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ABSTRACT

We propose a local pseudopotential w(r) for simple metals, which displays
an exponential decay of the core repulsion as 7 — 00 and is analytic for all 7.
The Fourier transform w(Q) is also an analytic function, and decays rapidly
as () — oo. Inputs to the pseudopotential are the average electron density @
at which the bulk metal is stable, the valence z, and the single zero (o of
w(Q) or, alternatively, the number of interstitial valence electrons. Binding
energies, bulk moduli, and pressure derivatives of the bulk moduli, evaluated
in second-order perturbation theory, are in good agreement with experiment.

1. Introduction

Various pseudopotentials are available today, starting from simple semi-empiri-
cal models and ending with sophisticated first-principles potentials. Local pseudopo-
tentials are often very convenient.!?

The inputs to a local pseudopotential should be the most important parameters
of simple metals, such as the average electron density, the valence, and the first zero
of its Fourier transform. We propose a new local pseudopotential, with these inputs,
which is continuous and has continuous derivatives. We were motivated to search
for such a smooth local pseudopotential by two main considerations: (1) Smoothness
leads to a better convergence of sums over reciprocal lattice vectors. (2) Smoothness
and evanescence (exponential decay of the core repulsion as 7 — oo) are properties to
be expected from the orthogonalized plane wave construction? of a pseudopotential.

Our “evanescent core” pseudopotential may be written as

=3

z
with z = r/R, R being a core decay length, and with o« > 0. At r = 0, our
potential is designed to have a finite value and vanishing first and third derivatives.
This condition determines the constants A and f in terms of o and R and leads
to a quick convergence of w(Q) when @ — oo : w(@) — Q8. At large r, our

(L= (1 + Ba)e] — A~} (1)
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potential approaches the Coulomb tail, with a contribution from the core which decays
exponentially.

The potential depends only on R when the single zero of its Fourier transform,
given by (QoR)* = 2/(a® —3), is chosen in order to agree with the position of the
zero of the empirical Heine-Abarenkov-Animalu form factor. The condition of bulk
stability determines R for a given valence z and density. An alternative is to adjust o
to the number of valence electrons in the interstitial region. We have calculated this
number using an all-electron, full-potential LASTO or linearized-augmented-Slater-
type-orbital® program.

The pseudopotential has been tested for the simple metals, in the framework
of second order perturbation theory and using local-field exchange-correlation cor-
rections to the Lindhard dielectric function. We have evaluated binding energies e,
bulk moduli B, and pressure derivatives of bulk moduli B' = dB /dP, at equilibrium
densities of various metals, and compared them with experimental values.

2. Results

The binding energy per electron is
e=e tey+Tp+tea, , (@)

with e’ the binding energy of the jellium model, ey = —92%/3/ (10r,) the Madelung
energy, Wr = 4nAR? [;’; +2 (fg + A)} the average repulsive part of the pseudopo-
tential, and €, the band-structure energy

> (%) wories, 3

G#0
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€bs = 5
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where G denotes a reciprocal lattice vector, 7; denotes the average ion density, x(G) =
—E2 3+ 1 log B24] with y = ;& and ¢(G) = 147 X1 -G,.(G)], with G,.(G) =

f1-4f
[1- %%(ﬁec)]yz, is the Lindhard dielectric function. The individual values of « were
taken from Ref. 2 in the case of fitting the zero of the form factor (choice A) and
from the number of interstitial electrons, which, to first order in w(G), reads as

Q0 - Qrn.:'n 47rw(G)X(G)
Qo B Z QoGsé(G)

N =z [sinz —zcosz], ¢ ., 4)

G#0
with 2 the volume of the Wigner-Seitz sphere and Q,,;, = 4773 the volume of the
"touching” or "inscribed” sphere (choice B). The equilibrium condition is

—aiz—-e(r,,z,R) =0. (5)




[Metal | 7, |z struc. Qo/2kr | Nin a R | Rur
Al 20713 fcc A 0.74 | 0.744 | 3.596 | 0.327
B 0.76 | 0.717 | 3.570 | 0.321 | 0.39
Mg |[2.65]2 hep A 0.79 | 0.554 | 3.611 | 0.390
c/a=1.625 | B 0.76 | 0.577 | 3.660 | 0.396 | 0.42
Na [393]1 bec A 0.89 | 0.399 | 3.800 | 0.481
B 0.99 | 0.350 | 3.390 | 0.502 | 0.57
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Table 1. Parameters of the evanescent core potential using choice A and B. The parameters
o and R are determined from r,, 2z and Qo for a given lattice structure, in choice A, and
from 7,,2 and Ny, for a given lattice, in choice B. For Mg, in choice B, we have used the
"nominal” fcc structure instead of the real hcp structure. Ryp is the Hartree-Fock decay
length of the highest s or p core orbital. The unit of 75, R and Ryp is the bohr.

| Metal

—€

B [ B |

Al

19.10
18.82
19.03
18.88

1.576 | 3.2
0.864 | 4.5
0.805 | 4.4
0.794 | 4.7

Mg

12.39
11.97
11.89
12.10

0.487 | 3.2
0.351 | 4.2
0.379 | 4.2
0.369 | 3.9

Na

X BRwr Bxw» &

6.34
6.20
6.26
6.25

0.076 | 3.2
0.075 | 3.7
0.071 | 3.6
0.073 | 3.9

Table 2. Bulk binding energy per electron e, bulk modulus B, and pressure derivative of
the bulk modulus B’ for the choices A and B of the evanescent core potential. SJ labels
the stabilized jellium result, while X refers to experimental values. The unit of the binding
energy is the eV, while the unit of B is the Mbar (1 hartree = 27.21 eV, 1 hariree/bohr® =

294.2 Mbar).
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Table 1 shows the values of R for Al, Mg and Na. Comparing R with the
Hartree-Fock decay length Ryp = 1/v/—2¢eyF, with egp the Hartree-Fock energy
of the highest core orbital of s or p type,* we note the good agreement. This fact
corroborates the physical picture upon which the pseudopotential has been built.

The bulk modulus is

opP 1 ,18% 2 0e
B = —V(W)N = E;F(Z‘a—;'? — ;"2‘5—7:) (6)
with P = —(2E) ' the pressure. The pressure derivative of the bulk modulus is
WVIN

B = 4B

"i‘};ble 2 shows the output of our calculations of equilibrium binding energies,
bulk moduli, and pressure derivatives of the bulk moduli for Al, Mg and Na. For the
sake of comparison, we display also the values obtained with the stabilized jellium
model,® which does not consider band-structure effects. The new results are better
than those of stabilized jellium. Comparison of Tables 1 and 2 shows that an increase
in the interstitial electron number enhances the bulk modulus or elastic stiffness, as
expected.

3. Conclusions

We have proposed a local pseudopotential w(r) with an exponentially decaying
repulsion from the core at large r and simple analyticity conditions at small 7. A
second-order perturbative calculation with these pseudopotentials has shown good
agreement of the predicted physical properties with experiment.
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