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With the aim of giving a microscopic description of various auclear phenomena observed in
highly excited states, the equation of the collective submanifold for mixed states is presented. The
basic idea is a possible TDHF-like variation in the enlarged space which is adopted in the thermo field
dynamics formalism. A set of equations, which determines the collective submasifoid, is obtained.
The form is analogous to that given in the conventional TDHF theory. At the small amplitude limit,
an equation, the form of which is similar to the conventional RPA equation, can be derived in a
natural way.

§1. Introduction

One of the recent interests in study of the nuclear many-body theories may be to
present a microscopic theory which enables us to describe nuclear phenomena ob-
served in highly excited states and interpreted in the language of the concept of thermal
equilibrium with the temperature T#0. The references concerned with these phe-
nomena can be found in Refs. 1) and 2). In these phenomena, individual highly
excited states are equally populated and usually the average properties of the system
are measured. Therefore, the statistical approach is necessary. In contrast to the
above phenomena, low lying states are related to 7=0. We know a powerful‘
method for describing such states, i.e., the TDHF theory based on a single Slater
determinant. The Slater determinant is an example of a pure state and the state of
thermal equilibrium with T"#0 can be regarded as a mixed state. The TDHF theory
formulated in terms of the equation of the collective submanifold enables us to
describe collective motion as a pure state not only in the linear but also in the
non-linear type® Then, it may be interesting for describing the mixed states to
extend the TDHF theory in the statistical sense.

In responce to the above-mentioned situation, the present authors (J. P. and C. F)
proposed a microscopic theory based on the density matrix formalism.” With the
help of this theory, a variational derivation of static and dynamical mean field
theories for the mixed states is possible in terms of a thermal boson expansion. As
the lowest approximation, the RPA equation for the mixed states can be derived and
by picking up higher order corrections, the anharmonicities can be treated. Then, it
is desirable to describe the anharmonicities in the frame of a small number of the
degrees of freedom, for example, one collective degree of freedom in the same way as
in the TDHF theory.?

On the other hand, Tanabe formulated the thermal RPA and the second thermal
RPA method in a new version in terms of the quasi-particles.® Further, Hatsuda also
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gave a theory in which the RPA and the boson expansion are formulated under the
thermal HFB approximation.” A characteristic common to the above two works is
the use of the thermo field dynamics formalism.” In this formalism, as a technique
for the trace calculation, the fermion space in which the system is described is
enlarged from the original one. For example, the enlarged space is constructed from
a set of the quasi-particle operators (a,*, ;) and another set (¢.*, &). By taking into
account all possible bi-linear combinations of the quasi-particles (a.*, ai, ¢,*, @), the
thermal RPA method is formulated.  Also, the second thermal RPA method is given
by including the higher order products of the quasi-particles” Further, the bi-linear
forms can be expressed in terms of the boson operators, i.e., the boson expansion can
be formulated.”

From the reason mentioned later on, the approach based on the thermo field
dynamics formalism is quite interesting. However, this approach, as it stands,
contains an unnatural feature. As was already mentioned, this formalism is given in
the enlarged space. This means that the number of degrees of freedom exceeds that
of the many-fermion system under investigation. Therefore, if we make any exact
calculation after the boson expansion, there does not exist any trouble. However, if
we make any approximation, then, the degrees of freedom which do not correspond
to those in the original system have some influence on the results, The approach
presented in Ref. 1) does not contain such an unnatural point, because, in this case, the
fermion space is not enlarged.

Main aim of this paper is to present a classical microscopic theory, with the aid
of which the mixed states can be described. The basic idea is the extended use of the
TDHF thoery for the pure state” in the enlarged space given in the thermo field
dynamics formalism. As is well known, bi-linear forms of fermion operators form a
closed algebra and they can be expressed in terms of boson operators, i.e., boson
expansion theory. Further, c-number replacement of the boson in the boson expan-
sion theory reduces to the TDHF theory parametrized in terms of canonical variables.
Then, we obtain the TDHF theory in a small number of the variables by solving the
equation of the collective submanifold” From the above consideration, we can
obtain the boson expansion theory in the enlarged space for the thermo field dynamics
formalism® and, then, the c-number replacement reduces to the TDHF theory in the
enlarged space. Under the above scheme, we can express the mixed states in terms
of small number of the canonical variables. However, we must pay attention to the
number of degrees of freedom in the enlarged space. Many of them do not corre-
spond to those given in the original fermion space. Therefore, we must introduce a
certain additional condition, which plays a role of constraint in the classical phase
space. This is a new feature which is not contained in Refs. 2) and 4). The above
is our basic idea.

In the next section, as preliminaries for the later discussion, basic relations
obtained in the TDHF theory are given and general viewpoint of our treatment is
described. In § 3, a possible formalism of constrained canonical form for the mixed
states is given in a form analogous to the TDHF theory. Section 4 is devoted to the
derivation of equation of collective submanifold for the mixed states. In §5, as the,
zero-th order approximation, the RPA equation is derived. Finally, in §6, some
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§2. Preliminaries

2. 1. Hamiltonian and Slater determinant as an approximate pure state
We investigate an N-fermion system, the Hamiltonian of which is given by

H=§’uéi'C:/+(1/4)'§‘Uuuér‘é;‘c::c:.. 2-1)

Here, the first term.denotes the kinetic energy and the second represents the interac-
tion energ'y. The single-particle states, the total number of which is M, are specified
by the Lat{n subscripts 4, j, &, {-~-. The matrix elements ¢, and vyx are real and have
the following properties:

ty=1;y, Viirt = = Uit ™= ~ U500 = Upgy (2:2)

’I"he operators‘ c* an.d ¢ denote, respectively, the fermion creation and the annihila-
tion operator in the single-particle state i, which obey the anti-commutation relations

(C:(, L:J‘}'—"au, (C:{. C:/}“(C.t., éj‘)=0. (2‘3)

' Fc?r the preparation of the later discussion, first, we will list up some relations
given in thq 'I.‘DHF theory. The TDHF theory starts from a single time-dependent
Slater determinant as an approximate of pure state |5(¢)>, which is denoted by |s(¢)>
The state [s(¢)) can be expressed by |s(¢)>="U%)[0>, where U%¢) is a certain time:
dependent unitary operator and [0> denotes a static HF vacuum. The exact pure
state |p(¢)> should satisfy the Schrédinger equation exactly and if the form of trial

lf'unction is arbitrary, the pure state 16(4)> can be determined by the following varia-
ion:

8°=0, I'= [ K ONialt - Bl >de (2-4)

In the TDHF theory, the trial function in the above variation is a single time-
dependent Slater determinant as a restricted form. Therefore, Is(¢)> is an approxi-

mate pure state. In this case, the expectation I
3 5 value of the operator &,* &, i
the following expression: g e isgivenby

s é* s> =<o] é.* IO+ FY,
(2-5)

<Ol C:i' C‘,‘O) = n.~°8,;,- .

Under an :fp‘p{opriafte f:hoice of the quantum numbers specifying the single-particle
states, (q.lc; il is diagonal for the indices ; and j so that it is written as n:.°8q,
where 2 takes the value 1 or 0, depending on occupied or unoccupied states:

.'°=1 .
n or 0 (2-6)

+ = s~
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The second term FJ§ represents the fluctuation around 2.°. The expectation value of
1 for the state |s(¢)> is given by

<N |s(e)> = 0|0 + F°,
QA= E=Stun+(1/2) Dvasndn, @7
A main problem of the TDHF theory is how to determine the form of F,® and F°.
Further, the following relation is added in the TDHF theory: The quantity ¢
+3avaiarta® is diagonal with respect to the indices i and J in the form

ty+ z‘:vzhjh"ho:E.’oau. (2'8)

2.2. A possible time-dependent variational approach to mixed stales

Our present problem is how to treat the case of mixed states, for example,
statistical superpositions of various Slater determinants. In this case, n, is not equal
to 1 or 0. Let the mixed states under consideration give us the statistical ensemble
average of the operator ¢,*¢; in the following form:

L EDma=nidu+ Fylm), (2-9)

0snS1. (2-10)

Hereafter, we call n, the occupation probability of the state i. Depending on the type
of equilibrium in which we are interested for the system under investigation, the
occupation probabilities are determined.  As was mentioned in Ref. 1), for statistical
equilibrium, these probabilities are given by the Fermi-Dirac distribution, but in
general they may be given by some other prescription, if situations of non-thermal
equilibrium are under consideration. We describe the fluctuation Fo(m) around a
given set of the occupation probabilities . for the mixed states. Further, let the
statistical average value of the Hamiltonian H for the mixed states satisfy the same
form as that given in Eq. (2-7):

(1:1)““,=E+F(m), }

E=Z‘!l;m.~+(1/2)§3vwn.m . (2.11)

Of course, our problem is how to obtain concrete expressions for F,{m) and F{m).
The quantity £y + Zavauna is assumed to be also diagonal with respect to the indices
i and J in the form

l(j‘*‘?l/l‘ﬁk”k:‘e“aij . (2-12)

Here, #; is not always 1 or 0. The relations (2-11) and (2-12) can be found in Ref. 1).
In the case of Eq. (2-6), a possible form of the fluctution can be described in the frame
of the TDHF theory, if the Slater determinant as an approximate form of the pure
state |p(¢) is determined through the variation (2-4). However, in the case 0< n:<1,
the TDHF theory is powerless, because the mixed states cannot be expressed in terms
of a Slater determinant. In this paper, we will show that if the system is transcribed
in a certain fermion space, the fluctuation around any value of »: can be described
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under the same scheme as that of the TDHF theory. Of course, a certain new
condition, which does not exist in the TDHF theory, is added.

Let us describe basic idea of our approach in a rather general form, which is
similar to the thermo field dynamics formalism.® We prepare two spaces, the
dimensions of which are the same, and call ¢- and d-space, respectively. The
orthonormal sets of both spaces are denoted by {ip>} and {|p)), respectively. In the
product of these spaces, i.e., in the enlarged space, we introduce the following time-
dependent state [m(#)) which is normalized as 1:

lnz(t)»=§:n!p(z)>®lp». }

SIBE=1, GOl=1. (@13)

Here, I} and |p) do not depend on ¢. The states of the set {|p(£)>}, which depend on
t, are not always orthogonal, but, are in a one to one correspondence with the states
of the set {|p}). It should be noted that |p(0)> is not always |.

For any operator O given in the c-space, we can prove the following relation:

L) Olm( 1)y AP 0I01p(1)>

=Tr(D(t)0). (2-14)
Here, D(?) is a time-dependent density matrix given by
D(OY=ZApu DI . (TrD(t)=1) (2:15)

The relati_on (2-14) shows that quantum mechanical calculation of the expectation
value of O for the state {m(t)) is equivalent to the procedure of statistical ensemble
average. The quantity [, plays a role of the statistical weight.

Now, let us consider the following variation for the Hamiltonian acting on the
c-space: :

s1=0, 1= ["Cm(e)idfot ~ Alm(t)pet (2-16)
The variation &7 under arbitrary form of |m(s)) gives us the time-dependent
Schrédinger equation:

/3t m(t)d=H{m(t)} . (2-17)

From Eqgs. (2:13) and (2-17), we can prove that the state 16(t)> satisfies the following
Schrddinger equation:

idfop(e>=Hip(t) . (2-18)

The definition of the density matrix (2-15) and the Schridinger equation (2-18) give
us the Liouville-von Neumann equation:

-iD(t)=[D(1), ). (2-19)

The above equation (2-19) is a starting relation of Ref. 1).
From the above fact, it can be concluded that the approach based on the variation
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(2-16) is equivalent to the conventional density matrix approach.  The preparation of
two spaces is the basic idea for treating the case of the mixed states. Under a certain
restricted form of the state |m(¢)) in the same sense as that in the TDHF theory, we
can perform the variation (2-16). In this case, we should take into account the
following identity for any operator 0 acting on the d-space: From Egs. (2-13) and
(2-14), we get the relation

{m()|Olm(£))=¢m(0)|O|m(0)) . (2-20)

The above relation means that the expectation value of O for [m()) does not depend
on ¢ Then, when we perform an approximate procedure for the variation, the
identity (2-20) should not be forgotten. This is a new feature which cannot be found
in Refs. 2) and 4). Under the above preliminaries, we will investigate our problem.

§3. Constrained canonical form for mixed states

Our basic viewpoint is the idea of transcribing the original system in a fermion
space, which is constructed by two kinds of fermions (@,°, a.) and (4.°, b.). Here, the
numbers of the operators 4; and b, are the same as that of the operators c¢;, re-
spectively, i.e, M. Any anti-commutation relation between (d*, &) and (5%, 5)
vanishes, and between the same kind of fermions, the anti-commutation relations are
given by

(4, 5:"):511. {a. a}={a., a,*}=0,

(6 5,280, (bi BY=(5." 5,%)=0. @D
In this fermion space, we can define the following operators:

Er=wd*+ubi, Ei=widtuvb*. (3-2)
Here, u: and v; are given by

w=T=n, w=Jn;. (uP+vi=1) (3-3)

By using the relations (3-1) and (3-3), it can be shown that the operators defined in
Eq. (3-2) satisfy the same anti-commutation relations as those giveninEq.(1-3). Inthis
sense, we regard &." and &. as the counterparts of ¢.* and ¢,, respectively.
Associated with the above operators, we can define the operators d.,* and d:, which
are independent of &,* and &, in the form

Jl‘=“ll;al+l¢151', (71=“U(5.'.+ll.54. (3‘4)

The operators d.* and d, satisfy also the same anti-commutation relations as those
given in Eq. (2+3) and they are anti-commutable with any ¢,* and ¢.. Further, it is
noted that d.* and d, have no counterparts in the original fermion space. In the
thermo field dynamics formalism,™* the relations (3-2) and (3-4) are used in terms of
the quasi-particles.

With the aid of the relation (3-1), the operators &:*&, can be expressed in the
following form:
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E*é=ndu+Fy, (3-5)

Fy=uw, 8 b5+ vawsbi@s+ ua;3° @~ vivsb,* bs . (3-6)
Let the vacuum for the fermion operators (4., a4 and (5%, b) be [0):

@j0)=5.0)=0. &)
Then, the expectation value of &:*&, for |0} is given by

{O0]e* Ej0)=nidy. (3-8)

Further, it can be shown that the expectation value of the Hamiltonian H obtained by
replacing ¢:* and ¢; with &* and &: in the Hamiltonian H given by Eq. (2-1), for the
state [0, is of the same form as that given in Eq. (2-11):

{IAIY=E. (3-9)

From the above relations, we can see that the calculation of the expectation values of
the operators &.* &, and H for the vacuum [0} gives us the procedure of statistical
averaging for the mixed state with Fiu(m)=F(m)=0. In the same way as is given in
the above, we can obtain the following operators composed from d,* and de

Jj“til=7hau+ Gy, (3-10)
Co=vit;8. ;" + uaw;b.@— v, @ P a,+ wa; 5, b (3-11)

The expectation value of d;*d. for the state |0) gives us the following relation which
plays an essential role in the later discussion:

A0ld*doy=nidy. (3-12)

Our present system consists of the two kinds of fermions. Then, if we regard
(a.* a:)and (b.*, b.) as the operators which play the same role as that of the particle
and the hole operators in the static HF theory, the fluctuation Fy given in Eq. (3-6)
is expressed in terms of a combination of the particle and the hole-pair operators.
The fact that the fluctuation can be expressed in terms of the particle and the
hole-pair operators permits us to use the canonical form of the TDHE theory for the
description of the fluctuation.” As was already mentioned, in the original fermion
space, it is impossible to describe the fluctuation in the frame of the TDHF theory.

In the present enlarged space, we introduce the following state which is of the
same form as that of the Slater determinant:

[e(t)d=U(D)l0},

Ulty=expZllua*b,* 18 b.a,). (-13)
Here, U(t) is unitary and [} and I's* are time-dependent parameters, which are
expressed in terms of the other parameters Cx and Cy* in the following form:

I};={sin"v CcC'-y CC""C]J[
=[C-/C'C ' sin'VC'Clii. (3-14)

R
et e
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We regard the state |c(¢)) as a trial function for the variation (2-16). The operators
(d.* a:)and (b:*, b.) can be expressed in terms of the operators (&:*, &) and(d:*,
d.) in the form

gr=wé*—vd:, bi=viéFtud;. (3-15)

Then, the vacuum |0} can be given by

0)=T](ui + vic:* dNpBIB) . (3-16)
where |¢> and |¢) satisfy, respectively,

cilgr=0, digr=0. 31D
Then, the state |c(£)} can be written down as

|C(1)»=CXD);(F.?—ﬂ;)u.vi'epr-H(u. +u, e dM$HRI8Y (3-18)

K =:§[(Fnu;u,~+ FEow)érd,* —(Itua,+ Do) d, €

(e~ F3vae) é40 65 v (Nwa — Suw)d d.). (3-19)
Therefore, |c(1)) can be expressed in terms of

Ic(1)>)=“§“n..m.h~lx}. oo (U@, -, i) (3-20)

where the set of the states {]i, -+, i)} is an orthonormal set given by
Iil. i u)=1/fLT¢7.'.J.ﬂ¢» (3-21)

The state |4, *+, i.(t)> is an L-fermion state for *, which is a certain superposition
of the orthonormal set given by

L s, iy =1/JLT- €5 221D . (3-22)

By comparing Eq. (3-20) with Eq. (2-13). we identifly the spaces spanned by the sets
(3-22) and (3-21) as the c- and the d-space, respectively. This is the reason why we
can adopt the state Je()} given by Eq. (3-13) an the trial function for the variation
(2-16).

The trial function (3-18) is of the restricted form. Therefare, [, in Eq. (3-20)
may not be a constant but depend on ¢ and the state {fi--1(1)> may not be exact
solution of the Schrodinger equation (2-18). In this sense, as the constraint, we
should impose the relation (2-20), which is an identity in the case of the exact solution,
for expectation value of any operator composed only of d.* and d.. with respect to
lc()). We can see from Eq. (3-20) that the expectation value of any operator such
asdy*, - dy* diydi vanishes automatically for le(t)y if L#+=L". Inthecase L=L’,
the expectation value can be expressed in terms of the product of the type
LDl ds* dilc(£)), because lc(¢)) is of the form of the Slater determinant and the Wick
theorem is applicable. Therefore, it is enough to take into account only the case of
Le(Old*d|c(t)). Further, if n.=n=1 or 0, the state |c(¢)} should be reduced to a
single Slater determinant as an approximate pure state [s(¢)>. This reduction is

N\
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realized automatically if {c(!)|d,*ddc(£))=40|d,* dJ0Y=nS8,
argument, we impose the following relation:

Ll d* dde())=40ld* dif0Y=n.dy . (3-23)

The above relation plays a role of the constraint in our treatment. There does not
exist the condition (3-23) in the thermo field dynamics formalism.?*

As can be shown in the TDHF theory, the expectation values of fermion- -pair
operators for the state {c(¢)} are given in the following form:

{c(t)a.* bJ"C(’»=(ﬂl.b/‘)c"—'ECJ‘A(J 1-C'C)an .}

From the above

_____ 3-24
COINTEOE (b:(u)c“?(ﬂ CCMNHuCy, ( )
(C(f)l5;‘5J|C(f))=(ar‘aj)c=?C:;Cu,
(DB Bl =(b b =T CA Ca } 3:29)

The parameters CJ and Cy play a role of canonical variables in the canonical form
of the TDHF theory and satisfy so-called canonicity condition:

Lc(ldfaCyle(td=+C3/2,
{c()Io/aCH c(t))=—C:/2.

We can see that (a.*5,%)c, (bias)c, (a*a;)c and (6;*b))c given in Egs. (3-24) and (3-25)
satxsfy the same algebra as that governing the operators a.*,* , b.d;, 8*a; and
5% bs, if we regard the Poisson bracket defined in the following as the counterpart of
the commutator:

[4, B],= %_‘.(BA/BCU- 3B/3CE— aB[3Cy-3A/OCY) . (3-21)

(3-26)

With the use of the relations (3-24) and (3-25), we can express the expectation values
of various quantities, for example, the Hamiltonian H as functions of al] C* and C:

H=Cc(Hc(1)). (3-28)

Thus, we could complete a possible canonical formulation for the mixed states in the
form analogous to the TDHF theory for the pure state. The existence of the con-
straint (3-23) is characteristic of the present formulation.

§4. TDHF-like variation and equation of the collective submanifold

Following the principle of the TDHF theory, we start from the variation defined
by .

s1=0, I= “(c(t)lia/at—(i7~‘.fl?,/lufv'u)!c(l))dl. ‘ @1

Here, it is noted that the above variation should be performed under the constraints
GU":(C(f)iG—U’C(f)):O, (GU‘=GJI) (4'2)
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Go=viua:*b;*)c+ uwibia;)c — vwi{aa)e + wiab,*b)e . (4-2a)

As is shown in Eq. (3-23), our present system is governed by the constraint Gy=0.
Therefore, the variation (4-1) contains the Lagrange muitipliers A, which satisfies

115:/1)’.’ . (4‘3)
The variation (4-1) gives us the following equation of motion:
+ ICU_(a/aCJ)(fI “g/lnlcu):o .

44
—iC3—(IC ) H - 2AGu) =0 -9

Since the constraint should satisfy the condition G,=0, we have the following
relations:

iGuz[Gu, H‘;;A.IGN]P
=Au('h - n,) - 23/‘:.. Gu + ?/‘nGn - E[ Gu. Au]an ={. (4 '5)

Here, we used the relations

[Gs, H]p=0, (4-6)
[Gy, Gulr=08ubin{n;—n)+ 8:4Guni— 060Gt .

Under the constraint Gy=0, Eq. (4-5) gives us
Ag=0, (if n;= n;) Ag#0. (if ny=n;) “4-7

In the above treatment, it is impossible to determine Ay for the case n,=n;. F_or
the determination, we must find a convenient method. The expectation value of Fy,
Cc(ONFyle(t)) (=F,) can be written in the following form:

Fy=fy, (for n#u,)
fo=uwlart o) + valbia)e+ e fa® a,)c = v.olb, b)c | (4-8)
Fy=f,+ Gy, (for mi=n,)
fo=(a*a)e—(b*b)c. (49)

Then, the Hamiltonian £ can be expressed in the form

H=FE+ ?5;ﬂ;+(l/2)i§:lvimfufu
+(1/2)§:"§"UWIGUGN + gu(E.au‘f‘ %:U-mfu) G, . (4-10)

Here, the symbol 237 denotes the sum with the restriction #,=n;. We choose Ay in
the following form for the case n;=n;:

Au=5|6u+§t}.ulf’.u (4‘11)

Of course, Ay given in Eq. (4-11) satisfies the condition (4-3). The reason why we
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choose the form (4-11) is as follows: Qur description is based on the picture that the
particle-hole pair type variables C% and Cy describe our system. In the case n;+ n;,
we can imagine that these variables are of the particle-hole pair type. However, in
the case n,=n;, the occupation probabilities are the same and, then, we cannot
provide an interpretation of these quantities as the particle-hole pair amplitudes. If
Ay is chosen as the form shown in Eq. (4-11), the interaction term starts with the
quadratic terms for CJ and Cy with n,#n,. Then, the leading terms in the equation
of motion do not contain any C§ and Cy with n,=n,. This is the reason why we have
adopted the form (4-11). Then, the Hamiltonian is given by

H - %}A.,Gu = ¢

=F+ ?Eifu +(l/Z)UEuUmlfufu+(1/2)§:"2"U.UIGUGM . (4 . 12)

ey

Of course, the last term does not contribute any effect to the result, The equation of
motion (4-4) is written down as

+ I'C.;,'— dHoC=0,

—iCE~ M c/oC;=0. (4-13)

The canonicity condition (3-26), the constraint (4-2) and the equation of motion (4-13)
form a set of basic relations in our approach. By solving these equations, we can
determine the time-dependence of the parameters C* and C.ie. ' and I". Then, the

state Je(1)) can be given as a function of ¢ and we can calculate the ensemble average

values of various quantities.

In the formalism developed above, all degrees of freedom permitted are contained
in the treatment. Then, we investigate to describe the system in terms of small
number of degrees of freedom, which is analogous to that given in the case of the pure
state.  For simplicity, we consider the case of only onc degree of freedom and we call
it as collective degiree of freedom.  For this aim, we separate all degrees of freedom
into collective and non-collective degrees of freedom. First, we introduce new
canonical variables (X*, X) and (y.*, y,: r=1,2, -, f), where f is equal to M?—1.
The former are for the collective motion and the latter for the non-collective ones.
These variables are connected with C§ and Cy, the number of which is M?, under
canonical transformation. It is clear that variables (C*, C) are functions for the
variables (X*, X) and (y*, y). A possible definition of the collective submanifold can
be given by the following requirement: On a certain submanifold. all y,* and yrare
equal to 0 under an appropriate choice of initial condition. We can set up all y-*
=y, =0 without violating the equation of motion. We introduce new notations:

CHX*. X, all y.*=0,y,=0)=C¥X* X), (4-14)
Ci{X* X, all y.*=0, y,=0)=Cx{X* X).
For any function of the variables C* and C, F = @(C*, C), we adopt the notation F
=@(C*, C). With the use of the above notations, the following formulae are
obtained:

4
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(BCE/3X*)yrmy=0=8CE[3X* , etc., (4-15)
(IF[3Cs)c*=co.c=c=03F[3Cy , ete.

Let us write down our basic equations which determine the collective sub-
manifold. Since the new variables are also canonical, they should obey the
canonicity condition (3-26) and, from the conditions for the old and the new variable,
(C*, C) and (X™*, X), we can get the following relations:

g(cmcu/ax—Cu.acr,/ax)=x' , }

(4-16)
SACy+aCfoX*— CE-aCufIX*)=X .

The constraint (4-2) gives us
Gy=0, 4-17)

where the explicit form is obtained by replacing C* and C by C* and C in the
constraint (4:2). From the equation of motion (4:13), we have the following equa-
tion, which is called equation of the collective submanifold:

+A3CfaX ~ A*AC 43X * = GHICh }

(4-18)
—A3CH3X +A*3CY3X*=0H foCy .

Here, A and A* are given by
A=iX=3HaldX*, A*=-iX*=3Ha/3X. (4-19)

The set of the relations (4-16)~(4-18) determines the collective submanifold. Of
course, He is given by replacing C* and C with C* and C in Hc shown in Eq. (4-12).
The Hamiltonian Hew is a function of X* and X and obtained from H¢ through C*
and C as functions of X* and X. By solving the equation of motion (4:19) under an
appropriate initial condition, we can determine the time-dependence of X* and X.
Then, the time-dependence of C* and C is determined and we can obtain the state

[c(2)d.
§5. Small amplitude limit and the RPA equation

Let us give an approximate solution of the set of Eqs. (4-16)~(4-18) in the case
of the small amplitude limit. This solution gives us a boundary condition for the
exact solution of the above equations. The quantities C§ and Cy are related to the
fluctuation around n; and, then, in the limit of X*=X=0, they should vanish.
Therefore, they start linearly in X* and X and, as the zero-th order approximation,
we can set up’

Cr=vau{UsX*~ V2X), }
Cu=— v VuX*— UL X).

The coefficients U and V should be determined in the frame of our basic equations.
The canonicity condition (4:16) reduces to

(-1
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%}mzvjz( UkUi~V3Vy)=1. (5:2)

The constraint (4-17) gives us the following relation:
Gu=" U{“}C/‘( + ll,ll,'Cu

= lltllfll/llj[( Ui— Vid X* +( Us- VJ)X]

=0. (5-3)
From the relation (5-3), we have
Us=Vy. (=Wy) (5-4)

Therefore, Egs. (5+1) and (5-2) reduce to

C,fa:vfllj( }VuX*— VV,?X) R (5.5)
Co=—va Wi X*~ W3 X),
Zu:(ﬂi‘ n) Wi We=1. (5-6)

Finally, we investigate the equation of collective submanifold (4-18). The right-hand
side of Eq. (4-18) reduces, under the present approximation, to the following relation:
For n:#n;, we have

HfICE=(ei—e,)Cy+ vitky v 1a0iCh + vastsCor)
=+ vaf(ei~ e WaX* - WeX)+ T vanln—n)(WaX* - Wi X)),
(5-7a)
FHc/ICy=(e;—¢€,)Cl+ v B vl variCli+ ws0iCa)
== va{(ei— e WeX*— WIX)+F via(ne— m) WuX*—~ WA X)],
(5-7b)

where the symbol 23 denotes the sum with the restriction n,#n;. For ny=n,, we
have

ch/aC.’,a_—‘(Ej“E-‘)CU

= uw (e~ X W X*~ W3 X)], (5-8a)
ch/(?Cu:(E/“é‘t)Cz
=~uwllei~e)(WuX*~ W X)]. (5-8b)

On the other hand, the left-hand side of Eq. (4:18) can be expressed in the following
form:

+A0Cu/0X — A*ICu/0X*= vt [(u Wy — v W2 X* + (uW3—v*Wi)X1, (5-92)

= A9CHOX +A*ICH/0X* = viae;{ (1 Wy — VINX*+ (Wi W)X]. 6 -9b)
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Here, u and v are constants contained in Few, which is, under the present approxima-
tion, quadratic with respect to (X*, X))
Ha=pX* X~ 1/2-(uX "2+ 0 X7) . (5-10)

Therefore, 4 and v are real and complex numbers, respectively. Of course, our
problem is how to determine the values. By equating both sides of Eqgs. (5:7) and
(5-9), we can obtain the following set of equations for the case ni% 0,

sWs—vWiE=(g,~e) Wy + g'uitn(”h ~nd Wi, (5-11a)

VI Wy-pu Wil=(e;—e)} ’/?+§'vw:.(n.—m) Wi . (5-11b)

Equation (5+11b) is the complex conjugate of Eq. (5-11a). Also, from Egs. (5+8) and
(5-9), we have the following set of equations for the case ni=n,:

/zWu—yW,ff=(6,--"£.>) ;Vu N

VIWo—uWi=(e,~e) Wt .

(5-12a)
(5-12b)
Equations (5-6), (5-11) and (5-12) are our basic relations in the present treatment and
problem is reduced to searching a solution of the equations which is expected to be the
most suitable for the problem under investigation.

In order to investigate properties of the above equations, we introduce the
quantities ¢, and ¢, defined by
(for », >n,)}

(for n,<n,)

+/)7.-n, Wo=¢y,
~J = We=¢,.

(5-13)

Further, we define the following quantities:

VR0 Viad s — ny = Ui,
Vai— Ny Vi = ny = Wejat .

Then, Eq. (5-6) is rewritten in the form
§(¢’z‘i¢u"¢zﬁ¢o)=l . (5'15)

(5-14)

Equation (5-11a) is also rewritten as
+ugy+ |22/ =(€/ - €-)¢‘u + 2.:.( Uy + Wy abar) }

~Wh—uby=(e,~e.)py+ g(wu,méu Fugaipan) . (5-16)
Equation (5:11b) reduces to the complex conjugate of Eq. (5-1). We can see that if
v is equal to zero, Eq. (5-16) reduces to the RPA cquation and Eq. (5-15) gives us the
normalization condition." However, as was discussed by the present authors M. Y.
and A. K.),” the presence of v is essential for the unified treatment of the stable, the
critical and the unstable solution.

In order to give some concrete insight concerning the above equation, we treat a
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rather special system, in which the interaction matrix elements satisfy the following
condition:

Vitin == SUinjt = S$Ujtin . (3 = 1) (5- 17

Examples of the matrix elements obeying the condition (5-17) can be found in the case
of the quadrupole interaction for s=+1 and the spin-spin interaction for s=-1,
respectively. Therefore, the condition (5:17) is not so restrictive as it may be
imagined. Further, we assume the following relation:

Ej>€l' . (lf ”j< m) (5‘18)

The above condition represents that if &; increases, n: decreases and this is also not
so strong condition. Under the above conditions, we define the following quantities:

$utspu=Yul+5), du—spo=¥u(—s), (5-19)
(&= €)8indu+ ugun+ swouan=(e;~ £)0mbs+ 2V m: = 71, viadin = 77

= Eyal+s), (5+20a)
(es~ €)8ndie=Eyal~s). (5-20b)

Then, Eq. (5-16) is rewritten in the form
I‘WU(_S)“SVWL‘:("S)‘=§E¢;,M(+S) Ul +s),
#WU(+S)+SV¥IU(+S)‘=‘2‘EU.M(-S) Yal-s). (-21)

The above equation and its complex conjugate are reduced to

x¥y( ~s)=§[E( +$)E(=5)yni¥ul~s), (5-22)
where x is given by

k= ={ult. (5-23)
In order to solve Eq. (5-22), let us investigate the following equation:

K0u(=5)=TI/ET=ST B+ ) /ET= JomPu ~5). (521)
It should be noted that from the condition (5-18), the matrix E(—s) is positive definite
and, then, the matrix /E(=5) exists. Equation (5-24) can be regarded as an
eigenvalue equation for the real symmetric matrix vE{—s) E(+ s)VE(=s) and, then,

the eigenvalue « is real. For any eigenvalue of Eq. (5:24), we can normalize @y(—s)
in such a way as

ZJ(DU(-S)’=1 . (5-25)
-Equation (5-22) is identical to Eq, (5-24), if ¥(£s) is connected to @y(—s) in the form

Vi(~s)=e *N(=s)[VE(=3s) ' 0(~ )]y,
Y +35)=e""N(—s)/(u+sv)[VE(=s) O(—5)]5; . (5-26)
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Here, N(—s) is the normalization constant, which is real. From the condition (5-15),

the definition (5-19) and the normalization (5-25), we can determine N(—s) in the form
N(=sV=p+su (>0), ie, N(—s)=/u+sw, (5-27)

where vo denotes *)u] and the sign % is determined through the condition g+ s >0.
Therefore, we have

ve=tlyl, ie., L—wl=rx. (5-28)
The phase factor e~ is related to
v=ype . (5-29)
By substituting Eq. (3:27) into Eq. (5-26), we have
Yo~ 5)=e " uF sl VE(= ' 0(= o | (530)
Wk )= e i sm [VECT 09 |
Then, Wy is given in the form
Wo=e*/2/ni—n,
X[(VEFsmVE(=s) "+ /aFsw VE(=)0(~)]u, (n:>n,) (5-31a)
We=e 2/n=n:
X [(VuFstoVE(~5) ' —VaFsu VE=sNO(=- ). . (m<n) (5:31b)

In order to get a solution W0 to Eq (5-12), & should be equal to (&~ e
However, in general, the value is different from the eigenvalue of Eq. (5-22).
Therefore, we have the following solution for the case n,=n,:

Wq=0. (71,:)1)) (S'SXC)

The above is an approximate solution of our basic equation for the small amplitude
limit and it provides the boundary condition for solving the large amplitude case.

As is clear from the above treatment, our result can be applied to the case xS 0.
The amplitudes can be normalized in the conventional condition. The reason why
the treatment is possible is as follows: In our treatment, « is expressed as (u+ svo)
X (s1— svp) in terms of two parameters # and w. The factor {(u+swve) can be chosen as
positive and the normalization of the amplitude is performed by this factor. There-
fore, the sign of x is determined by the factor (#—sw). In the conventional treatment,
vo is equal to zero at the beginning. Then, it is impossible to give =0 under non-
vanishing number and, further, <0 under real number.

With the use of the method mentioned above, we can give a solution at the small
amplitude limit for the case of the stable, the critical and the unstable situation.
However, there exist two parameters which cannot be fixed in the frame of the
starting equations. In principle, their values cannot be determined, but, this does not
lead to any trouble. Let us explain the reason why this is so. With this aim, we
introduce the following canonical transformation {symplectic):
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X=a*X'+bX"*, X*=p*X"+aX*, (laf'~|o}=1) (5-32)

As is shown in the sequel, the Hamiltonian Heo should be invariant under the transfor.
mation (5-32):

Ha=pX*X—1/2-(b X2+ 1*X?)
= X* X' —12-(V X+ v* X7, ’ - (5-33)

Then, the parameters ¢ and 1’ in the new coordinate system are connected to x and
v in the old system in the form

V'=(va*+ v*b*)— 2uab . (5-34)

= ullal +|6F) — (vab*+ v*a*b) }
From the above relations, we have wP~W'PF=p—|uP. This means that x is an
invariant for the transformation (5:32). Then, two coordinate systems connected
with each other under the transformation (5-32) are equivalent to each other.
Therefore, if we adopt a possible coordinate system, then, referring to the system, we
can determine the unknown parameters. For example, in the case x>0, putting w=0,
we have u=/x. As a possible choice, we can put x=0. This procedure corresponds
to the conventional RPA. However, in order to give a unified expression for the
stable, the critical and the unstable solution, it is desirable to express the Hamiltonian
and the other quantities only in terms of the invariant given above. For this aim, we
introduce the following canonical variables Q and P:

Q=(s.~is-)/ 2 uF sva) (e~ X* +seX),

P=(s-+isWaT )2+ (e X* ~ se®X) , } (5-35)

s2=(1£s)/2.  (s:°=ss, Se5.=0) (5-36)
The variables Q and P satisfy the conditions

Q@=Q, P'=P, [Q Pl=i. (5-37)

The relations (5-37) mean that @ and P are coordinate and its canonical conjugate
momentum variable, respectively. By picking up a solution which is the most inter-
esting for the problem under investigation, the Hamiltonian Hew and Cy can be
expressed in the following form:

Hea= P2+ xQ*/2, (5-38)

i
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Co=vae 20— n,) (s — s VE(=5) O(— )], Q

- +isIVES) " 0(=s)NuPt,  (n>n) (5-39a)
Co=—vai,/ V2= n) {(s. + s )VE(=3) @(~5)L:Q

Fs-—BHVEES) 1 0(= )P, (n<ny) (5-39b)
Cs=0. (n,=n,) (5-39¢)

Thus, we can search an approximate solution of our basic equations (4-16)~(4-18) at
the small amplitude limit. Starting from this lowest approximate solution, we can
proceed the approximation to higher order, as has been done in the study of the large
amplitude collective motion based on the TDHF theory.

§6. Concluding remarks

In this paper, we presented a classical microscopic theory, with the aid of which
the mixed states can be described systematically. The basic idea is the natural
extension of the TDHF theory for the pure states to the case of the mixed states.
Therefore, the quantization scheme should be given and in the future we will contact
with this problem.

As the concluding remarks, we will mention that our treatment is also applicable
to the case of many collective variables, for example, the case given by the present
authors (J. P.and C. F.)." Let us introduce the variables X satisfying the conditions

Xo=Xi,
[Xe, Xulp=8u8ulni—n),  (for ni%n,) (6-1)
Xy=0. (for n,=n,)
Instead of the relation (4-16), we set up the following canonicity condition:
%3( C3:9CufoXu— Cy+ICS XY= X/ (na = 1) . (6-2)

Combining the canonicity condition (6-2) with the constraint (4-17), we obtain the
following expressions for (c.*¢))c;

(ci*c)e=ndy+ ZH(m—n)XaXu+-+,  (for ny=n,) (6-3a)
(c*ci)e=Xu+ 2[(1 =)= )l (= nYna—n,)

= nanl=n)/(ma—n)m—n)]- XaXu+--.  {(for nien;)
(6-3b)

The expression (6-3) is equivalent to that obtained by the present authors (J. P and
C. F.)." The RPA equation is also equivalent to their result.

As is shown above, our basic idea may be applied to many other cases. Of
course, some modification may be necessary. In this sense, it is very interesting to
formulate the equation of the collective submanifold for the mixed states based on the
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TDHB theory and to compare with the results obtained in Refs. 2) and 4). In a
forthcoming paper, we will report these points.
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