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Abstract

A numerical procedure was employed to study the shape evolution of fatigue cracks in Middle Cracked Tension spec-
imens. This iterative procedure consists of a 3D finite element analysis to obtain the displacement field in the cracked body,
calculation of stress intensity factors along crack front and definition of local crack advances considering the Paris law.
Numerical predictions were compared with experimental crack shapes with a good agreement. The evolution of crack
shape was analysed for different propagation conditions considering robust dependent parameters. Two main propagation
stages were identified: an initial transient stage highly dependent on initial crack shape and a stable stage where the crack
follows preferred paths. Mathematical models were proposed for transient and stable stages consisting of exponential and
polynomial functions, respectively. The transition between both stages was defined considering two criteria: the rate of
shape variation and the distance to stable shape. Finally, the crack shape change was linked with the distribution of stress
intensity factor along crack front.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In structures subjected to cyclic loads the designer may be needed to predict fatigue life. Modern damage-
tolerant design approaches to fatigue are based on the assumption that engineering structures are inherently
flawed, i.e., manufacturing defects are potentially present. Laboratory tests usually focus on ideal crack shapes
(straight or elliptical), however for initially irregular cracks, interaction between cracks, etc., a significant por-
tion of fatigue life can be spent in crack shape modification. Therefore, tools to predict crack shape evolution
and fatigue life are required to improve life prediction.
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Nomenclature

aav average crack length
aT propagation depth
b surface angle parameter
c1 constant of transient function
C,m Paris law constants
B specimen’s thickness
dp dependent parameter
dT1,dT2 transition depths
E Young’s modulus
FEM finite element method
FCGR fatigue crack growth rate
FT,FE transient and stable functions
K stress intensity factor
Ki stress intensity factor of ith node
Kmin,Kmax,Kav minimum, maximum and average stress intensity factors
L1 radial size of crack front elements
MT Middle Cracked Tension specimen
m exponent of Paris law
N number of load cycles
pt tunnelling parameter
pt0 derivative of tunnelling parameter
q (qi) equilibrium distance (initial)
R stress ratio
U fraction of load cycle for which the crack remains fully open
W specimen’s width
WE work of external forces
xc rate of crack shape variation
xl transition limit of crack shape variation criterion
fl transition limit of transient function criterion
Da,Damax crack increment, maximum crack increment
DK range of stress intensity factor
DKeff effective range of stress intensity factor
m Poisson’s ratio
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Numerical techniques have been successfully employed to predict crack shape evolution and fatigue life.
One of the most powerful approaches, widely quoted in literature for this purpose, consists of an iterative
procedure based on a 3D FEM analysis. Firstly, a 3D finite element model is developed considering problem
specificities, such as geometry, initial crack shape and size, loading and material properties. The displacement
field is calculated in the cracked body and employed to predict the stress intensity factors along the crack
front. Finally, nodal crack advances are defined using the Paris law, in order to create a new crack front.
The whole procedure can be repeated up to final fracture, which occurs when maximum stress intensity factor
reaches fracture toughness. Surface effects, such as crack closure or residual stresses, can be assessed consid-
ering different values of crack closure or of material properties along the crack front. In relation to the crack
growth model two main methodologies can be distinguished. The simplest one, proposed by Newman and
Raju [1,2] considers only few crack front keypoints (usually surface and deepest nodes), and assumes that a
particular crack shape (circular, elliptical, etc.) is maintained during whole propagation. The crack can only
change its aspect ratio. Although reasonable results are obtained [3,4], this approach cannot be applied to sit-
uations presenting significant shape variations during the crack growth. A more sophisticated methodology
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was developed by Lin and Smith [5–7] considering several points along the crack front. This approach elim-
inates the crack shape constraint and was applied to planar cracks in fastener holes, to notched and unnotched
round bars under tension, etc., by Lin and Smith [5–10]. Reliable predictions of crack shape evolution and
stress intensity factors were also obtained by other authors. Couroneau and Royer [11,12] studied an edge flaw
in a round bar under cyclic tension or bending loads; Gilchrist and Smith [13] studied short deep and long
shallow semi-elliptical surface cracks under tension load; Nykänen [14] studied fatigue crack growth at the
surface of a plate, and from the toe of a transverse non-load-bearing fillet weld in a T-joint; Lee and Lee
[15] studied composite-repaired aluminium plates. Branco et al. [16] applied the technique to obtain the Paris
law constants from regions with significant crack shape variation. Two experimental crack shapes were used
along with the number of loading cycles between them.

According to several studies available in the literature, crack propagation exhibits two main stages [17–19].
Lin and Smith [6] studied three semi-elliptical surface cracks with different initial aspect ratios under tension
and bending and concluded that, at the early propagation stage the shape change of each crack is different and
strongly dependent on its initial aspect ratio. However, as these cracks propagate, they tend towards a pre-
ferred aspect ratio, reaching very similar profiles. Lazarus [17] analysed an embedded crack (elliptical or rect-
angular) in an infinite body loaded under mode-I and observed that after a certain time the crack becomes
circular. Similar conclusions were presented in studies with cracks emanating from fastener holes and cracks
in notched and unnotched round bars [9,10]. The cracks converge to shapes with constant fatigue crack
growth along crack front and constant K (iso-K profile) [13]. However, there are initial crack geometries
and loadings for which it is impossible to attain and maintain an iso-K profile [7].

In the literature, few efforts have been made to develop the mathematical modelling of the transient and
stable propagation stages, and this will be the emphasis of this paper. A versatile automatic crack growth tech-
nique, based on 3D FEM with 9 nodes along crack front, was developed to study crack shape evolution in
Middle Cracked Tension specimens with different initial cracks, specimen dimensions, linear elastic constants
(E and m) and fatigue crack growth rates (C and m). The procedure was optimized and validated successfully
with experimental results. It was applied to study the robustness of dependent parameters for crack shape
characterization and to identify the main propagation stages. A mathematical model was proposed to predict
the crack shape evolution during the whole propagation and fitted to the numerical results. Two transition
criteria between the two main propagation stages were proposed and compared. Finally, the variation of crack
shape was linked to the distribution of stress intensity factor along crack front.

2. Fatigue Middle Cracked Tension specimens: physical and numerical models

2.1. Physical model

Fig. 1a illustrates the MT specimen geometry studied, which is recommended in the standard ASTM E647.
Fig. 1b exhibits the physical model considered in FEM analysis. Taking into consideration the symmetry of
Fig. 1. (a) Middle Cracked Tension specimen geometry; (b) physical model.
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geometry and loading, only one eighth of specimen was studied (grey volume of Fig. 1a), assuming adequate
boundary conditions. The restrictions at the head of the specimen avoid rotation and bending, and intend to
simulate the boundary conditions imposed by the rigid grips of the testing machine. The corner crack is pla-
nar, normal to the axis of the specimen and exists in its middle-section, therefore, mode-I loading exist along
the whole crack front. The material was assumed to be homogeneous, isotropic and with linear elastic behav-
iour. A dynamic load with 5000 N of maximum load and R = 0.1 was applied, which imposes a maximum
remote stress of 10 MPa.

2.2. FEM model

The numerical model was created using isoparametric hexahedric elements with 20 nodes (Fig. 2a), isopara-
metric pentahedric elements with 15 nodes (Fig. 2b) and singular pentahedric elements with nodes at quarter-
point positions (Fig. 2c). A full Gauss integration was used for these elements, i.e., 3 � 3 � 3 integration
points for hexahedric elements and 21 integration points for pentahedric elements. The finite element mesh
was defined with three different regions: a spider web mesh (Fig. 2e) made of concentric rings (Fig. 2d) centred
on the crack front, a regular mesh region away from the crack front with relatively large elements (Fig. 2g) and
a transition region (Fig. 2f) between those. Singular elements were considered at the crack front. The spider
web mesh has 8 layers of elements along the thickness (Fig. 2e). In this paper, a uniform distribution of layers
is considered. Similar analysis with non-uniform layers can be found elsewhere [20]. The transition mesh
(Fig. 2f) connects the dense spider web mesh with the regular mesh, this having only 4 layers of elements along
the thickness and a regular aspect. The assembled model is given in Fig. 2h. This mesh topology is able to
accommodate different crack shapes and promotes a smooth change from a refined mesh near the crack front
to a larger mesh at remote positions. The mesh has 4073 nodes and 1228 elements (116 pentahedric elements
and 1112 hexahedric elements).

In the numerical study, several initial average crack lengths (2.5, 7.5 and 12.5 mm), specimen’s thicknesses
(2.4, 3, 4, 7.2, 10 mm) and initial crack shapes (straight, curved and chevron type) were studied. The crack
front coordinates of the different cases are defined in Table 1, where xi and yi are the crack front coordinates
measured in x- and y-directions (see Fig. 1b); aav is the average crack length; B is the specimen’s thickness; and
d is defined in Fig. 5a.
a

d

f

e

b c g h

Fig. 2. (a) Isoparametric hexahedric elements with 20 nodes; (b) isoparametric pentahedric elements with 15 nodes; (c) singular
pentahedric elements with nodes at quarter-point positions; (d) spider web pattern; (e) spider web mesh with uniform layers distribution;
(f) transition mesh; (g) regular mesh; (h) assembled model.



Table 1
Relative nodal crack front coordinates of initial crack shapes (mm)

Node, i Fraction of thickness, 2yi/B (–) Initial crack shape, xi (mm)

Straight Curved Chevron

1 0.000 aav aav � 0.528 aav � 4d/8
2 0.125 aav aav � 0.428 aav � 3d/8
3 0.250 aav aav � 0.328 aav � 2d/8
4 0.375 aav aav � 0.228 aav � d/8
5 0.500 aav aav � 0.078 aav

6 0.625 aav aav + 0.072 aav + d/8
7 0.750 aav aav + 0.272 aav + 2d/8
8 0.875 aav aav + 0.472 aav + 3d/8
9 1.000 aav aav + 0.772 aav + 4d/8
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2.3. Automatic crack growth technique

Fig. 3 illustrates the automatic crack growth technique employed in this study. This procedure can be
divided into three main parts: pre-processing, processing (grey boxes) and post-processing. The first one is
dedicated to define the geometry, boundary conditions, loading, initial crack shape and material properties
(elastic constants and fatigue crack growth rate). The second one consists of three successive cyclic steps which
are repeated up to the final fracture, or as long as necessary: finite element method generation, stress intensity
factor calculation and crack growth model. The last step is the analysis of results in the post-processing stage.

The effect of this automatic procedure on the crack front is illustrated in Fig. 4. First, the finite element
mesh is generated in order to calculate the displacement field (Fig. 4a). ModuleF, a non-commercial package
was used to carry out this task. The displacement field is used to calculate mode-I stress intensity factor for
each crack front node (Fig. 4b). Several alternative methods can be used to calculate the stress intensity factor
along the crack front. An extrapolation method with 2 points was used in this study. The stress intensity factor
was calculated at two points on the crack surface by
Fig. 3. Algorithm of the automatic crack growth technique.

Fig. 4. Automatic crack growth technique: (a) initial crack front; (b) K calculation along crack front; (c) node displacement; (d) definition
of new crack front; (e) final adjustments.
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K ¼
ffiffiffiffiffi
p
8r

r
� E
ð1� v2Þ � mp ð1Þ
where mp is the crack opening displacement, r is the radial distance from crack tip, E and m are the elastic con-
stants assuming an isotropic behaviour.

The local crack increments are then obtained (Fig. 4c) using the K values previously calculated and the
Paris law obtained experimentally:
dai

dN
¼ CðDKiÞm ð2Þ
where dai/dN is the local crack growth rate and DKi is the stress intensity factor range at an arbitrary point i

along the crack front. The propagation at each crack front node, under remote mode-I loading, is assumed to
occur along a normal direction to the crack front. The crack increment at an arbitrary node along the crack
front can be derived from previous equation, and can be expressed as
DaðjÞi ¼
DKðjÞi

DKðjÞmax

" #
DaðjÞmax ð3Þ
being DaðjÞmax the maximum crack growth increment for jth iteration. In order to study the effect of crack closure
on fatigue crack growth, an effective stress intensity range was considered, given as follows:
DKðjÞieff ¼ U i � DKðjÞi ð4Þ

where Ui is the fraction of the load cycle for which the crack remains fully open. Once DK varies with crack
growth, Euler algorithm can be used to calculate the number of load cycles, leading to
N ðjþ1Þ ¼ N ðjÞ þ DN ðjÞ () N ðjþ1Þ ¼ N ðjÞ þ DaðjÞmax

C½DKðjÞmax�
m ð5Þ
Adding these displacements to the initial nodal coordinates, new nodal positions are defined and consequently,
a new crack front is generated (Fig. 4d). Lastly, some adjustments on the crack front are required, as illus-
trated in Fig. 4e. Cubic spline functions are used to define the positions of mid-side nodes, improving the crack
shape definition and therefore, the general accuracy [5]. A 2D spider web pattern (Fig. 4d) is centred on each
new nodal position. The connection of 2D meshes gives the 3D spider web mesh presented in Fig. 4e. The
transition mesh is flexible to accommodate either curved or straight crack shapes.

2.4. Dependent parameters for crack shape characterization

Two independent parameters, the tunnelling effect parameter (pt = d/B) and the surface angle (b = tg�1h/p),
were employed here to characterize the global and local crack shapes, respectively. These parameters are sche-
matized in Fig. 5. The angle b (slope angle in the limit h ? 0) is probably adequate to study the influence of
different numerical and physical parameters on the crack propagation. Alternative parameters can be found
in literature [10,20]. Crack size was characterized by the average crack length, aav, defined as the average of
nodal crack lengths. As schematized in Fig. 5a, B indicates specimen’s thickness.
Fig. 5. Definition of crack shape parameters: (a) tunnelling effect; (b) surface angle.
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2.5. Procedure optimization

The development of a feasible procedure to study crack shape evolution requires three main steps: model
definition and implementation, identification of independent parameters affecting accuracy and optimization
of these parameters. An effort was made to optimize the numerical procedure [20]. Several options were
adopted initially, considering literature results and experience of the authors, namely the mesh topology con-
sisting of a spider web mesh along crack front, the use of singular elements, the use of a cubic spline to define
crack front and the use of a direct method for K calculation. However, other key aspects require a parametric
study to define optimum values, namely the radial size of crack front elements, the layer distribution along
crack front, the K calculation procedure and the maximum crack increment (Damax).

The optimized radial size of crack front elements (L1opt) was defined maximizing the work of external
forces (WE). The optimum size of L1 is independent of the crack size and crack shape, and was found to
be L1opt/aav = 4.2%, being aav the average crack length. Values of L1 larger than L1opt are less problematic
than smaller ones. The influence of different physical parameters on L1opt was also studied. L1opt/aav was
found to be influenced by specimen’s thickness (B) and Poisson’s ratio. The increase of m or B, decreases
the optimum radial size. Multiple regressions were used to define a function relating these three variables, valid
within B 2 [4–18] mm and m 2 [0.20–0.33]
a

L1opt=aav ¼ ð0:10B2 � 3:48Bþ 13:14Þm2 þ ð�0:06B2 þ 2:26B� 16:13Þmþ ð0:009B2 � 0:03Bþ 7:70Þ ð6Þ
The accuracy of the K calculation procedure was also studied. The direct method used showed errors lower
than 2% for straight and curved cracked fronts. The maximum crack increment (Damax), Eq. (3), is also a main
parameter of crack propagation procedure. The inaccuracy associated with Damax results from considering
that C(DK)m is constant within each propagation step, which is false since DK increases continuously. Reduc-
tion of Damax produces lower errors and there is a value below which this error can be neglected. Therefore, the
objective is to obtain a reasonable value, which results in accuracy with a relatively low computational effort.
Errors lower than 1% in dependent parameters were considered reasonable. In this study, the maximum crack
increment was defined at each iteration as a fixed percentage of average crack length (aav). Different initial
crack shapes (straight and curved) and different values of Damax/aav (0.1% and12%) were considered. Fig. 6
presents the evolution of tunnelling parameter and surface angle for different values of Damax/aav and the per-
centage differences relatively to Damax/aav = 0.1%.

As exhibited in Fig. 6, an oscillatory tendency was observed for the relatively high values of Damax/aav. This
oscillatory tendency has been already reported in literature by several authors [8,20]. However, this behaviour
decreases significantly when lower values of this parameter are adopted. The analysis of Fig. 6 indicates that
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Table 2
Material properties of 6082-T6 aluminium alloy [21]

Fracture toughness, KIC 20 MPa m1/2

Tensile strength, r 330 MPa
Young’s modulus, E 74 � 103 MPa
Poisson’s ratio, m 0.33

Table 3
Paris law constants ([da/dN] = mm/cycle; [DK] = MPa m1/2) [21]

C m

R = 0.25 8.906 � 10�11 3.456
R = 0.10 5.054 � 10�11 3.554
R = �0.25 1.900 � 10�11 3.978

Fig. 7. Experimental validation: (a) R = 0.25 (a = 11.76 mm); (b) R = �0.25 (a = 13.42 mm).
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considering Damax/aav = 1.0% is enough to obtain errors lower than 1%. Therefore, this crack increment was
adopted in subsequent work.
2.6. Experimental validation

The numerical predictions obtained were validated with experimental results. The experimental crack
shapes were obtained by Borrego in crack closure studies [21] made in MT specimens according to the stan-
dard ASTM E647. Specimens with a fixed thickness of 3 mm were considered (the other dimensions are similar
to the ones indicated in Fig. 1a). Table 2 presents main properties of 6082-T6 aluminium alloy. Tests were
done at constant amplitude load for stress ratios of R = 0.25 and R = �0.25 (Paris law constants are presented
in Table 3). Marking of crack fronts on fracture surface was done with overloads that duplicate maximum
stress of load cycle.

Fig. 7a compares the experimental results for R = 0.25 and an average crack length of 11.76 mm, with
numerical predictions. Fig. 7b compares crack shapes for an average crack length of 13.42 mm and a stress
ratio R = �0.25. As can be seen, the results show a good agreement with the experimental results, which val-
idates the numerical procedure.
3. Numerical results

3.1. Evolution of the crack shape

Fig. 8 exhibits the crack shape development in MT specimen for four different situations. Three different
initial crack shapes were analysed: curved, chevron and irregular. These figures present only a limit number
of crack shape profiles for improved clarity. U1,U2,U3, indicate the closure levels at the first, second and third
nodes from the free surface, respectively. The results in Fig. 8a and b show that crack closure delays the prop-
agation near the free surfaces, i.e., produce some tunnelling, as could be expected. Comparison of Fig. 8c and
d, indicate that, except for early propagation stage, the cracks tend towards a preferred aspect ratio, reaching a



Fig. 8. Crack shape evolution (B = 10 mm, m = 0.33, R = 0.1, C = 5.5054 � 10�11; m = 3.544). Initial crack front: (a) curved; (b) curved
with crack closure (U1 = 0.88, U2 = 0.91, U3 = 0.96); (c) irregular front; (d) chevron.
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very similar profile. During the early propagation stage, the shape change of each crack is different and
strongly dependent on its initial aspect ratio. For a deeper analysis, the crack shape must be characterized
using robust numerical parameters.
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Fig. 9a and b shows the evolution of pt and b for three quite distinct initial crack shapes having all the same
initial values of tunnelling effect (pt = �0.05) and surface angle (b = 109.46�). It can be observed that cracks
having distinct initial shapes but the same initial values of dependent parameters follow similar paths during
whole propagation. On the other hand, distinct propagations are obtained when the initial state of these
parameters is different, as shown in Fig. 9c and d. Even cracks 3 and 7, although their similar initial values
of pt and b, follow trajectories slightly different, proving the great impact of the initial crack shape on the crack
propagation.

Fig. 9 also indicates that the crack propagation can be divided into two main stages [9–11,17–19]: an initial
transient stage (I) highly dependent on the initial crack shape and with high crack shape variation gradients;
and a subsequent stable stage (stage II) where the crack follows preferred paths which are not affected by the
initial crack shape. Only one single path can be followed by the dependent parameters for each initial crack
shape. This is an interesting conclusion since it establishes the possibility of a function relating initial param-
eters with crack shape evolution. However, cracks having different initial crack shapes can follow similar paths
since they have the same initial values of dependent parameters. In general, the transient stage has a short
dimension when compared with the stable stage. Nevertheless, the cracks that are initially more distinct from
equilibrium shape take more time to reach that equilibrium. However, the crack tends always towards an equi-
librium shape, independently on its initial remoteness.

3.2. Influence of different physical parameters

The development of a feasible mathematical model to predict the crack shape evolution needs a systematic
identification of the physical variables affecting crack propagation. It was found that the crack shape evolution
in this geometry depends on initial crack shape, crack length, specimen’s thickness, Poisson’s ratio, the Paris
law exponent and level of crack closure. More details can be found elsewhere [20].

The effect of the initial crack shape is presented in Fig. 9. The effect of crack length can be also observed in
Figs. 9 and 10. Fig. 10a shows the evolution of dependent parameters for three different values of the speci-
men’s thickness (2.4, 4.0 and 7.2 mm) and three initial different crack lengths (2.5, 7.5 and 12.5 mm) without
crack closure. The increase of the specimen’s thickness decreases the tunnelling effect and increases the surface
angle. This can be explained by the ratio of plane stress to plane strain regions, which decreases with thickness.
In corner crack (CC) specimens [22] the degree of tunnelling seemed to be roughly twice as much as in CT
specimens [23], also due to the extent of surface regions. The effect of CT specimen thickness on FCGR
was studied at room temperature by Bao and McEvily [24] on 9Cr–1Mo steel and by Costa and Ferreira
[25] on CK45 steel. They observed that the FCGR increases with that thickness, which was attributed to dif-
ferent levels of crack closure induced by plasticity. This level depends on plane strain to plane stress ratio
regions, a quantity that increases with thickness.

The effect of Poisson’s ratio (m) on the crack shape change is presented in Fig. 10b. Three different values
(0.25, 0.38, 0.45) were studied along with three crack lengths (2.5, 7.5 and 12.5 mm). The results show the
increase of Poisson’s ratio increases the tunnelling effect. In fact, the portion of the crack front adjacent to
a free surface has a loss of constraint to deformation. There is an almost general agreement that at corner
points the singularity although existing is usually different from r�0.5. The order of singularity depends on
material’s Poisson ratio, decreasing with this. Bazant and Estenssoro [26] determined a crack/surface angle
that deviates from perpendicular in a manner consistent with subsurface crack advance and which strengthens
the vertex singularity to 0.5. This critical angle (bc) depends on loading mode and on m. For m = 0.3, bc is 79.6�
for mode-I and 113.0� for mixed mode II + III [27]. If m = 0, the singularity will also be r�0.5 for all b. For
mode-I loading, the increase of m reduces the critical angle, bc [27], which is according the results of
Fig. 10b. Heyder et al. have found a critical angle equal to 78.928� for rectangular cross-sections with
m = 0.3 [28]. Fig. 11 compares values quoted in literature with the ones calculated in this study and an excellent
agreement can be seen.

The effect of the exponent of the Paris law on crack shape evolution can be seen in Fig. 10c. Three values
of m (1.155, 2.000 and 4.424) and three initial crack lengths (2.5, 7.5 and 12.5 mm) were analysed. The
increase of m increases the tunnelling effect and decreases the surface angle. The effect of m is greater in
early propagation stage, increasing the depth propagation needed to attain the stable phase. Lin and Smith
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[6] analysed fatigue crack growth of surface cracked plates and also demonstrated that larger values of m

always make the aspect ratio change more intensely. This can be expected due to the power-law dependency
of crack growth equation. On the other hand, stable propagation stages are less affected by this material
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parameter. In fact, the influence of m on the surface angle is irrelevant and on tunnelling effect is softer than
previous properties analysed.

The crack closure is here used to describe the surface effect for crack propagation. The crack closure (U)
effect was introduced on the propagation considering a reduction of stress intensity factor near the free sur-
face, as described by Eq. (4). Fig. 10d shows the evolution of the dependent parameters for three closure con-
ditions (without crack closure, U1 = 0.95 and U1 = 0.90) and three initial crack lengths (2.5, 7.5 and 12.5 mm).
U1 is the crack closure ratio at the surface node. The increase of U increases the tunnelling effect and decreases
the surface angle, as was expected.
3.3. Mathematical modelling of propagation stages

The existence of a unique propagation path, as demonstrated previously, is an interesting conclusion as it
permits the development of mathematical model suitable to predict the evolution of dependent parameters.
The evolution of both dependent parameters (pt and b) can be characterized by the trajectory A to D shown
in Fig. 12. The stable propagation is defined by BD curve, while the transient stage corresponds to AC. As
mentioned earlier, the transient stage is usually relatively small portion compared with the stable one.

Let us consider that the stable propagation is known in whole domain. In practice, the path BD can be
obtained considering an average crack length significantly lower than aav0, or using an initial crack shape char-
acterized by initial values of pt and b closer to the equilibrium shape (it means that A is very close to B). So,
the evolution of either pt or b dependent parameters can be defined generically by the summation of two func-
tions (see Eq. (7)): a stable function (FE) and a transient function (FT). Eq. (7) separates the variables affecting
each part:
dp ¼ F Eðm; m;B=W ;U ; aav=W Þ þ F Tðm; qi; aT=W Þ ð7Þ
where dp is either pt or b. The former exists permanently during whole propagation and quantifies the values
of the dashed line BCD, presented in Fig. 12, while the latter has special importance during the earlier prop-
agation stage and quantifies the difference between the generic dependent parameter evolution (ACD) and the
corresponding stable dependent parameter evolution (BCD). In fact, it quantifies the evolution of q defined in
Fig. 12. For the initial average crack length this difference is called qi (initial value of q). As illustrated in
Fig. 12, as the crack propagates, this difference tends toward zero and the transient function loses importance
and can be ignored.
3.3.1. Transient function, FT

The transient function can be calculated representing the evolution of absolute q with aT. The latter is called
propagation depth and is defined in Fig. 12 as the difference between the actual average crack length and the
initial average crack length. Transient functions for the propagations presented in Fig. 9c (except curve 3),
taking into account the stable propagation indicated in the same figure, are exhibited in Fig. 13a (notice that
Fig. 12. Main concepts for mathematical modelling of transient and stable stages.
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curve 7 of Fig. 9c is the stable shape and was used to calculate the q values). It can be observed that the max-
imum value of each function occurs at the beginning of the propagation. As mentioned previously, this func-
tion tends towards zero as the crack grows. Furthermore, cracks with greater values of qi, i.e., more distant
from the equilibrium shape, take more time to approach zero.

These trends may be described using an exponential function as follows:
F T ¼ qie
c1�ðaT=W Þ ð8Þ
For all the cases analysed in Fig. 13a, the value of c1 is �27.425. A good agreement between numerical results
(points) and equation predictions (lines) was obtained, with differences always lower than 2%. An individua-
lised study of the effects of physical variables on c1 constant was carried out and it was concluded that the
value of this constant is a function of Paris law exponent. Fig. 13b exhibits the effect of three different values
of m (4.424, 2.431 and 1.155) on FT fixing qi (0.08) and the initial average crack length (7.5 mm). Notice that
Paris law exponent affects the crack propagation (as earlier mentioned in Fig. 10c) and consequently, for each
value of this variable, a different stable crack shape can be distinguished. Thus, the three stable crack shapes
were obtained previously and then the results of pt were used in order to define three adequate chevron crack
shapes with the same average crack shape and the same value of qi (it implies that three different initial chev-
ron crack shapes were taken into account in this study). The points were fitted employing the generic expres-
sion 8 and each constant was calculated. It can be clearly observed that the effect of m cannot be ignored once
it produces different curves and different c1 constants as well. From Fig. 13b, it is possible to conclude that
greater values of m cause smaller extensions of the transient function, that is, it tends towards zero more rap-
idly. Besides, the increase of the Paris law exponent increases the absolute value of the c1 constant. For
m 2 [1.155–4.424] and B = 10 mm, a general relationship between both variables (c1 and m) was obtained
by interpolation, and can be written as follows:
c1 ¼ �6:2109 � mþ 5:8094� 10�2 ð9Þ
A similar investigation was made for the surface angle, b, and similar trends were found for the transient
function.
3.3.2. Stable function

The physical variables affecting stable crack propagation in MT geometry are the specimen’s thickness, the
Poisson’s ratio, the exponent of the Paris law, the crack closure level and the average crack length. For a spe-
cific MT specimen geometry, initial crack and material, only a single path can be followed by the crack and
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therefore, only a single stable function must be obtained (as illustrated in Fig. 12 by the dashed line). Conse-
quently, for each set of initial conditions of the problem, it is only necessary to define a single function that
gives the evolution of the dependent parameter with the average crack length. A fourth-order polynomial
function fits adequately the trend obtained.

Taking into consideration the problem defined in Section 2 (B = 10 mm, m = 4.424, m = 0.33, U = 1), the
stable function of pt (the one presented in Fig. 9a) with a square correlation equal to 0.999, can be written as
follows:
F E ¼ �1:908� 10�1 � a4 þ 4:646� 10�1 � a3 � 4:443� 10�1 � a2 þ 2:094� 10�1 � a� 1:442� 10�2 ð10Þ

where a = aav/W and a 2 [0.12–0.98]. The stable function of the surface angle, as happened with the transient
function, has a similar behaviour and can be fitted adequately with fourth-order polynomials. Branco [20] ana-
lysed comprehensively the influence of main physical variables on the evolution of both pt and b dependent
parameters in MT specimen and proposed general equations for the intervals m 2 [1.155–4.424], m 2 [0.20–
0.45], B 2 [4.0–20.0] mm and U 2 [1.0–0.90].

3.3.3. Transition depth

Beyond the modelling of both transient and stable functions it is also important to locate the transition
between both stages (point C of Fig. 12). The transition depth (dT) can be defined as the difference between
the initial crack length and the length corresponding to CðdT ¼ aav00 � av0Þ. Two criteria were used here to
define the transition depth. The first criterion considers that the transition depth (dT1) is reached when a pre-
defined limit (xl) of the rate of crack shape variation is attained. The rate of crack shape variation (xc) can be
calculated by differentiation of the transient function (Eq. (8)) in order to the propagation depth (aT). This
leads to
dF T

daT

¼ c1qie
c1aT () xc ¼ c1qie

c1aT ð11Þ
Thus, the transition depth (dT1) can be defined by the following equation:
c1qie
c1dT1 ¼ xl () dT1 ¼

Ln xl

c1qi

h i
c1

ð12Þ
A transition depth based on the crack shape variation has also been defined by Couroneau and Royer [11].
The second criterion considers that the transition depth (dT2) is reached when a predefined value of the tran-
sient function (fl) is reached. It means that, the transition depth (dT2) is given by
qie
c1dT2 ¼ fl () dT2 ¼

Ln fl

qi

h i
c1

ð13Þ
Fig. 14a shows the relation between these two transition depths and the initial value of q (qi) for the tunnelling
effect parameter, taking into account the c1 constant defined in Eq. (9) and assuming that xl and fl have the
same absolute values, j�5 � 10�3j mm�1 and j�5 � 10�3j, respectively. Three values of m, which affect di-
rectly the c1 constant, were also studied, respectively 4.424, 2.424 and 1.155. Cracks relatively remote to equi-
librium shapes, i.e., with relatively high qi need more time to reach the equilibrium.

These two criteria can be compared assuming that the absolute values of xl and fl are similar:
jxlj ¼ jflj () jc1qie
c1dT1 j ¼ jqie

c1dT2 j () dT1 ¼ dT2 �
Ln½c1�

c1

ð14Þ
By analysing the previous equation three conclusions can be made: if the absolute value of c1 is greater than 1,
then dT1 is greater than dT2; if the absolute value of c1 is lower than 1, then dT1 is lower than dT2; and, finally, if
the absolute value of c1 is equal to 1, then dT1 is equal to dT2. These conclusions are illustrated in Fig. 14
(where similar values xl and fl were taken into consideration). As can be seen, for example, for
c1 = �27.425 (corresponding to m = 4.424, as presented in Fig. 13b), the curves are almost coincident but
actually dT1 is slightly greater than dT2. For c1 = �15.025 (m = 2.431), it is clearly distinguished that dT2 is
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greater than dT1 in whole domain. For c1 = �7.125 (m = 1.155), the inverse situation is observed. Similar con-
clusions can be made for the surface angle parameter.

Eq. (11) permits to estimate the evolution of the rate of crack shape variation. This rate, according to its
definition, is dependent on the Paris law exponent. Fig. 14b presents the evolution of xc for three different val-
ues of m. As can be seen, the curves tend asymptotically towards zero. The rate of crack shape variation rises
with the Paris law exponent due to a higher driving force of crack shape. Several studies available in literature
also concluded that higher values of m cause higher crack shape changes and that equilibrium is reached more
quickly [6]. For m = 4.424 this rate is practically equal to zero when aT = 4 mm. On the contrary, observing
the evolution of xc for the case with m = 1.155, it is expected that it approaches zero for a significantly higher
value of aT. Similar trends were obtained for xc of b parameter.

3.4. Stress intensity factor distribution along the crack front

The distribution of stress intensity factor along crack front is the main driving force for crack shape mod-
ifications. On the other hand, each crack increment is accomplished by the modification of stress intensity fac-
tor distribution. Fig. 15a shows the evolution of Kav/Kmax with a/W for an initial straight crack taking into
account two set of properties (m = 4.424 and m = 0.33; m = 1.155 and m = 0.20), being Kmax the maximum
1%

0.90

1.02

0.0 0.7
a/W [-]

K
av

/K
m

ax
 [

-]

0

15

W

a

Kav/Kmax = 1

m = 4.424 and ν = 0.33

m = 1.155 and ν = 0.20

dT1

A
bs

ol
ut

e 
di

ff
er

en
ce

 [
%

]

0.82

1.02

0.125 0.875
Fraction of thickness [-]

K
i/K

m
ax

[-
]

1
st

Last crack shape

2
nd

3
rd

4
th

a b

Fig. 15. (a) Evolution of Kav/Kmax with a/W; (b) evolution of Ki/Kmax distribution with a/W.



R. Branco, F.V. Antunes / Engineering Fracture Mechanics 75 (2008) 3020–3037 3035
stress intensity factor for a given crack shape and Kav the average stress intensity factor. The absolute differ-
ence between Kav/Kmax (in percentage) and Kav/Kmax = 1 (dashed line) is presented at the bottom of the figure.
In the early propagation region relatively high gradients of K were obtained, which are due to the great shape
variations. A great influence of the Paris law exponent is observed in the earlier propagation stage. After this
initial propagation period, this ratio converges towards unity and a clear stabilisation is exhibited. Fig. 15a
also shows the transition depth obtained using Eq. (13) for m = 4.424 and m = 0.33. After this dimension
(dT1), the ratio is definitely stabilised which is a good indication that this criterion as a valid way to define
the beginning of the stable region. In this propagation period, KI values are quite stable and the differences
between Kav/Kmax and the unity are always lower than 1%.

Fig. 15b shows the distribution of Ki/Kmax ratio along the fraction of thickness for the initial crack shape
(chevron), the next three consecutive crack shapes and the final crack shape, being Ki the stress intensity factor
of the ith node and Kmax the maximum stress intensity factor. The distribution of ratio Ki/Kmax for an initial
straight crack shape and its corresponding final crack shape is given by the both dashed lines. Considerable K

changes occur during the early crack propagation, forcing the crack towards a very similar K distribution
independent of the initial crack shape. After the short initial propagation period, Ki/Kmax is almost constant
and equal to unity and the so-called iso-K profile is reached.

The next objective is to link the K distribution with the derivative function of pt (pt0) as an attempt to relate
the K variation (represented by Kmin/Kmax, where Kmin is the minimum stress intensity factor) with the crack
shape change (represented by pt0). Fig. 16 shows the evolution of pt0 with the ratio Kmin/Kmax for different val-
ues of specimen’s thickness, Poisson’s ratio, Paris law exponent and crack length. This graphic exhibits a sim-
ilar trend for all cases presented, which is a signal of an effective relationship between the K variation and the
crack shape change. Three main regions are perfectly distinguished (notice that ordinate axis is presented on a
logarithmic scale): an initial period with high values of pt0; a final period with expressive pt0 reductions and
almost constant Kmin/Kmax ratios; and an intermediate period with simultaneous variations of pt0 and Kmin/
Kmax. In the final period, pt0 approaches zero which means that the crack is no longer changing its aspect ratio,
i.e., the crack is in the stable region. On the contrary, in the initial period the crack changes strongly due a high
driving force which leads it towards the equilibrium.

The effect of the Paris law exponent on pt0 can be studied analysing the three filled series (square, circle and
triangle). The increase of m, increases pt0 (which means higher crack shape changes) but does not affect the
initial ratio of K. Fig. 16 also compares the effect of the Poisson’s ratio (filled and not filled squares) and it
is possible to observe that the increase of this parameter, increases the value of pt0 while the initial ratio of
Kmin/Kmax decreases (in these cases the curves tends towards the same path). The effect of the specimen’s thick-
ness is given by the filled and not filled triangles: the initial value of Kmin/Kmax rises with the specimen’s thick-
ness, while the initial pt0 drops.
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4. Conclusions

An automatic technique based on the finite element method was developed to study 3D mode-I fatigue
crack growth in MT specimens. The main conclusions of this study are:

– Main numerical parameters affecting the accuracy of automatic technique were identified and optimized.
The maximum crack increment, Damax, is a main parameter and a value Damax/aav of 1.0% was found
enough to obtain errors lower than 1%. The numerical predictions were compared with experimental crack
shapes and a good agreement was observed.

– Two robust dependent parameters (tunnelling parameters and surface angle parameters) were proposed to
characterize the crack shape evolution. The robustness of these parameters was demonstrated.

– Crack propagation can be divided into two main stages: a transient one that is quite dependent on initial
crack shape and the Paris law exponent; and a stable one where the crack follows preferred paths. These
preferred paths are a function of Poisson’s ratio, exponent of Paris law, specimen’s thickness and crack clo-
sure level.

– Mathematical models were developed for transient and stable stages, consisting of exponential and polyno-
mial functions, respectively.

– The rate of crack shape variation was obtained by differentiation of transient function. The expression
obtained shows that greater values of m drive the crack to attain crack shape variations close to zero more
rapidly.

– Two transition criteria between propagation stages were proposed to estimate the transition depth exten-
sion. Cracks relatively far from equilibrium shapes need more propagation to reach equilibrium.

– A relationship was established between K distribution and crack shape variation. Three main regions were
identified: an initial period with nearly constant values of pt0 in logarithmic scale and important variations
of Ki/Kmax; an intermediate period characterized by more expressive reductions of pt0 and lower variations
of Ki/Kmax; and a final period with values of Ki/Kmax close to unity and significant reductions of pt0.
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