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CHARGED METAL CLUSTERS: ATOMISTIC VERSUS
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1. INTRODUCTION

Atomic clusters which are observed in mass spectrometers are charged. Simple
models for the ions like the jellium model have allowed to understand the electronic
shell structure of metal clusters. For instance, NaJ is a magic cluster, characterized by
an higher abundance in spectra and a relatively higher value of the ionization potential
(second ionization of Nag). Within the jellium model, the valence electrons move in a
self-consistent field due to the continuous positive background and their own interac-
tion. Major gaps in the single-particle spectrum explain magic electron numbers such
as 8 in the above example. In more realistic models, the ions are localized at equi-
librium positions which may be determined from quantum mechanical first principles
considering either all the electrons or, a procedure which is much more effective, only
the valence electrons interacting with the cores via electron-core potentials (pseudopo-
tentials). It is a triumph of the jellium model that more sophisticated treatments of
the ions do not alter many previous conclusions, e. g., the special stability of some
clusters. That enhanced stability of some clusters and some other properties of simple
metal clusters are therefore due to the weakly bound valence electrons and not to the
ions whose main role is to neutralize all or almost all of the charge. Simple theories
are indeed adequate for simple metals.

Considering clusters of increasing size, we may go over to the bulk limit. One of
the goals of cluster physics is to know how bulk and surface properties emerge from .
the corresponding quantities in finite size systems (for instance, how the ionization
potential leads, in the limit of big clusters, to the work function). An advantage of
continuous background descriptions, as jellium, over atomistic ones is that the latter
cannot handle very big clusters.

Here, we describe neutral and charged sp-bonded metal clusters, using different
models of increasing complexity and realism for the ions. Starting from jellium, we
continue with the Stabilized Jellium Model (SJM) or Structureless Pseudopotential
Model, which introduces a constant potential inside the cluster as a perturbative im-
provement on jellium, go over to the Spherically Averaged Pseudopotential Model
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(SAPS), where the ions are localized but, as a result of making a spherical average of
the pseudopotential, are restricted to occupy spherical shells, and end up with an “ab
initio” pseudopotential description (AIPM). For this one, and in order to deal with
charged clusters, we use a modification of the standard plane-wave technique. In fact,
this method for atomistic cluster calculations - where the clusters are placed inside
supercells with periodic boundary conditions and a plane-wave basis is used to expand
the orbits - is restricted in its usual form to neutral systems, due to the long-range
interaction between a cluster and its periodic images. An adequate shielding must be
provided in order to study charged objects.

The theoretical framework for all these approaches is density functional theory [1].
Given local pseudopotentials, the energy of the many valence-electron system is an uni-
versal functional of the one-body density. In the Kohn-Sham formulation, the unknown
part of that functional is the exchange-correlation energy, for which normally the Local
Density Approximation, LDA, is considered (recent semi-local approximations give an
overall improvement for many atomic, molecular, and solid-state properties [2], but
the exchange part still needs to be improved for a better account of surface proper-
ties). Minimization of the energy functional with respect to the density is equivalent to
solving the Kohn-Sham equations, which are single-particle self-consistent equations.

Accepting the LDA, we will show in the next two sections some results of the Kohn-
Sham equations using different external potentials: Jellium Model, Stabilized Jellium
(Section 2), Spherically Averaged Pseudopotential Model and “Ab initio” Pseudopo-
tential Model (Section 3). The conclusions are presented at the end. The material
presented here is a short review of work recently done at the Center for Theoreti-
cal Physics, University of Coimbra, but the calculations for charged clusters with the
plane-wave method are new.

2. CONTINUOUS BACKGROUND MODELS: JELLIUM AND
STABILIZED JELLIUM DENSITY FUNCTIONALS

For simplicity, we consider clusters with spherical symmetry. The jellium func-
tional of the valence electron density n and the background (fixed) positive density n.,
may be written as

Ejln,n4] =T(n] + Ep[n] + } [ d®r fdsr’f-%?_—g"r_;'-:l
+47 [ 72 (1) Veze(r) dr + Un[ny] 1)
where T'[n] is the kinetic energy, E,.[n] is the exchange-correlation energy (in the LDA),
Vert is the jellium external potential, and the last term stands for the electrostatic

background repulsion, which is Up [n,] = %%’ for a spherical cluster with N electrons
and radius R = r;,N~1/3, r, being the usual density parameter.

Since jellium has been extensively studied and applied in cluster physics [3] we
present and discuss Stabilized Jellium [4]. Its density functional reads as

Essln,n] = Esfn,ne] + (60) [ 6(7) (o) = na (M) r — & [ @

where (6v) is a constant potential determined for each metal by a bulk stability con-
dition (see below) with the aid of a one-parameter model pseudopotential such as
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Asheroft’s empty core, and € is the jellium self-repulsion per particle. Physically, the
last equation means that, starting with jellium, the ions are uniformly localized but
that their interaction with the valence electrons is only considered perturbatively and
in a spherically averaged way.
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Figure 1: Electronic densities for Nayo obtained solving the Kohn-Sham equations in
the SJIM with fixed background density, within the LDA. Displayed are the densities
for the neutral system (n}, the double negative system (n~~) and the double positive
system (n**). Below, we show the radial probability charge density in arbitrary units.
The valence-electron density parameter for Na is rZ = 3.93 bohr.

Stabilized Jellium has similar shell structure to ordinary jellium. However, in
contrast with jellium, it yields realistic bulk binding energies and compressibilities as
well as realistic surface energies. It may be applied to clusters in two versions: in
the first, the jellium background is taken rigid at the same density as the bulk, and,
in the second, the jellium background is allowed to relax to its equilibrium position.
Defining E(N, 5,7, 2) as the total energy of a cluster with NV valence electrons, with
background density corresponding to the density parameter r,, pseudopotential core
radius . and charge z we have in the second version:

8 [E(N,rs,7¢,2) _
E‘: [ N ]r,:r; - 0, (3)

where the derivative is evaluated at fixed N. In the limit N — oo the latter equation
is the bulk stability condition which is central to the Stabilized Jellium concept (and
which allows to determine r. and, therefore, (6v) to be inserted in Eq. (2)). The ! is
the valence electron density in the bulk, 5.

The elastic stiffness of the cluster is

. . . 1 62 EN,T,T,Z
B =B(Na"s”'mz)=127rr;N37'§[ : As, c )} — @

which, again in the limit N — oo, gives the bulk modulus of the solid, B5.

Let us start with Stabilized Jellium with a fixed positive background. Fig. 1 shows
the valence-electron density of neutral Nayy compared with the same quantity for Naj;"
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Figure 2: The symbols represent binding energies per atom, as a function of the
number of atoms, for neutral sodium clusters (z = 0), with a single negative charge
(2 = —1) and a single positive charge (z = +1), obtained in the Kohn-Sham - LDA
method in the SJM. The continuous curves represent the liquid drop energy. Note that
for Nag, with NV < 15, the Kohn-Sham solutions have a positive upper energy level.

and Najg™. The charge excess lies on the surface, and 7%(n** — n) spreads out over a
larger region than r?(n™~ — n).
Fig. 2 represents the binding energies per atom for neutral, single positively and

negatively charged Na clusters, with the number of atoms N,; = N ranging from 2 to
50.

Contrary to some belief, the liquid drop model (LDM) for the electronic fluid,
which nicely averages the quantal results, does not have adjustable phenomenological

parameters (i.e., all its parameters may be derived from a density functional such as (1)
or (2)). It may be written [5] as

Erpm(N,2) = a,N + a, N} +aNs+2W
+ & (c+3) N-13 4 O(N-23), (5)

where a, is the binding energy per particle in the bulk, a, is the surface energy coef-
ficient, a, is the curvature energy coefficient [6], W is the work function, ¢ describes
a quantal size effect to the work function (this is ¢ o~ —0.08 for all metals [7] and not

= —1/8, as an early erroneous theoretical prediction and some fits to experimental
data might have suggested). N refers here to the number of valence electrons in the
neutral cluster and not the number of valence electrons in the charged custer (e.g., in
Naji*, we have N = 40 and z = 2, while, in Aljg™, we have N = 3 x 18 = 54 and
z = —2). Note that in the literature z refers to the number of excess electrons, i.e.,
the symmetric of the charge, and not to the charge as here.

The ionization energy, which is easily obtaired in the Kohn-Sham scheme subtract-
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Figure 3: First ionization energy (left) and first electronic affinity (right) for sodium
clusters as a function of the number of atoms, in the framework of the SIM, solving
the Kohn-Sham equations in the LDA and using the LDM. The work function in the
SIM is 2.92 eV (the experimental value is 2.75 eV). The experimental results (Exp.)
for the ionization energy are taken from Ref. 8. On the right the second affinity in the
LDM is also shown.

ing the total energy of the charged system by that of the neutral system, is compared
with experimental data in Fig. 3. The electronic shell structure shows up in “jumps”
at shell closures (which give the magic numbers...). The same effect is seen for the
electronic affinity. The spherical shape (in stabilized jellium as in jellium) shows a
much too pronounced shell structure, but it is well known that allowance for deforma-
tion reduces the fluctuations. The liquid drop ionization energy and affinity are easily
derived from Eq. (5) giving

IN) = E(N,=1) = E(N,0) = W — (c— %)R j_ - (6)
AN) = EQV0)~ (V1) = =W = (c+ §) ™)

where, for convenience in describing the smallest clusters, we have added a d, term to
the radius (“spill out” effect of the charge with respect to the jellium edge). The LDM
is unable to reproduce the shell structure since it represents a semiclassical approx-
imation. The liquid drop values lie above the ionization data for small clusters and
approach asymptotically the SJM work function, which is only slightly higher than the
experimental one.

All the results shown up to now refer to a non-self compressed jellium background.
Self-compression reduces the cluster radius and allows for the evaluation of the elastic
stiffness (this may be larger than in the bulk). They hardly change anything in the
shell structure. Figs. 4 and 5 represent self-compression effects for neutral and double
positively charged Na and Al clusters.

Neutral metal clusters suffer self-compression, r}/r? < 1, an effect which is easily
understood in terms of surface tension [9]. This compression is bigger for smaller clus-
ters than for larger ones (for any chemical species), and more pronounced for aluminum
(higher density) than for sodium (lower density) clusters. Shell effects are visible in
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Figure 4: On the left, ratio between the ionic density parameter and its bulk value,
73/, in the framework of the Kohn-Sham - LDA approach to the Stabilized Jellium
Model, for neutral aluminum (r? = 2.07 bohr, valence 3) and sodium clusters (r5 =
3.93 bohr, valence 1) with N,, atoms. The full curves refer to the LDM results. On
the right, ratio between the elastic stiffness of the cluster and the bulk modulus of the
solid.
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Figure 5: Same as Fig. 4 for double positively charged aluminum and sodium clusters.

local minima for 7§ and local maxima for B*. Again, the LDM gives a good average
behavior and allows us to see the asymptotic behavior. For example, for big clusters,
rs approaches rZ in the following way:

ri =B - gN3, (8)

with G a coefficient depending on the metal. The elastic stiffness of Na approaches the
bulk limit from below while the Al one approaches that limit from above (this fact may
be interesting for the production of hard, nanostructured materials).

Uncompensated charge reduces the self-compression effect and may even originate
self-expansion, when the charge is big enough to overcome surface tension [10]. Small
Naj* clusters show self-expansion up to the size N=8, and a small self-compression for
bigger sizes. On the contrary, Al* clusters are always self-compressed. Nak™ clusters
are softer while Al%* are harder than the solid. In general, the role of charge consists
in softening the clusters.
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Figure 6: Ionic density parameter r; for Naj* (left) and Alf* (right), normalized to
that of the neutral cluster, in the SIM, as a function of charge 2. Also represented is
the radius of the outer ionic shell of the same clusters normalized to that of the neutral
system in the SAPS. The inset shows a small but somewhat strange phenomenon: the
aluminum cluster size decreases in both models (the lower curve refers to the SJM)
when a single charge is added.

3. ATOMISTIC MODELS: SAPS AND AB INITIO
PSEUDOPOTENTIAL DENSITY FUNCTIONALS

The density functional of the SAPS [11], a model which has been developped and
applied mostly by the Valladolid school, may be written as

Esaps([n), B;) = Ti[n] + Ezc[n] + 4 [ dr r?veq(r) n(7)

Y ®

where z; is the charge of ion i. Now ve(F) = (Ziw(f‘ - fi,-)), with w the pseudopo-
tential, is a potential average around the cluster center. For the pseudopotential we
have used the recently proposed evanescent core pseudopotential [12], which gives very
good bulk properties. The repulsion between the ionic cores has been approximated
by an interaction between point charges (last term of Eq. (9)). In this model the
ions are allowed to go to their equilibrium positions (considering forces given by the
Feynman-Hellman theorem) but the spherical average, which is very useful to decrease

the computational burden of the calculation, gives rise to unrealistic ionic spherical
shells.

Notwithstanding the complexity increase, the SAPS gives some results close to
those of the Stabilized Jellium Model with self-compression {13]. Fig. 6 illustrates a
striking similarity of SAPS with Stabilized Jellium: the systems “explode” in the same
way when the charge is increased.

However, for other properties, the SAPS and the SJM differ. A problem of SAPS
is that the spherical approximation seems to be too restrictive to correctly describe
the electronic binding energies: these turn out to be too high and, therefore, the
cohesive energies turn out to be too low in comparison with experiment (13]. Due to a
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cancellation of errors the simpler SIM gives better cohesive energies.

Finally, the density functional for the “Ab Initio” Pseudopotential Model, using
a local pseudopotential w (appropriate for Na), may be written as

Earpu([r), &) = Tuln) + Ezoln] + [ Cra() T w(F - &)

+§fd3rfd3 ,%l + 3 Z;#J ’Rf‘ZR [ (10)

A more complicated third term arises when non-local pseudopotentials are used.

To solve the corresponding Kohn-Sham equations it is convenient in solid-state
calculations to choose a momentum-space representation [14]. In this case a plane-
wave expansion of the orbitals is employed. If we use this method to perform cluster
calculations, translation invariance has to be artificially introduced. This is done en-
closing the cluster in a large cell (supercell) and duplicating it in a periodic lattice.
Care must be taken in order that the supercell is large enough to minimize the inter-
actions between the periodic images of the cluster. The method is, arguably, the best
method available for “ab-initio” calculations on not very small clusters (for the smaller
ones, an expanswn in a Gaussian basis may be the method of choice). The equilibrium
ionic positions (R4) may be obtained with standard molecular dynamics techniques.

However, a problem arises when one wants to simulate charged clusters: a huge
supercell is required by the long-range Coulomb interaction between the charged images.
To circumvent this difficulty one can shield each cluster with a spherical shell charge
distribution with total charge chosen to make the supercell neutral. If this charge is
suitably placed in order to lead to a null total electric dipole, one is left only with
quadrupolar interactions between the periodic images of the system composed of the
shell charge and the charged cluster. To obtain correct results it suffices then to
subtract, after each self-consistency cycle, the spurious interactions of the cluster with
the shell charge distribution (if the shell is thin and its radius is large enough, this
amounts to a constant).

The output for the cohesive energy of neutral clusters obtained with the plane-
wave method improves on SAPS results of Ref. 13, in comparison with experiment (see
Table 1). The SIM results are very good. We have also confirmed the reduction of bond
lengths predicted by the SIM with self-compression and also shown by experiment (this
was also done in Ref. 15 but using a Linear Combination of Atomic Orbitals method).
The ionization energies in the AIPM are better than the SIM values.

Bond lengths for charged clusters are shown in Table 2. Note their increase with
respect to the values in Table 1. Further results on charged clusters are reported in
Ref. 18.

4. CONCLUSIONS

We have examined charged clusters taking different approximations for the ions.
Although the properties of simple metals are mostly due to the valence electrons and
simple approximations hold reasonably well, the treatment of the ions in models of
increasing complexity improves, in general, the agreement with the data, exhibiting
in a more precise way the role of the ions. However, this is not always the case: for
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Bond lengths Cohesive energies Ionization energies
Cluster | PW | G [SIM |Exp | PW| G |SIM |Exp | PW| G |SIM | Exp

Nay 5.5 |55]6.21 |583]067[045]0.73 [0.31]5.50|5.1|570| 4.9

Nag 6.1 162]660| - |0.60]0.43]049 |0.45| 3.88]4.0]|3.78 ] 3.9

Nag 63 |60]675] ~ 1083/0.73]0.69 }0.63|4.57|4.4]| 466 | 4.2

Table 1: Equilibrium atomic distances (left), cohesive energies (center) and ioniza-
tion energies (right) for dimers, equilateral trimers and regular octahedral hexamers
of Na. Atomic distances are given in bohr and energies in eV. Shown are results from
pseudopotential plane-wave calculations (PW), pseudopotential Gaussian-basis calcu-
lations (G, Ref. 16), SIM (with self-compression, except for the ionization energies)
and experiment (Refs. 8,19,20 for bond lenghts, cohesive and ionization energies, re-
spectively). The non-local pseudopotential employed was the Bachelet, Hamann and
Schliiter form of Ref. 17. The Gaussian-basis atomic distances for the trimer and hex-
amer are average values since the calculated minimum energy geometries of Ref. 16 are
not regular structures.

Bond Iengt_lli
Cluster | PW | G | SIM
Naf | 6.8 |64 7.0
Na] 6.2 | 6.0} 6.59
Na/ 65| - | 6.87

Table 2: Equilibrium atomic distances, in bohr, for dimers, equilateral trimers and
regular octahedral hexamers of Na*. PW and G as in Table 1. Again, average bond
length values are shown for G.

instance, the lack of improvement of the SAPS with respect to SJM cohesive energies
speaks for the necessity of allowing for realistic ionic geometries.

Further work remains to be done for charged clusters, in particular with “ab initio”
techniques. Problems like, e. g., systematics of physical properties for clusters with
increasing size, structures and isomerism, limits of stability, further applications of
the liquid drop formula, and effects of non-locality in exchange and correlation present
challenges which should be tackled both with atomistic methods and continuous models
for the ionic structure: if the first give more accuracy, the second are more convenient
for computational purposes and physical understanding.
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