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ABSTRACT
The stabilized jellium model is used to study the compression of the interior
ionic density of small metallic clusters (with respect to the bulk density) due to
surface tension. Results from the Kohn-Sham equations using the Local Density
Approximation are compared with the liquid drop model.

1. Introduction -

Surface tension compresses a finite system. The change in the interior density
can be significant for a system composed of few particles.

We study here the self-compression of simple metal clusters within the stabilized
jellium model, the simplest picture which may describe this effect over the whole
range of bulk densities. We use the Kohn-Sham equations and the liquid drop model,
considering three different metals (Al, Na and Cs) which cover the range of physical
densities. This work is an extension of Ref. 1: we now report quantal results not
only for Na but also for Al and Cs. In contrast with that work, we use now the
Local Density Approximation (LDA), with the Perdew-Wang parametrization? for
the correlation energy, instead of the Local Spin Density Approximation (LSD), with
the Vosko-Wilk-Nusair correlation energy (LDA and LSD yield similar results, with
LSD slightly more realistic and closer to the liquid drop model). The numerics has
also been improved.

2, Kohn-Sham calculations

In the stabilized jellium model,? the energy of a spherical cluster is a function of
the number of valence electrons N, the density parameter r, (the ionic charge density
is @ = 3/4nr?), the valence z and the "pseudopotential core radius” r,, which is
adjusted to achieve bulk stability at the observed electron density: E = E(N,r,,z,7.).
This energy can be evaluated solving the self-consistent Kohn-Sham equations of
density functional theory.* We then look for the minimum of the energy per valence
electron

o .
E‘:(E(N’r”z, rc)/N)'T:'—""; =0,
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with the derivative taken at fixed IV, z and r.. The result is the density parameter of
the compressed system, ;.
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Fig.1 - Equilibrium density parameter r? Fig.2 - Ratio of the elastic stiffness to
for an N-electron neutral cluster of stabi- its bulk value, for an N-electron neutral
lized jellium representing Al (r? = 2.07 cluster of stabilized jellium representing
bohr, z = 3). Heavy dots: Kohn-Sham Al See caption of Fig.1.

results. Crosses: Exact (numerical) solu-
tion, within the liquid drop model. Solid
curve: Solution in the cubic approxima-
tion. Dash-dotted curve: Solution in the
quadratic approximation. Dashed curve:
Asymptotic solution.

Figs. 1, 3 and 5 show the results for Al, Na and Cs, respectively. We note that
no ry has been obtained in the case of Al for less than 3 valence electrons (N =13,86,9,
etc. are the physically meaningful cases). The self-compression effect is very strong
for Al and less pronounced for Na and Cs. Shell effects are visible: for instance, there
is a local minimum in the curve r% versus N for N = 8. The result for Na is similar
to that presented in Fig. 2 of Ref. 1.

We have also evaluated the elastic stiffness of the finite system:

. 1 &
B =B(N,r},z,r.) ~ 127rr‘Nw(E(N’ Tsr2yTc))jry=rs

This second derivative, taken at the equilibrium density, goes over to the bulk modulus
BB when N — oo. It is calculated numerically by making a least square fit of a fourth
order polynomial to the curve E(N,r,,z2,r.), around the minimum.

Figs. 2, 4 and 6 show the results for the three considered metals. The stiffness
of small clusters of Al has roughly the same value as in the bulk (clusters with
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N =1,8,9,18 and 20 have even a larger stiffness than the bulk solid). The stiffness
of small clusters of Na and Cs is always lower than its bulk value. Note the discrepancy
with the result for Na presented in Fig. 4 of Ref. 1, where the systematically too- high
Kohn-Sham values of the elastic stiffness were due to a numerical error in evaluating
the second derivative of the energy. The occurrence of shell closures is reflected in the
higher values of the stiffness for systems with N = 2,8 and 20.

40 SODIUM

3.6

W34

3.2

3.0

i
I}
i
i
i
i
f
i
i
i

TEEEE T SN UEE S Y EE R W XN SR B A A

2.8 T T T T
0.0 5.0 10.0 15.0 20.0
N

Fig.3.- Same as Fig.1, for Na
(rB = 3.99 bohr, z = 1).
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Fig.5 - Same as Fig.1, for Cs
(rP = 5.63 bohr, 2 = 1).
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Fig.4 - Same as Fig.2, for Na.
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Fig.6 - Same as Fig.2, for Cs.
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3. Liquid drop model

In the continuum or liquid drop model, shell fluctuations are absent. The energy
can be written as a simple power series of the electron number N:

E(N,ry,z,1c) = ay(rsy 2,7)N + a,{rs, 2, 1”C)N2/3 + ay(r,, 2, 7'C)N1/3

where a, is the average energy per electron for a bulk system of uniform density, a,
is a surface energy coefficent and e, is curvature energy coefficient. The surface and
curvature coefficients can be determined from the semi-infinite density profile with
the aid of the so-called ”leptodermous expansion”.

Now, the equilibrium density parameter r} for a cluster with N valence electrons
can be evaluated numerically, looking for the minimum of the liquid drop energy. Al-
ternatively, we can find analytical expressions for r}, approximating the liquid drop
energy by its Taylor expansion to third order in (r,—77), with 2 the bulk density pa-
rameter: E(N,r,,z,7.) ~ E(N, rf,z,rc)+(r,——rf)E'+%(r,—rf’)"’E"—}-é(r,—rf):’E"'.
Here E' = E'(N,rB,z,r.) = a,N + a,N** 4+ o_.N'/? = ainE(N, T 2yTe)jry=r, €LC.
From the condition of bulk stability, a, = 0. The other needed derivatives of the lig-
uid drop model coefficients have been evaluated numerically. For Na, Cs and Al their

values can be found in Ref. 1. One obtains: r; ~ r2 + (/(E")? — 2E'E™ — E")[ E".

Dropping the term (r, — rZ)® (quadratic approximation), the solution is: r* o 78 —
E'/ E"| which, taken in the asymptotic limit N — oo, gives: r} = rB — o, N=1/3/q.

Figs. 1, 3 and 5 display the equilibrium density parameter r% as a function of
the number of electrons N, in the cubic, quadratic and asymptotic approximations,
together with the exact numerically-determined liquid drop value. We see that the
exact numerical result is close to the result of the cubic approximation. The asymp-
totic expression overestimates this correct result, while the quadratic approximation
underestimates it. The liquid drop provides a nice average of the Kohn-Sham result.

Figs. 2, 4 and 6 show the elastic stiffness as a function of N, in the different
degrees of approximation to the liquid drop model. Again, the exact liquid drop result
provides an average over the quantal results. The cubic approximation is not good
enough for Al, but works well for Na and Cs. In any case, the quadratic approximation
is not reliable.

4. Conclusions

We have found, as expected, that the equilibrium parameter r* < rB, i.e., the
ionic density is higher in the cluster than in bulk. This effect is stronger in Al than
in Na and Cs. A quantum-mechanical calculation of the interior density as a function
of the electron number displays small shell-structure oscillations around the average

behavior predicted by the liquid drop model.
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