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Abstract

We evaluate binding energies, ionization energies, and second-order energy differences as fukictions
of valence electron number for small spherical clusters of stabilized jellium. using the Kohn-Sham
equations with the local-spin-density (LSD ) approximation. Cohesive energies are also reported. A com-
parison is made with semiclassical formulas (liquid drop model and Padé approximant, with surface
and curvature coefiicients derived from first principles). These formulas nicely average the shell-structure
oscillations of the energy, which are found to be almost the same as for ordinary jellium. Spherical
clusters with 1, 7, and 9 electrons have binding energies very close to those of the semiclassical predictions.
© 1993 John Wiley & Sons, Inc.

Introduction

In the simple metals, the delocalized valence electrons experience a weak ionic
pseudopotential, which in simplified treatments is often replaced by the potential
of a uniform positive background with a sharp boundary (jellium).

The stabilized jellium model [1] for surface and cohesive properties of simple
metals is intended to cure well-known deficiencies of the ordinary jellium model:
unrealistic results for the binding energies at all densities, for the compression prop-
erties at low densities (negative bulk modulus for the density of cesium), and for
the surface properties at high densities (negative surface tension for the density of
aluminum). All these unrealistic results follow from the fact that jellium is unstable,
except at a density close to that of sodium. At that density, jellium and stabilized
jellium have identical surface properties. The stabilized jellium model retains the
simplicity and universality of jellium. With only two inputs, the density and valence,
this model provides an accurate overall description of the binding energies of all
simple metals, in the framework of density-functional methods. Given only the
density, it delivers reasonable overall surface properties (work function, surface
tension, etc.). This result is achieved by subtracting from the energy functional of
the jellium model the spurious self-interaction of the bulk positive charge and by
introducing inside the solid a constant potential, the average value in the Wigner—
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TaBLe I Liquid drop model coefficients a,, g, and a,. The surface and curvature coefficients are from
a Kohn-Sham calculation for the planar surface of stabilized jellium [8]. Also indicated are the work
function W and the distance x, from the image plane 10 the jellium edge of the planar surface, from [9].

Is a, [ a,; W Xo
(bohr) (eV) (eV) (eV) (eV) (bohr)
Al . 2.07 —-10.58 0.87 0.65 4.27 1.01
Na 3.99 ~6.26 0.59 0.24 2.94 1.27
Cs 5.63 -4.64 0.42 0.13 2.26 1.55

Seitz cell of the difference between a local pseudopotential and the jellium back-
ground potential.

The jellium model should have the same drawbacks for metallic clusters as for
the bulk system. For example, it does not yield realistic binding energies, and it is
completely inadequate to describe compression effects of finite systems. Notwith-
standing these deficiencies, the jellium model with the help of density-functional
methods has been extensively used for understanding metallic clusters [2,3,4]. Those
studies support the image of the cluster as a system of electrons bound in a one-
particle potential due to the spherical (or deformed) jellium background and the
other electrons. Clusters with “magic”” numbers of electrons (2, 8, 18, 20, etc.) are
more stable than their neighbors, due to the presence of larger gaps above the
highest occupied level. The occurrence of ionization energies with local maxima
for magic systems corroborates that picture.

Here we shall evaluate the effect of the “stabilization™ of jellium on static prop-
erties of clusters, such as binding energies, ionization energies and second-order
energy differences. In other work [5], the stabilized jellium model will be applied
to describe compression effects for clusters at any density.

This work calculates energies of small spherical stabilized jellium clusters, as
functions of electron number, using the Kohn~Sham equations of density-functional
theory (within the local-spin-density approximation, LSD). By “small,” we mean
that the number of valence electrons is N < 20. The quantal energy of the cluster
is compared with a classical liquid drop formula. A variant of the liquid drop
formula, using a Padé approximant, which has been proposed recently for the study

TABLE II. Padé coefficients for the stabi-
lized jellium model [5]. The r, values are
those of Table I.

bl l)z [)3’
Al 0.742 0.326 0.123
Na 0.399 0.284 0.146

Cs 0.308 0.227 0.147
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Figure 1. Non-bulk binding energy per valence electron E/N - q, for clusters of sodium

(rs = 3.99), within the stabilized jellium model. The symbols @ and O represent, respectively,

the Kohn~Sham results for stabilized and ordinary jellium. The dashed line represents the

liquid drop model, and the dashed-dotted line the Padé approximant. The bulk binding
energy is a, = —6.26 eV for stabilized jellium and a, = —2.10 eV for jellium.

of small voids inside solids [6], is also considered. The enhancement of stability
due to shell effects, which is known for jellium, is examined for stabilized jellium.
Ionization energies of stabilized jellium clusters are evaluated. Finally, the energies
of stabilized jellium atoms are used together with bulk binding energies to obtain
cohesive energies.

In the next section, we present the Kohn-Sham equations applied to spherical
clusters of stabilized jellium. Results are then displayed for the energetics of three
metals (Al, Na and Cs), which cover the whole range of metallic densities. In the
last section, further work with stabilized jellium is proposed.

Kohn-Sham Equations for a Cluster of Stabilized Jellium

Let us adopt the atomic system of units (¢ = m = A = 1), We consider a spherical
uniform positive background of finite density #, such that

{1 (r < R)
no(r)=a®R—-r), OR-r)= (2.1)

0 (r=R),
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Figure 2. Ionization energies for clusters of sodium. The symbols @ and O represent, re-
spectively, stabilized and ordinary jellium results. The dashed line represents the result of
formula (2.22) for the stabilized jellium model. Experimental data are indicated by X [22].

with

- 3 k%
" =47rr§=_3—1;5’ (2.2)

and R the cluster radius. From the neutrality condition
f d*rn.(r) =N, (2.3)

the radius of the background sphere must be
R=N"r,. (24)
The self-consistent Kohn-Sham equation is
[= 392 + Ver(r, 0)]¥aolT) = cactarlT) (2.5)

where « denotes a set of quantum numbers and ¢ is a spin number (up 4 or
down {).
In Eq. (2.5), the effective potential is
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Figure 3. Second-order energy differences for clusters of sodium. The symbols @ and O
represent, respectively, stabilized and ordinary jellium results. The dashed line represents
the liquid drop model for stabilized jellium.

Der(r a)=v+(r)+f @ M) ey, (2.6)

Ir—r1'|

where v, is the electrostatic potential for the interaction between the background
and the electrons, n(r) is the total electronic density, and uZ.(r) the spin-dependent
exchange-correlation potential. We have

_%[3—(52)2}-%(60)“’5 (r<R)

vi(r) = N (2.7)
—_— (r>R),
,
with
k%: k[: rs d&c
— —--—-—+—-. —— s .
@opws = =5+ 30, (2.8)

the average potential difference which appears in the stabilized jellium model [1].
(e, is the correlation energy per electron of the uniform electron gas {7].) The
second term in (2.6) is the Hartree potential. The last term is the exchange-cor-
relation potential
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Figure 4. The same as Figure | for aluminum (r; = 2.07). The bulk binding energy is
a, = —10.59 eV for stabilized jellium and a, = —0.21 eV for jellium.

J
('9_1‘1,{”8“(”?’ n*)] 3 (2'9)
where n;(r) and n;(r) are the up and down spin densities, respectively. Here ¢, =
ex + e, with ey = —3kgs/4n the exchange energy per electron of the uniform gas.
The total electronic density is given by

txc(my(r), ny(r)) =

n(r)y= 2 nJr), (2.10)
a=4,4
with
| (1) = 3 foulWaol 1) |2 (2.11)

The f,, are occupation numbers of the orbitals defined by the quantum numbers
ao (foo = O(er — €4,), With er the Fermi energy, and 2., fo, = N).
The total energy of the stabilized jellium cluster is

EN) = 3 oot = (U0 + 3 [ s, myn)) + Ustn

+fd%%mhmmun (2.12)
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Figure 5. The same as Figure 2 for aluminum. Note that only N = 3,6, 9, 12, 15, {8
are physically meaningful. Experimental data are taken from [23].

where
1 !
wm=—fd%ffwﬂﬁﬁﬁ (2.13)
2 lr —r'|
is the electronic Coulomb repulsion energy, and
3 N(N — N3
U O E— 2.14
sln+] 5 R ( )

is the background Coulomb repulsion minus the self-repulsion energy within each
Wigner-Seitz cell. We have adopted the version of stabilized jellium in which the
effective valence is unity (z* = 1), since this version gives the more realistic bulk
modulus. The ordinary jellium model is recovered by dropping the last term of
Egs. (2.7) (r < R)and (2.14).

For a spherical system, the self-consistent Eq. (2.5) is

_ L df;dR., +1
" 22

2r? dr
where 7, = R m, is the radial wave function. As an approximation and to oblige

the system to have spherical symmetry, we replace the true electronic spin density
by the spherical average

)+<Ueﬂr(r, o)+ —ew>7‘f(m=0, (2.15)
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Figure 6. The same as Figure 1 for cesium (r; = 5.63). The bulk binding energy is a, =
—4.,64 eV for stabilized jellium and a, = —1.98 eV for jellium.
1 )
na(r) =_ z |7{n/ma(r)]~ . (216)
4 nim

In order to solve (2.15), with the approximation (2.16), we have used an atomic
code where the nucleus with constant charge has been expanded to the desired
cluster radius.

It is known that the energy of a finite quantal system, such as a cluster, can be
described in an average way by the liquid drop model (LDM)

Eipm(N) = a,N + a,N*3 + q.N'3 + . .. (2.17)

The coefficients a, (volume), a, (surface), and a, (curvature) for the stabilized
jellium model have been obtained with the aid of the so-called “leptodermous
expansion” [8]. They are given in Table I for Al, Na, and Cs.

We can write (2.17) in the form

Eipm(N) = a,N + as(NYN?*/3, (2.18)
The Padé formula for a stable cluster is [6]

as(N) = a1 = bN7'3 + b,N~23 — pN7'7E (2.19)
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Figure 7. The same as Figure 2 for cesium.

The coefficients b;, b,, and b3 are given in Table II. This formula was developed
to connect the liquid drop expansion for a spherical void of large radius with the
perturbation expansion for a void of small radius. It effectively sums the leptoder-
mous expansion to all orders, and has been adapted to clusters by changing the
sign of the curvature R !,

We compare the liquid drop prediction with the quantal result, looking for special
stability (shell closures) for numbers N such that

E(N) < Erpm(N) . (2.20)
Relative stability is also indicated by local maxima of the ionization energy
I(N) = Ex(N = 1) — En(N), (2.21)

where the subscript N denotes the fixed positive charge. A smooth formula for the
ionization energy is

1

I(N) = W+ s
(N) 2(rN'B + xp)

(2.22)

with W the work function and x, the location of the image plane for the planar
surface. ( The values in Table I are taken from [9].) Eq. (2.22) is an approximation
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TasrLe 11, Cohesive energies for the stabilized jellium (SJ) and jellium (J) models (in eV), using different

approximations: “LSD™ means local-spin-density, “1.DA™ local-density approximation, “siC” self-interaction

correction, “LDM" liquid drop model, “*Padé” Padé approximant, and “Exp™ experiment (from [18]).

Here we use densities which are slightly different from those of Table 1. The values in this table refer to
zero temperature, while the previous ones are room temperature values.

r

{bohr) 1.SD LDA SIC LDM Padé Exp.

AN = 3) 2.07 SJ 3.79 3.93 3.21 2.75 3.02 3.34
J 0.72 0.84 0.21 -0.25 -0.07

AN =1) 2.07 SJ 1.91 241 1.61 1.52 1.90 —
J 0.48 0.91 0.24 0.08 0.19

Na 3.93 SJ 0.92 1.18 0.81 0.85 0.82 1.13
J 0.88 .15 0.78 0.82 0.78

Cs 5.62 SJ 0.56 0.74 0.51 0.59 0.54 0.83
J 0.62 0.81 0.57 0.66 0.76

to the liquid drop expression [10], in which a weakly size-dependent LDM chemical
potential u( R) =~ — W appears.

A third measure of stability is the second-order energy difference, which has been
used to interpret mass spectra of metallic clusters:

AyN)=EN+ 1)+ E(N—-1)—=2E(N). (2.23)

A peak of this quantity means an enhancement of stability with respect to neigh-
boring values of N. In the liquid drop model, Eq. (2.23) becomes A,(N) =
32 E;pm(N)/ON?. We shall see whether the criteria for relative stability based on
(2.20), (2.21), and (2.23) agree.

Results

Bulk jellium is stable at the density r; = 4.2, where (v dws = 0. Sodium (r, =
3.99) has therefore been used as an application of the jellium model [11,12]. Since
the stabilized jellium model yields a small value of (6v)ws for Na, the surface
properties of jellium and stabilized jellium should be practically the same for this
metal, although the bulk binding energy per particle a, is very different in the two
models. Small clusters of Na are more bound in the stabilized jellium description
than in jellium (see Fig. 1, noting the different a, for stabilized jellium and jellium).
Nevertheless, the shell structure, i.e., the oscillation around the smooth curve given
by the liquid drop formula, is essentially the same, with magic numbers N = 2, §,
18, 20. The binding energy is also well below the LDM curve for N = 19, where the
2s shell is half-filled. For the electron numbers N =-1, 7, 9, 17, the quantal result
agrees closely with the LDM prediction. These “tell-tale” numbers might be used
to estimate the exact (beyond LSD) surface and curvature energies from careful
quantum-chemical calculations for small spherical clusters. For Na, the Padé rep-
resentation practically coincides with the liquid drop formula.
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The shell structures of jellium and stabilized jellium are also displayed by the
ionization energies. The ionization energies of the two models agree closely (Fig.
2). The ionization energy for N = 19 is bigger than that for N = 20; this fact,
known for jellium in LSD [13], holds for stabilized jellium as well. The local maxima
at half-filled shells (N = 5, 13) are a characteristic of LSD, and are not seen in
the local-density-approximation (LDA) [14]. (LDA is LSD with ny, n, replaced by
n/2,n/2)

Figure 2 also presents experimental ionization energies for Na clusters. For the
smallest clusters, the spherical stabilized jellium results are not in good agreement
with experiment. In fact, clusters of five or fewer atoms are typically planar [15,16 ].
Moreover, the instability of many spherical open-shell clusters is evident from the
total energies of Figure 1. For example, the total energy for N = 3 is greater than
the sum of total energies for N = 2 and 1. These unstable clusters will start to
deform away from spherical shape toward fission. In many cases, they will reach
energy minima before fission occurs. Spheroidal distortions can correct most of the
difference between our ionization energies and experimental ones [17].

The second-order energy difference is almost identical in jellium and stabilized
jellium (Fig. 3). The liquid drop result for A,(N) is practically constant (A (N)
~ 0), providing a good average of the quantal values.

Turning to Al, we find that the shell fluctuations are bigger than for sodium,
although the two patterns are similar (Fig. 4). The Padé approximant and the LDM
formula agree, except for the smallest clusters (N < 8). For N = 1, the Padé formula
reproduces the quantal energy; recall that N is the number of valence electrons and
not the number of atoms. The ionization energies of stabilized jellium (Fig. 5) are
bigger that those of jellium, although the peak structure is the same. For N = 12,
our results agree with experiment,

In the case of Cs (Figs. 6 and 7), the nonbulk binding energies E/N — a, and
the ionization energies of stabilized jellium are below those of jellium. As expected,
a negative value of {6v)ws (as in Al) increases the nonbulk binding energy £/N
= a,, the ionization energy, and the amplitude of A, () oscillations, while a positive
value (as in Cs) has the opposite effects.

The cohesive energy is the energy difference between the free atom and an atom
in the bulk. It can be written as

eeoh = —Qyz + E(N = z), (3.1)

where z is the valence of the atom. This quantity can be read directly from Figures
1, 4, and 6. Table III gives values for the cohesive energy of stabilized and ordinary
Jjellium, in different approximations.

In the case of Al, an atom of stabilized jellium is a cluster with {8v )ws constructed
from an effective valence z* = 1, but with N = 3 electrons (real valence). We have
also included in Table III the case N = 1, since this provides a fair test of the LDM
and Padé formulas.

We see from Table III that stabilization of jellium drastically improves the cohesive
energy of Al, in comparison with experiment. Table III also shows that the Padé
successfully predicts the LSD cohesive energies of monovalent metals (N = 1); the
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discrepancy for N = 3 may be attributed to shell effects. Our LDA values agree with
the “ideal metal” results of Rose and Shore [18]. The surface and cohesive properties
of the ideal metal are the same as those of stabilized jellium: the small difference
we find arises from the use of a different correlation energy. We note that the LDA
cohesive energies are close to experimental ones. However, this close agreement is
due to a cancellation of errors between the LDA and the stabilized jellium approx-
imation. The exact cohesive energy for monovalent stabilized jellium is given by
the self-interaction correction (SIC) [19], and is smaller than the LSD value.

Conclusions

We have analyzed the properties of small clusters of stabilized jellium. Stabilized
jellium is similar to the pseudojellium model of Utreras-Diaz and Shore [20], but
unlike the latter it does not use phenomenological information other than the den-
sity. Binding energies, ionization energies, second-order energy differences, and
cohesive energies have been calculated. The shell structure is essentially the same
for ordinary and stabilized jellium. The various measures of stability tend to agree.
The cohesive energies are more realistic in the stabilized jellium model than in the
ordinary one, particularly for Al

Future work with stabilized jellium could investigate different breakup channels
for charged clusters (a problem which has been studied within the ordinary jellium
model [14]), self-compression effects (since a cluster should have a central density
bigger than the bulk value [5]), large clusters (e.g., the analysis of supershells [21]),
and the static and optical response of clusters.
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