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We apply the thermal boson expansion which has been presented in refs. [1-3] to the Heisenberg isotropic
antiferromagnet, submitted to an external field. Considering only spin waves with wave vectors up to a certain cut-off, the
magnetization and the principal susceptibilities are calculated. The results are compared with the experimental data on
MnF,.

1. Introduction

Let us consider a Heisenberg antiferromagnet made up of 2N spins, the interactions being restricted
to the nearest neighbours.

We take only lattices which may be decomposed into two interpenetrating sublattices, denoted by j
(sublattice a, for the spin up sublattice) and / (sublattice b, for the spin down sublattice), such that the
nearest neighbours of an atom in one sublattice all belong to the other sublattice.

The simplest form of the Hamiltonian of an ideal antiferromagnet, under an external magnetic field,
is

96=J25j-s,+ngB(Z S;+Zs;') (1.1)
H i !

where J >0 is the exchange integral between nearest neighbours, H is the external magnetic field
directed along the z-axis, g is the Landé factor and u, the Bohr magneton. For the sake of simplicity,
anisotropic interactions are not taken into account, although they may be important for real magnetic
materials (MnF,, for instance, shows a small amount of anisotropy [7]).

We apply to this model the thermal boson expansion which has been introduced in ref. [1] and
applied to the ferromagnetic case in refs. [2, 3]. We wish to calculate the magnetization and tl.
principal susceptibilities y; and y,. In order to obtain the perpendicular susceptibility y, , the second
term of (1.1) is replaced by

H, g1ty (E 5;+357) (1.2)

The interest in studying antiferromagnets is well known:

1) The ground state, on which the spin wave excitations are built, is not an eigenstate of the
Hamiltonian, as it is in the ferromagnetic Heisenberg model. The sublattice magnetization shows a
zero-point spin deviation. '

2) There is a kinematic interaction between spin waves even at low temperatures.
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compare them with the experimental data available on MnkF,.
The conclusions appear in section 4.

2, Thermal boson expansion
The arguments follow closely the treatment of the ferromagnetic problem {1, 2], the main difference

being that there are two sublattices, each one requiring a separate boson expansion.
The Fourier transiorms of 8, and 8, are
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where the sums for Sy, and Sy, extend over the N atoms j of the sublattice a, while the sums for S, ,
Sk, extend over the atoms ! of the sublattice b.
The commutation relations for the spin operators S, are given by

-

- 2 z z + 1 *
[S;a': SK'a}=WSK—-K'u’ [ Ka’SK'a]thSK':Ka‘ (2'2)

The same relations hold for S, while the commutators between spin operators of different sublattices
vanish.

Let us construct a boson mapping of the spin operators. The essential idea of the thermal boson
expansion consists in preserving the commutation relations (the Lie algebra of the spin operators

reproduced by the boson images) and all mean-field expectations values (the mean field is described by
an independent particle density matrix).

Two different kinds of boson operators (B, B, and C,, C; ) are needed, one set for each sublattice
[Bis Bl = 8ixes [Cos C;] = By - (2.3)
The mean-field density matrix is written as an exponential of a one-body operator

Gy = Ae B SimS (2.4}

where « is a variational parameter and A a normalization constant.
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Using the technique of ref. [2], we obtain the following boson expansions (up to the first order)
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28 +1 25 +1 1
X = By(Sa) = "5 coth( 5 o:) ~ 5% coth(%)

is the Brillouin function.

The mean-field equations of motion are classical ones. We hope to take quantal effects adequately
into account by quantizing the mean-field equations. Quantal dynamics is then described by the
bosonized Hamiltonian given by:

(36) 5 = —NJzS2X? + J2SX 20 [ B Cy + % Bl CL + BB, + CLC,]
K

-i—Hg;.LB[NSX—EK‘,B;BK]+Hg;.LB[—NSX+§ cjgc,{], (2.6)

with z the number of nearest neighbours of an atom and v, = 1/z £ ¢’ (the sum being over the z
nearest neighbours).

In order to diagonalize (9€);, we make use of the well-known Bogoliubov transformation for B,
B, Cy, Cp to new boson operators oy, @y, By, By, which is defined by

oy =upBy — v, Cp, ag =u Bg —1Cy,

Bx=uxCy— vBg, Bk =uxCx — 1By, (2.7)
where u, and v, are real numbers satisfying u; — v; = 1. This relationship assures that

log, el =1, [By. Bxl=1. [ax Bl=0. (2.8)

In the new boson variables the Hamiltonian (2.6) reads as

(96, = —NJzS*X? + % w (Br By + afay)

~J2SX 2 (1= V1 = 7)) + Hgpn 2 (Bi Bx ~ %) » (2.9)
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with w (X) = JzSXV 1— y,. Expression (2.9) may still be written as
(), = —NJzS?X? — 128X 2, (1 - V1= y2) + 2 Agny + 2, Agng, (2.10)
K K R

with h = Hgug/JzSX, Af =JzSX(\1— vz = h), ngy=aga, and n;=B; B, The energy consists
therefore of a mean-field term, a zero-point energy and two boson terms. The zero point energy reflects
the complicated structure of the exact ground state.

The free energy is obtained adding to (2.10) the statistical expectation value of the entropy (which
consists also of a mean-field and a boson term)

2 _ , +1
F=—-NJzS*X* - Jz8X 2, (1 = V1 —v.) + 2NB l[log(sinh(%)/smh(zsz a)) + SaX]
K

+871 S log[l — e P4F] + g1 X log[l —e AT, (2.11)
K K

with 8 = (k, 7)™, kg being the Boltzmann constant and T the temperature, The free energy should be
minimized with respect to the parameter . This minimization procedure leads to a transcendental
equation which gives X as a function of the temperature. In the case of # =0, we have:

a — BIzSX + 7% %j wp (1) (X) =0 (2.12)

where w,(1) is the antiferromagnetic spin wave energy at absolute zero temperature and zero external
field.

3. Results

We have solved numerically eq. (2.12), considering crystals of NaCl- (sc lattice) and CsCl- (bec
lattice) types. Following ref. [2], we have introduced a cut-off in momentum space k, < kg, (With kg,
corresponding to the boundary of the first Brillouin zone). The first Brillouin zone was replaced by a
sphere with an adequate radius and the sums over & were replaced by integrals.

There are fundamental reasons for using the cut-off. As discussed in [3], only the collective degrees
of freedom should be bosonized (the intrinsic degrees of freedom are supposed to be well described by
the mean-field). Although more sophisticated techniques may be utilized [3], it is enough for the
present purposes to take the standard form of the thermal boson expansion with a phenomenological
value of k,, as in ref. [2].

The sublattice magnetization as a function of the temperature is given by:

1
M=&°E[NSX—2—55—Z——Z(%—1)], (3.1)
v £ V1i-vyi 2% 1-vy2

where V the volume of the sample. The first term is a mean-field result, the second is a spin wave effect
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and the last 18 the zero-point spin deviation. At low temperatures (X =1), eq. (3.1) yields the
asymptotic behaviour characteristic of antiferromagnets (it goes with 7).
The parallel susceptibility y; is defined by:

1 3'F
T TV 3HE a0 32)
Using eq. (2.11) we obtain
2 e—BwK
Xy = 28805 2 (3.3)

x (1- e_ﬁwk)z .

On the other hand, it is straightforward to conclude that the perpendicular susceptibility, y,, in the
harmonic approximation, is independent of the temperature (y, =560 % 107° per gram).

Expression (3.3) with X =1 agrees with the first term of the expansion in powers of temperature,
around 7 =0, of x given by Oguchi [4].

We are now going to evaluate for each spin the value of the cut-off required for reproducing the
empirical critical temperature, as given by the Rushbrooke—Woods formula [5]:

ko _ kT ( 2 )
7 =g Mg (3.4)
with

kBTC

; =%(z—1)[115(5‘+1)—1].

Our “critical” point corresponds to the maximal temperature at which eq. {2.12) has a real solution.
From table I, which shows the results for the maximal temperature without any cut-off (k= k,), we
conclude that such a cut-off is indeed required to achieve an agreement with formula (3.4). This is
particularly true for spins §21, as in the ferromagnetic case [2], but even for §= 3 the cut-off is
needed.

We note that the upper point at which the self-consistent equation (2.12) still has a solution should
not be interpreted as a physical (continuous) phase transition, but corresponds to the breakdown of the
present temperature dependent spin wave scheme. The maximal temperature attained without any
momentum cut-off is systematically lower than the real critical point.

Table I

Critical temperature in units of J/k, for bee and sc antiferromagnets (note that
the J used in the present work is twice of that normally used). RW denotes
Rushbrooke-Woods formula and TBM denotes thermal boson method.

S bee sC
RW TBM RW TBM
(km = kB:.) (km = sz)
0.5 1.47 1.24 1.08 0.94
1.0 3.99 3.15 2.89 2.36
1.5 7.50 5.67 5.40 4.25
2.0 12.01 8.81 8.62 . 6.61

2.5 17.53 12.56 12.56 9.41
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Table H

Cut-off momentum in units of the Brillouin momentum for
the bec and the sc antiferromagnets, which gives the
Rushbrooke~Woods Néel temperature,

S bece 5¢
kik,, kiksy,
6.5 0.649 0.694
1.0 0.569 (.633
1.5 0.542 0.610
2.0 0.533 0.399
2.5 0.524 0.588

In table II we show the values of the momentum cut-off necessary for obtaining the Néel
temperature, as given by Rushbrooke and Woods. We conclude that approximately half of the phase
space should be excluded. This procedure for determining &, is phenomenological and no claim of an
“ab initio” evaluation of that parameter is made.

We wish now to compare the magnetization and the parallel susceptibility obtained in the framework
of the present approach and the experimental data available for MnF,, which is one of the most
representative Heisenberg antiferromagnets. This crystal is in fact the best experimentally known
antiferromagnet insulator. [t has a perovskite structure. The magnetic ions (Mn"") form a be
tetrahedric lattice (S = 3). The antiferromagnetic ions are not the nearest neighbours (these are in fact
weakly ferromagnetic) but the next nearest neighbours.

The magnetic structure of MnF, shows a small amount of anisotropy, which is not taken into account
in our theoretical description. It is known that RbMnF; is a better example of an isotropic Heisenberg
antiferromagnet but, due to its isotropy, some magnetic measurements turn out to be much more
difficult than in the case of MnF, (or even impossible).

Figure 1 allows us to compare the reduced magnetization M(T)/M(0), obtained by the present
method, with the experimental data of Jaccarino [6], obtained from NMR in MnF,.
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Fig. 1. Comparison of the sublattice magnetization obtained Fig. 2. Comparison of the parallel magnetic susceptibility (in
with the thermal boson methed in the case of MnF, and units 10”° per gram} obiained with the thermal boson method

obtained experimentally from NMR {6]. in the case of MnF, and obtained experimentally {7}.
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For the sake of consistency, we have taken ik =0.485 k;, instead of the value k =0.524 k,,
indicated on table II for § = 3, since the Rushbrooke—Woods formula does not reproduce very well the
empirical Néel temperature of MnF, (k;T/J=18.7, corresponding to Ty =67K, if /J=2X1.79=
3.58 K). The results have the same quality as in the ferromagnetic case. At low temperatures, the spin
wave results are reproduced, while near the phase transition some deviation of the present theory from
experiment is apparent. The thermal boson expansion was in fact expected to fail around the Néel

oint.
P In fig. 2 the calculated parallel susceptibility y, is displayed together with the experimental data for
MnF, [7]. The calculated susceptibility reproduces the trend of the experimental points up to roughly
0.75 T. The discrepancy in the vicinity of the Néel temperature is striking. Although part of it should
be attributed to the lack of anisotropy in the present description, certainly its major explanation should
have to do with the failure of the spin wave picture at the critical point.

4. Conclusions

We conclude that the thermal boson results for Heisenberg antiferromagnets are able to describe well
the data for both the magnetization and the magnetic parallel susceptibility, within a wide -range of
temperatures. In the immediate neighbourhood of the critical point, the thermal boson expansion,
truncated at the harmonic term, is no longer expected to provide a good description of the real
phenomena. In that region, fluctuations of all orders are relevant and any extrapolations of low-
temperature results would fail. These conclusions are therefore in agreement with those obtained in the
case of ferromagnetic insulators.

Let us make a few comments on the work of other authors on the problem of spin waves at finite
temperature in antiferromagnets. In ref. [8], Bloch has discussed shortly the so-called “‘dynamical
renormalization” (or magnon renormalization) of spin waves in bce antiferromagnets. Though within
that framework no restriction in momentum space seems necessary to make a guess of the Néel
temperature within an error of 10%, we point out that in those kind of calculations the kinematical
correlations, which are more important in antiferromagnets than in ferromagnets (at T=0 and “a
fortiori” in the critical region) are left cut. The quality of the fit, if not accidental, remains therefore to
be theoretically understood.

Along similar lines, Low [9] has calculated the spin wave spectrum at finite temperatures of MnF,,
concluding that the agreement with the experimental information obtained through neutron scattering
[10] is fairly good till T=0.9 T, when the concept of well-defined spin waves ceases to make sense
anymore.

Several other authors have addressed afterwards the problem of the dynamical interaction between
antiferromagnetic magnons [11-13] trying different approaches.

In contrast to all those works, we have emphasized in the present article kinematical correlations as
described by a variational approach to the linear free energy. The interplay of kinematical and
dynamical interactions of collective excitations within the ordered phase of antiferromagnets deserves
certainly further studies.
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