammutation
relations and these requirements are satisfied by
the following boson expansions

- /2, + 1 + o+ ~
(J+)B—(NP) (A T AAMA.,.} =
+
= aey At o - AR,
e +
+ 1/2 A A 12
(J_)Bz (JJr)B = {NP) {1 g ) A,
= atn - ¥
Wylg =44 2

These fommulae are a direct generalization
of the Holstein-Primakeff transformation (which
is a Belyasv-Zelevinsky type of hoson expansion.
The cnly difference with respect to the T = 0
expansion lies on the renomalization of the nunber
of particles. We call attention to the fact that the
expansion parameter is 1/NP, and, as the temperature
increases, the convergence becomes poor. This
convergence problem was ab initio expected, because
the boson expansion refers to a given equilibrium
state and, when departing from it, phase transitions
ocarr.

If we insert the theymal bhoson expansion
in the Hamiltonian (47} we cbtain an Hamiltonian
HB' which o all orders, gives results perfectly
equivalent to those arising fram the original H.

If we make truncations, errors are of course
introduced. The anhammonic temns found, which may
look rather camplicated, are the extension to
finite temperatures of the corresponding results
far T = 0.

Fran the mmerical® results the following
main conclusions can be drawn:

i. The Hartree-Fock energy increases with the
temperature. It must be corrected by the inclusion
of the correlation energy {(w - A&) / 2, which is
temperature dependent. The FPL energy so chtained
is always lower than the Hartree-Fock energy. We
chserve in the strong coupling case a minimm at
the second phase transition, which has a pure
quantun-mechanical crigin. The same phenamencn
happens for the only phase transition of the
weak-coupling case. However we should not take
very seriously the nmean-field approxdmation near
the critical points, where large fluctuations are
known to be important.

2. The thermal RPA freguenoy vanishes at
transiticn points, as expected. This is due to the

fact that the two matrix elements of the RPA matrix
are just equal at those points.

The frequency decreases in the region of low
temperatures for the strong oocuplirg case. In the
weak coupling case, on the other hand, the freguency
ranains approximately constant until the vicinity
of the critical point is reached, where a quick
decrease ooocurs.

The decrease of the RPA ocollective Frequen~
cie with the temperature has alsc been cobtained by
Vautherin and V’J’.nh-i!*i&m5> in the Brown—-Bolsterli
model, using Green's functions methods.

For high temperature {i.e. after the last
transition point} the thermal RPA freguency of the
Lipkin model increases in the two cases considered.
This fact has a clear physical meaning, namely that
very hot systems are more difficult to excite
collectively.

Appendix

Experience teaches us that boson expansions
corverge better for appropriate linear combinations
of particle-hole operators,

@) +
T =7 t, . a, a..
n i3 1] 173
The meanirg of the two types of labels, greek and
latin, will beccme clear from the sequel. We assu~
me that these cperators fom a Lie algebra and have
the following properties

+ +

T =T , T =T

@ o A A

Tr (D = § " o= — -
(o[Ta’TBj) ™ oaB 1 "

Te (Do [Ta’ TA}). =0

e ®, [T, , 1, 1) =0,

were « = —'a, A = - A. Equivalent relations hold for
the operators a; aj if we make the following corres-—
pondance.,



