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A boson expansion, which takes into account fluctuations around a mean-field description at
finite temperatures, is applied to the Heisenberg model of a § = } ferromagnet. The approach
incorporates the 7°'*-law for the magnetization at low temperatures and, without considering
dynamical interactions, provides a better estimate of the critical temperature than the conventional
energy renormalized magnon theory and the random-phase approximation.

1. Introduction
The method of boson expansions consists in the replacement of a fermion

system by an equivalent system of bosons'). In its most usual formulation, a
mapping of fermion observables into boson operators

A—(A)g (1.1)
is defined, such that the commutation relations are preserved. Therefore, if

[A, Bl=C (1.2)
then

(Mg, (B)g]=(C)g - (1.3)
This condition is complemented by the requirement that the expectation value
of the observables in the ground-state |0} of the fermion system are equal to
the expectation values of the respective boson images in the boson vacuum [0):

(0]A]0) = (0[(A);0) . : (1.4)
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The physics of the problem remains in this way unchanged when going to the
boson representation. The Holstein—Primakoff transformation is a well known
example of this kind of boson-expansion® *). It has been proved to be very
useful for the study of the low-temperature properties of magnetically ordered
crystals.

The main intent of the boson formalism is to describe fluctuations around a
mean-field situation. The generalization to finite temperatures of a mean field
and associated bosonic degrees of freedom may be explored with the aid of
different techniques’™®).

It is the aim of the method of thermal boson expansions, which we have
introduced in refs. 7 and 8, to extend the standard boson expansions to
arbitrary temperatures. This objective is achieved replacing the expectation
value with respect to the fermion ground-state in the left-hand side of (1.4) by
a statistical average taken with an adequate density matrix D, so that

Tr(DyA) = (0/(A)5[0) - (1.5)

The prescription indicated by (1.1), (1.3) and (1.5) may be applied to
ferromagnetism, allowing to define spin-waves at a finite temperature. The
range of application of the Holstein—Primakoff description is hence enlarged
up to the vicinity of the critical point.

There are in the literature essentially two kinds of approaches for tackling
the problem of temperature-dependent magnons:

1) Renormalization of the magnons with the magnetization
This method, which is referred to as the “Random-Phase Approximation”
(RPA), is relying on a decoupling approximation in the equation of motion for
a temperature dependent spin Green’s function. It reproduces the T law for
the magnetization at very low temperatures and predicts a critical temperature
which, in the case § = 1, is between the value of the mean-field approximation
and the exact one. The theory has the drawback of overestimating the decrease
of the magnetization at low temperatures, as it does not lead to the T
correction discussed by Dyson'').

2) Renormalization of the magnons with the energy
Since this procedure has been derived by M. Bloch from a variational principle
for the Helmholtz free energy of the magnons, it has a more sound theoretical
justification than the Green’s function method, where some unclear decoupling
must be assumed. The free energy includes anharmonic terms of the hamilto-
nian for the magnons, so that dynamical interactions between spin-waves are
explicitly considered and Dyson’s correction is obtained. Although the method
does not give a definite critical point, it breaks down at a specific temperature
T which is near the exact phase transition.
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The present theory, in the simplest version of taking only harmonic terms, 18
similar to (1) in the sense that the magnons are kinematically and not
dynamically renormalized, but, like (2), is based on a variational principle. The
results regarding the evaluation of the critical temperature turn out to be of the
same type of those of (2).

The contents of the paper are as follows. In section 2, we apply the general
method, presented in this introduction, to the S = § Heisenberg ferromagnet in
3 dimensions. In section 3, we use the Peierls variational principle to obtain the
renormalization factor. Finally, in section 4, we present the numerical results,
compare them with the more usual approaches to temperature-dependent
spin-waves and give the conclusions.

We shall use throughout the paper 4 = 1.

2. Thermal boson expansion for the Heisenberg ferromagnet

Let us consider the Heisenberg model of a lattice of coupled S = 3 spins,
being the interactions restricted to the nearest neighbours. The hamiltonian
reads

H=-J25-5,, (2.1)
5

where J is the exchange integral and §; is the spin operator of the electron in
lattice site j. The index j runs over all N lattice positions, while [ runs only over
the z nearest neighbours of j.

Since we are interested in the study of normal modes, we consider the
Fourier transform of S i

Si=NT"72exp(£ik-R)S;, Si=N"""Xexp(ik-R)S:, (2.2)
i i

where R, is the vector taken from the origin to the point j. The operators
S; = S} + 1S5 satisfy the following commutation relations:

[Sy, Sl =2N"""S 0, [k Sel= NS5, (2.3)
With the transformation (2.2) the hamiltonian (2.1) may be written

Hm—JzEYk[%(SISE+S§S§)+S}’;Sik], (2.4)
k

where
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1 .
%= 2 exp(ik- §,), (2.5)

&, bemng the vector from the atom j to the atom /.

We wish now to map the operators S}, §; onto functions of boson operators
B,, B, defined in some bosonic Fock space with vacuum |0). The boson
commutators are such that B,|0) =0 and

[B.. B;.]=8,,, [B.B.]=[Bl BlL1=0. (2.6)

The mapping must preserve the commutation relations (2.3), in order to keep
track of the spin properties.

Let Dy, be a mean-field density matrix describing the mixed state correspond-
ing to a given temperature. According to (1.5) the following equations hold

Tr(DeSTe) = (OIS )el0) . Tr(DySy) = (01(57)510) - (2.7

Since we do not know the exact density matrix, which commutes with the
hamiltonian (2.1), we assume the so-called independent particle approxim-
ation, which consists in taking log D, to be a 1-body Hermitean operator. We
write the density matrix in the form

D,=A exp(a 2 S;) = Aexp{aN"?S:_,), (2.8)
J

A and a being constants. The normalization property Tr D, =1 leads to a
relationship between A and «. The probabilities of finding a spin up and down
are respectively p = A"V exp(«/2) and g = 4" exp(—a/2), such that p +
g =1. We will take the difference between these two probabilities X = p — g as
the only parameter which specifies D,. This parameter will be determined
variationally.

Inserting (2.8) in (2.7) we obtain

Tr(DeS%) = 0= (0(5%)sl0) / (2.9)

and
N2 TH(DySi_,) = Tr(DD > S;) = Tr[A exp(a >, S;) > Sj.]
i i i

F4 r4 N
= NTI'I[A”N exp(aS7)Si]= 5 (p—q)

= N'(0[(S50)s10) - . (2.10)

N
_5)(



200 M. BRAJCZEWSKA et al.

On the other hand, the statistical average taken over the commutators (2.3)
leads to

TY(D(J[S; Sel)=2N" e TF(D(}S;—I\")

-2 Tr{A exp(a Z Sf) 2 explik — k') - R;']Sj}

N
= X8 0 = (Ol[(S Ve, (S )8110) (2.11)
and
Tr(Dy[ S} Si1) = 0= (0[[{S3)s. (S )ll0) . (2.12)

where use has been made of (2.9) and (2.10).
The following double commutator:

N ([Si05S2) Se1=15% Si] (2.13)
has as statistical average (see (2.11)):

N'? Tr(Do[[S5-0, S1]. Se]) = X8, 4
=N"2(0/[(Si-0)e> (St )a)s (Si)5]I0) - (2.14)

It is now straightforward to verify that the following boson expansions for
Sy, Si., do preserve the commutation relations, up to the second order in the
boson operators,

$Hg=X""B,+..., (S)e=X'"B}+.

N (2.15)

NY(S83 ) = > X - Z B!B,

It may be seen for instance that (2.11) follows from (2.15) and (2.6)
Ol{(SH)s> (S2)s110) = X(O[B,, BL1I0) = X3, . . (2.16)

Expressions (2.15) are the leading terms of the thermal boson expansion.
The bosons are associated to fluctuations around the mean field described by
D,, whose temperature dependence is contained in the parameter X. We
remark that the main difference between (2.15) and the first term of the T=0
Holstein—Primakoff series consists in renormalizing the spin § =} with the

factor X.
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To obtain the boson image of the hamiltonian (2.1), we may use the same
techniques. The mapping should guarantee that

TH(D,H) = —1INzX? = (0|(H),]0) (2.17)

(note that the Heisenberg and the Ising models have the same ground-state
energy, in the mean-field approximation).
Using (2.4} we have moreover

Te(Do[H, 5, 1) =0=(0l[(H);. (5)5]10) (2.18)

To(Dy[[H, S71, Sel)=—J2(1 ~ 3 ) X8
=(Oll{(H). (Si)s). (S¢)ull0) . (2.19)

The conditions {2.17), (2.18) and (2.19) determine the following boson
expansion, in leading order in the boson operators, for the hamiltonian:

(H)y=Hy+ (Hy)g+ -+~
= —INJZX* + 2 Jz2(1 - y)XBIB, + - | (2.20)
k

This hamiltonian, expanded to all orders, gives results perfectly equivalent to
the original H.

If we now compare (2.20) with the Holstein—Primakoff hamiltonian, we
notice that the factor § = ] has been replaced by § = X/2.

In the harmonic term of (2.20) we identify the energy of the thermal

spin-waves
w (X)=Jz(1 -y )X. (2.21)
! " - - - .
. The relationship between X and T is the object of the next section.

3. Variational determination of the renormalization factor

In order to know the function X = X(T) and therefore the way how the
dispersion relation is affected by the temperature, we assume the existence of
thermal equilibrium. The free energy should then be minimized with respect to
the parameter X.

The free energy is divided into two parts, one corresponding to the mean
field and the other to an ensemble of thermal magnons,
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F=FK+F, (3.1)
with
Fy=E,— TS,
1 ” kT
= - P N]zX”-i—N-——z—[(1+X)Iog(1+X)+(1—X)log(l - X
(3.2)

(the entropy of the mean field is defined as S = — kg Tr(D, log D), with kg the
Boltzmann constant),

Fy=E, = TS, = 2, @, (X)n,(X) + kT 2, {n,(X) log n,(X)

= [1+ (X)) log[1 + n (X))}, (3.3)

where n,(X) = 1/{exp{Bw,(X)] — 1}, with B =1/kyT, are the occupancy num-
bers of the renormalized magnons.
In order that F has a minimum, it is necessary that (for the s.c. lattice, z = 6)

dF_ NkBT 1+ X
a,m—?:NJX'}' 5 logl_X

+ ; a (X)) + BX%: a)ink(X)[nk(X) + 1]

—ky TP 2X§ win (X)[n(X) + 1]

Nk ,T 1+X
T log T + > wn (X)=0, (3.4)
k

=—-3NJX + > .

where w, = », (X =1) is the spin-wave energy at absolute zero.
The eq. (3.4) may still be put into the form

T
X= th{ 7‘3 [X ~ é-%ﬁ % wknk(X)]} , (3.5)
with T == 3J/ky the Curie temperature provided by the mean-field approxim-
ation. The second term in brackets, which has a simple form due to a
cancellation between contributions arising from the magnon energy and en-
tropy in (3.4), is precisely the term used by M. Bloch'*"*?) to renormalize the
spin-wave energy. In fact, her X, which is to be inserted in eq. (2.21), in the
case of cubic lattices is given by
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1
X=1- 3TN . w,n, (X)) . (3.6)

It should be emphasized however that the second term of (3.6) results from the
first anharmonic term in the conventional Holstein—Primakoff hamiltonian, in
contrast to (3.5), which follows from the harmonic truncation of the modified
Holstein—Primakoff expansion.

The renormalization factor of the presented method, indicated in (3.5), is
independent of the wavefactor k, for all types of lattices. This result contrasts
with the theory of energy renormalized magnons, where this k-independence of
X is only valid for simple cubic lattices.

It 1s a usual approximation to replace the sum over k by an integral, whose
upper limit corresponds to the boundary of the first Brillouin zone,

k

max

V
S o (0= s ] -

Wy

B (D=1 4mk’® dk | (3.7)

with V the volume of the sample. The temperature dependence of (3.7) may be
estimated for low enough temperatures, when mainly long wavelength mag-
nons are excited. We approximate the exact dispersion relation by its power
expansion In & and extend to infinity the upper limit of the integral. The result
reads

N 0.237 [kg,T\"
2 w1, (X) = ? (31)312 ( };( ) ’ (3.8)
with f=1, 2, 4 for s.c., b.c.c. and f.c.c. lattices respectively, so that
0.237 ( 7 )5’2
Z o (X) === 7% (3.9)

If we replace (3.9) in (3.5) and (3.6) we do not find in the first case any
power series dependence of X on T (the argument of the hyperbolic tangent is
not small enough to allow for a truncation of the respective series), while in the
second case we find a T°'*-law for the renormalization factor.

The insertion of the approximation (3.9) in (3.5) allows to draw the
conclusion that in the limit 7/7.—0 the first term of the argument of th,
which is due to the mean field, dominates, leading to

X=exp(TX/T)=1—exp(—2TXIT) (3.10)
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and, therefore, to the well-known spin-wave energy at 7=0 and the corres-
ponding C. Bloch’s law. With the increase of 7/T, the second term, due to
the magnons, gains importance, until a certain point 7= T,__ is reached. For
T > T_.., the transcendental equation (3.5) does not have any solution more.

The same kind of behaviour has been found by M. Bloch in her numerical
solution of (3.6)'7"").

4. Resulis and conclusions
We have solved eq. (3.5) considering the exact dispersion relation and taking
full account of the finite size of the first Brillouin zone. For the simple cubic
lattice, z =6 and the dispersion relation may be written
w,(X)=6J]1 — cos(ka/V3)]X , (4.1)

with a the lattice constant.
In fig. 1 we represent the solution X of (3.5) as a function of the reduced

T I T | T T T
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> i Thermal boson ’
expansion
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< \ i
L \
= 3 4
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— | -
=
=
o - 4
[
=
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o
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REDUCED TEMPERATURE kgT/3)

Fig. 1. Renormalization factor for the spin-wave energy, as a functicn of the reduced temperature
kyT/37, obtained with the thermal boson expansion and with M. Bloch’s approach.
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temperature ¢ = 1/T. = kyT/3J, compared with M. Bloch’s resuits. The con-
clusion is that the maximal temperature in the thermal boson method is
¢t =0.60, which is very near the most accurate value ¢ =0.56""), obtained with
the aid of a high temperature series expansion. In contrast with our method,
the energy renormalized magnon method provides 1 = 0.65, which is out of the
right value by 16%, while the RPA leads to t =0.66.

Just before 7= T, we have found a lower branch of X-solutions. We have
however not displayed them, since they are unphysical (see however the
discussion in ref.?®).

We call attention to the fact that the curve for X in the thermal boson
method runs over the curve obtained by M. Bloch'* ), in the regime of low
temperatures, crossing it at £ = 0.57. Our method shows up, therefore, a very
wide range of applicability for the concept of magnons.

The decrease of the spin-wave energy with the temperature has been
observed directly by neutron-scattering experiments on, for instance, EuQ and
EuS'*""), which are good examples of a S= 1 ferromagnet with second
nearest interactions. Unfortunately, nature does not give us a good representa-
tive of a simple Heisenberg ferromagnet with § = } (saits like K,CuCI,2H,0
have spin 3, but further neighbour interactions are relevant).

Two properties which depend directly on the excitation of the elementary
magnetic modes are the magnetic specific heat and the magnetization. The
former resuits from the energy corresponding to the hamiltonian (2.20):

E=—INJzX*+ 2 w,(X)n(X). (4.2)
k
We obtain
_ @) - (E) ax
CV_(dT v \dX/v dT’ (4.3)
with
dFE . 2
o), = ANIZX + 2 @ (X)+ BX 2 ol (X[ (X)+1].  (4.4)
k k

The derivative dX/dT may be obtained from (3.5) by numerical differen-
tiation.

On the other hand, the magnetization is the expectation value with respect
to a statistical set of magnons of the operator

00y - 52 (35;), =82 (3 x-S mim,), (43)
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where g is the Landé factor and uy the Bohr magneton. The reduced
magnetization is

k

nax

_MX) R 4 4ok’ dk
= "X m0 =X (2w)’f plBo X)) 1 4O

M

MO 0
This quantity is plotted in fig. 2, as a function of the reduced temperature
kyT/3J. The results of M. Bloch and of the RPA are represented for
comparison. The reduced magnetization obeys, in all approaches, the celeb-
rated T°'*-law, for very low temperatures. Our approach, as well as the RPA,
do not reproduce Dyson’s term, arising from the dynamical interactions
between magnons. Near the real critical point, the magnetization is more steep
in our method, if compared with the other two, in agreement with the real
situation. The magnetization at the maximal attainable temperature does not

vanish, being about 30% of the saturation value.
It is clear that all methods based on boson expansions should break down
near the critical point, where fluctuations of all orders of magnitude are known
to be important. We do not consider therefore the finite value of the magnetiz-

—
o

Thermal boson
axpansion

REDUCED MAGNETIZATION M/M,
T

] 1 ] ] 1 ] \ 1
01 0.2 ¢.3 0.4 0.5 0.6 0.7

REDUCED TEMPERATURE kg1/3)

Fig. 2. Reduced magnetization M/M,, as a function of the reduced temperature k,7/3J, obtained
with the thermal boson expansion, with M. Bloch’s approach and with the RPA.
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ation at the maximal temperature as a serious drawback. The calculations of
ref. 15 show that the inclusion of higher order anharmonicities in the method
of energy renormalized magnons does not modify this situation.

The RPA leads, on the contrary, to a well defined critical point. The
behaviour of the reduced magnetization, when going to zero, is ruled by the
critical exponent characteristic of the mean-field theory, although the phase
transition is predicted to occur at a different temperature (the critical point is
the same as that of the spherical model).

We may now summarize our conclusions as follows:

1) The method of boson expansions allows for an unified framework of the
mean-field and fluctuations around it, for a given many-body system at a finite
temperature,

2) A theoretical description of thermal magnons in terms of a self-consistent
renormalization of the magnons at 7 >0 has been given. This renormalization
is governed by the mean-field for 7/T. <1 and by the magnons themselves for
T/Te=3.

3) The non-interacting thermal bosons lead to results which reproduce the
main features of the anharmonic approach developed by M. Bloch. A better
determination of the critical point for the simple cubic lattice with = 3, in
comparison with M. Bloch’s theory and with the RPA, has been made.

The role of anharmonic terms in the thermal boson expansion should be
investigated, mn order to make contact with Dyson’s treatment. The indepen-
dent particle approximation, which neglects two-body correlations in the
density matrix, might also be improved.
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