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Resumo

A Retinopatia Diabética é uma complicação da Diabetes Mellitus que pode causar perda de

visão, podendo ser prevenida e tratada. O tratamento mais comum desta patologia é feito

através de foto-coagulação laser destruindo na retina vasos sanguíneos frágeis, prevenindo

também que outros se desenvolvam, retardando o avanço da doença.

A maneira mais eficaz de detetar esta doença é a realização de rastreios periódicos.

Nestes, são frequentemente empregues métodos de deteção automática de lesões asso-

ciadas à Retinopatia Diabética, como é o Retmarker. No entanto, estes sistemas po-

dem apresentar baixo desempenho devido à presença de marcas laser, como as causadas

por tratamentos da Retinopatia Diabética com recurso a foto-coagulação. Esta disser-

tação, proposta pela Retmarker S.A., apresenta melhoramentos de um método de deteção

automática de marcas laser para que seja evitado o processamento desnecessário de im-

agens de pacientes já tratados e para prevenir a classificação incorreta de imagens contendo

marcas laser.

Três algoritmos de segmentação do estado da arte foram otimizados para detetar re-

giões candidatas a marcas laser na imagem fonte. A partir destas e da restante imagem,

várias características são calculadas de forma a treinar classificadores binários capazes de

distinguir corretamente imagens contendo marcas laser.

Máquinas de Suporte Vetorial e dois classificadores baseados em árvores de decisão

foram testados, uma vez que o melhor resultado obtido pelo algoritmo que se pretende

otimizar é baseado num classificador em Árvore de Decisão C4.5. Seis variantes de treinos

de classificação foram utilizadas e o seu desempenho foi avaliado em conjuntos de dados

de teste. O classificador baseado em Máquinas de Suporte Vetorial foi aquele que obteve a

melhor eficiência com 99,19% de Especificidade e 89,63% de Sensibilidade. Foi conseguida

uma otimização do tempo de execução de aproximadamente 80%.

Os resultados são apresentados e discutidos e finalmente são feitas sugestões de con-

tinuação do presente trabalho.

Palavras-Chave: Retinopatia Diabética, Retinografia digital da retina, Proces-

samento de Imagem, Detecção Automática, Classificação, Extração de características,

Marcas Laser ii





Abstract

Diabetic Retinopathy is acknowledged as a complication resulting from Diabetes Mellitus

and a sight-threatening disease, that can be prevented and treated. The most common

treatment for this condition is made by laser photocoagulation to destroy the fragile new

vessels and prevent the growth of new abnormal ones.

The most effective way of detecting this disease is by regularly surveying populations

through screening initiatives. In screening initiatives, automatic lesion detection meth-

ods are often employed to detect Diabetic Retinopathy-related lesions, as is the case of

Retmarker. These systems can, however, show low performance when processing images

presenting laser treatment scars such as the ones left by Diabetic Retinopathy treatments.

This thesis, which was proposed by Retmarker S.A, presents improvements to an exist-

ing algorithm used in the automatic detection of lasermarks to avoid the further processing

of images belonging to already treated patients and also to prevent the misclassificassion

of images presenting laser treatment scars.

Three state-of-the art segmentation algorithms were optimized in order to identify

lasermark candidate regions in an input image. From these candidates and from the

image itself, various features are computed in order to train binary classifiers capable of

correctly distinguish images containing lasermarks.

Support Vector Machines and two Decision Tree based classifiers were tested, as the

best result obtained by the previous algorithm was achieved using a C4.5 Decision Tree

classifier. Six classification training variants were used and their performance was evalu-

ated on test datasets. Support Vector Machines was the algorithm that achieved the best

classification efficiency with 99.19% Specificity and 89.63% Sensibility. The time-efficiency

improvements reached about 80%.

All the presented results are discussed and finally improvements to be made and future

work are suggested.

Key-words: Diabetic Retinopathy, Digital Fundus Image, Image processing, Classi-

fication, Feature Extraction, Photocoagulation, Laser Marks
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Chapter 1

Introduction

1.1 Problem Contextualization

Diabetes Mellitus, or simply Diabetes, is a metabolic chronic disease that compromises

the human body’s absorption of sugar. This problem arises from the inability of pancreas

to produce enough insulin or when the body does not respond properly to the produced

insulin. Diabetes has a preocupying incidence, with the International Diabetes Founda-

tion/IDF, in 2013, estimating 382 million people living with diabetes (8.3% of the global

scale adult population), and predicting an increase of 55% until the year 2035 [1]. In

addition, IDF estimates that 46% of these cases are still to be diagnosed.

These numbers introduce diabetes as a severe global-scale disease that presents a sub-

ject’s age as the main associated risk factor.

Figure 1.1: Worldwide prediction of Diabetes’ prevalence and progression by IDF region.
[1]
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Diabetes presents a various number of complications, most of which relate to blood

vessels deterioration. One of these complications is Diabetic Retinopathy, which affects

the retina potentially causing vision loss. The high prevalence associated with Diabetic

Retinopathy [2] indicates that a substantial part of the estimated worldwide diabetics

suffer from this condition. In 2012, about 160 million people were estimated as having

developed Diabetic Retinopathy(DR) [3].

In addition, DR is identified as one of the four leading causes of avoidable blindness

by VISION 2020 [4]. DR is in fact a treatable and preventable condition, nevertheless,

since the evolution of the disease greatly compromises visual acuity, its diagnosis must be

made in its earlier progression stages, unveiling related symptoms as soon as possible and

for the prescription of adequate treatment as a way of preventing sight-loss complications.

Laser photocoagulation is an intervention that is commonly used to treat DR, in which

a laser beam is applied to the retina with the purpose of preserving vision by destroying,

sealing and stopping the growth of the leaking blood vessels. This treatment unavoidably

damages the light sensitive cells of the eye but is very effective in preventing the disease

progression. As a consequence, diabetic subjects need periodic professional observation to

prevent and monitor the progression of DR.

Promoting regular screenings in conjunction with a thorough management of glycemia

and hypertension can work in reducing the number of people who develop this vision-

threatening retinopathy [5]. Screening programs survey populations recurrently, and are

acknowledged as one the most effective ways of detecting DR but, due to the quantity of

subjects being observed in a short period of time, some of these screenings’ restrictions

must be taken into account. These programs involve complex logistics, involves numerous

human resources, high amounts of digital storage, advanced equipment, among others.

Therefore, the management of such screening initiatives becomes more difficult as the

number of patients involved increases.

One way of reducing these requirements, could be to assess whether a patient needs

treatment. If not, the patient is removed from the screening program, immediately de-

creasing the number of patients observed and consequently all the associated costs. The

larger the number of patients correctly identified as not needing treatment, the more

impactful this evaluation becomes.

Digital fundus photography is one of the most used diagnotic techniques employed in

screening programs and produces images of the patient’s retina for professional grading

by ophthalmologists or optometrists. As a matter of fact, an alternative to the grading

2



procedure is the employment of automatic methods for the detection of lesions, such as

the ones related to DR, through the processing of retinal fundus images [6].

Retmarker, a product developed by Retmarker S.A., contains examples of these al-

gorithms [6], and contributes in alleviating the human grading burden and consequently

the management of screening events, detecting DR-related lesions such as Microaneurysms

(MAs) and Exudates (EXs).

Photocoagulation scars, as the ones resultant from DR treatment, may be misclassified

as MAs and particularly as EXs (which appear bright in retinal fundus image, similarly

to recent laser photocoagulation treatment scars). In other words, the presence of laser

marks may cause misbehaviors of these automatic pathology detection algorithms.

Laser marks detection is a rather new research problem, with only a few scientific

works addressing this specific subject.

For all the stated reason, an important and relevant task would be to implement

a highly efficient and automatic method, that detects photocoagulation treatment laser

marks,the primary objective of this thesis. Further motivation exists on the essential

human burden reduction and processing time decreasement in conjuntion with the en-

hancement of existing methods.

In collaboration with Retmarker S.A., a recent work [7] presented an automatic al-

gorithm for the detection lasermarks in digital fundus images, which achieved promising

results. This algorithm was the starting point of this work.

In this work, and with the objective of improving the efficiency of the processing steps of

the mentioned algorithm, a thorough optimization and search for alternative methods were

made, aiming for improved time efficiency and performance in the classification of retinal

images. Three binary classification algorithms were proposed and evaluated, using a total

of fourteen datasets, eleven of which were used in [7], allowing classification performance

comparisons and measurements of the optimization gains. In addition, three validation

datasets were used.

The contribution of the present thesis consists in the optimization of algorithm in [7],

supported by the introduction of new classification features, different binary classifiers,

and the substitution or enhancement of that approach methods by some which proved

more efficient in either efficiency or final classification. Examples of these improvements

could be the introduction of further adaptiveness in pre-processing by using smaller and

more-informative images, the introduction of Shiftable Bilateral Filter (a highly efficient

aproximation of the traditional bilateral filter), Matlab code-based optimizations, the im-
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plementation of classification models, and the inclusion of a less noise-sensitive binary

classifier, Support Vector Machine. As a result, the former algorithm was improved by

about 80% in what time efficiency is concerned, while the accuracy of the method was also

improved. Based on the previous results of the previous algorithm, which were improved

in the present work, a scientific paper was proposed.

The contents of this thesis were produced in collaboration with Retmarker S.A., and the

enhancements and optimizations performed to the existent algorithm were made with the

objective of its implementation in the Retmarker family of products of the same company.

1.2 Document Overview

This thesis is structured in 6 chapters and 6 Appendixes.

Chapter 2: Considerations and State-of-the-art - Introduces Diabetic Retino-

pathy and its treatment, the state-of-the-art of this particular subject, three classification

algorithms and finally the Materials used in this work.

Chapter 3: Optimization methods - Thoroughly describes the algorithm that was

enhanced and the main optimization steps taken for its optimization.

Chapter 4: Experimental Results - Exposes the final algorithm’s classification

and time efficiency results, quantifying the optimization steps that were made. The results

obtained are considered, explained and discussed.

Chapter 5: Conclusion and Future Work - The obtained results are compared

with the proposed objectives and further improvements are suggested for the future.

Appendix A - Samples from the Retinal Fundus Images Datasets used in this work,

and some related information.

Appendix B - Presents relevant information regarding the previous algorithm to be

optimized.

Appendix C - Displays the mean time percentages of each processing step of the

initial algorithm and their optimizations. Classification results based on the Decition Tree

classifier obtained in [7] are presented, to infer about the impact of each optimization.

Appendix D - Introduces the theory of information measures by which the relevance

of each computed image feature was rated, and two feature subsets used in the training

of binary classifiers.

Appendix E - Comparative analysis of the classification performances.

Appendix F - Presents the classification models of the tested Decision Tree and

Alternating Decision Tree classifiers .
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Chapter 2

Considerations and

State-of-the-art

Diabetes Mellitus’ associated complications normally manifest themselves by the deterior-

ation of the blood vessels. Diabetic Retinopathy (DR), which particularly affects the eye’s

retina, is one of these complications. The condition itself and its most common treatment,

laser photocoagulation, will be introduced in this section. Retina, the most DR-affected

eye structure, is one of the coatings of the human eye and grants it light-sensitivity by

incorporating rods and cones cells that enable vision by color differentiation and depth

perception of the surrounding environment.

Digital Fundus Images (DFI) results from a non-invasive imaging procedure for retinal

observation. It is simply a photography of the fundus (Latin for bottom) of a subject’s

eye, acquired with a specialized camera, composed of an intricate microscope attached to a

flash-enabled camera. DFIs are used to detect anomalies associated to retinal pathologies

that affect the eye and to monitor the progression of diseases. It is essential in the de-

tection of conditions such as macular degeneration, retinal neoplasms, glaucoma, diabetic

retinopathy and many others.

Figure 2.1 presents an example of a DFI, where some anatomical structures can be

identified: the Optic Disc (OD), an ellipsoidal structure where the optic nerve leaves the

retina and where light-sensitive cells do not exist; the macula, a highly pigmented yellow

area near the centre of the retina which is responsible for central high resolution vision;

the fovea, a small pit near the macula centre that contains the largest concentration of

cone cells in the eye, and the vascular network of veins and arteries irrigating the eye.

These are the four main and most relevant anatomical landmarks in the context of this

work.
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Figure 2.1: Anatomy of the human eye’s retina [8].

Nowadays, medical image processing is an important research area, which developed tech-

niques and systems increasingly contribute to the automatic diagnosis of pathologies, by

the means of visual represention and imaging. Image processing has a fundamental role in

providing the necessary adaptiveness, robustness and automatical analysis for the efficient

and accurate pathology detection through visual data processing.

2.1 Diabetic Retinopathy Considerations and Treatment

DR can develop into two complications: Nonproliferative DR and Proliferative Retino-

pathy.

Nonproliferative DR, the earlier stage of DR, occurs when the walls of blood vessels

weaken and become abnormal, leaking blood and fluids into the surrounding tissue, ori-

ginating exudates (protein and lipid deposites). If the fluid or blood leakage occurs near

the macula (responsible for central high definition sight) vision will be impaired due to

fluid leakage causing macular swelling, which blurrs central vision. This condition is called

Diabetic Macular Edema and can occur in any of the stages of DR. Microaneurysms and

small hemorrhages are also signs of this stage of DR.

Proliferative Retinopathy is the advanced stage of DR which takes place when the

severely diminished blood flow causes the damaged retina to initiate a regeneration process

through generation of new blood vessels. However, these new vessels are very fragile and

tend to break and leak blood. When they bleed into the vitreous humor, they can block

the passage of light and cause a sudden loss of vision. The blood is usually reabsorbed, but

scar tissue may form, which can lead to severe impairment and even permanent vision loss.

About half of the subjets with Proliferative Retinopathy also develop Diabetic Macular

Edema.
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2.1.1 Photocoagulation Treatment

Laser photocoagulation is a commonly used intervention to treat DR, in which a laser beam

is applied to the retina with the purpose of preserving vision by sealing or preventing the

growth of abnormal blood vessels. While preventing the rapid progression of the disease,

this treatment unavoidably causes damage to the light sensitive cells of the eye, one more

reason why patients with this condition must be identified before visual acuity loss occurs

[9, 10].

Two main types of laser treatment are prescribed for the treatment of DR, Pan-Retinal

Photocoagulation and Macular Edema Photocoagulation.

Pan-Retinal Photocoagulation (PRP), also know as Scatter Photocoagulation, is the

most proven and accepted treatment for PR and is used to slow the growth of new abnormal

blood vessels, which have developed over a wider area of the retina. PRP involves applying

a substantial number of large and intense laser burns. The main purpose of PRP is forcing

the regression of the new vessels’ growth in order to delay the progression and limiting

the damage to the OD and macula to preserve central, high resolution vision. As a result,

there is an improved tissue oxygenation of the peripheral retina.

Macular Edema Photocoagulation (MEP) is the most indicated treatment for Diabetic

Macular Edema and extremely difficult to perform. Extreme precision is required to

apply MEP which consists in applying low intensity small burns in a "C" shaped area

around the macula, helping to clear the edema. If by mistake the laser operator aims the

photocoagulation laser beam at the fovea, visual loss may result.

The scars produced by each of these treatments differ in size, location, intensity and

number. Consequently patterns generated by these two different types of treatment are

also different with MEP scars being smaller, fewer, and much more difficult to detect when

compared to PRP’s [9, 11].

(a) (b)

Figure 2.2: Example patterns: (a) PRP (b) MEP
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In either case, the scars left on the retinal surface area have specific geometric, distribution

and intensity characteristics. From the inspection of DFIs of a DR screening coordinated

by ARS Centro which resulted in some of the lasermarks-containing datasets of this work,

it can be concluded that laser mark patterns present the following properties:

• They appear in clusters and therefore are not randomly distributed over the retina;

• They occur in periphery regions, far from the fovea, the OD and the main veins and

arteries of the vascular network (Figure 2.1);

• They present a dark or bright appearance and their color is either yellow or green.

This fact relates to how recently the treatment was performed;

• They usually have a circular form but sometimes present an asymmetric shape,

especially when closer to the vascular network;

The observed characteristics result from professional medical methodologies, healing

patterns and laser specifications that do not present great variations between patients. It

can thus be concluded that these photocoagulation patterns are generally the ones found

in most lasermark-containing DFIs.

A final consideration regarding photocoagulation treatment must be made. As stated,

four main anatomical structures can be identified in the human retina, and consequently

in Retinal Fundus Images: Macula Lutea, the OD, the Vascular Network and Fovea. The

three latter structures are important in this context for a treatment-related reason, which

is the location of lasermarks. When patients are submitted to laser treatment none of these

structures will be photocoagulated. For medical reasons, the OD is never subjected to the

laser beam action. The Vascular Network, which sometimes receives this treatment to

prevent the growing of new abnormal blood vessels, has the singularity of not developing

scars in its vicinity, moreover, main arteries and veins are not photocoagulated as the

eye’s nourishing would be compromised. If the fovea (from where approximately half of

the optic nerve fibers carry information being responsible for the central/sharp vision)

would be directly targeted with the laser beam, central vision would be harmed.

Therefore, the anatomical landmarks of the retina, that are present in a DFI, can be

used as rejection criteria for laser mark candidates.
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2.2 Lasermarks detection state-of-the-art

As introduced, the task of classifying a patient as treated with laser photocoagulation can

be reduced to the observation of whether the retina presents or not laser treatment scars.

Considering this task, statistical performance measurements will be introduced, after

what the three major state-of-the-art proposed solutions will be presented.

Sensitivity and Specificity are two statistical measures that can be used to quantify

the performance of a binary classifier. Their values are calculated as exemplified in Equa-

tions (2.1) and (2.2).

Specificity = TN

TN + FP
(2.1) Sensitivity = TP

TP + FN
(2.2)

where,

• TP are true positives, retinal images with lasermarks that were correctly classified;

• TN are true negatives, retinal images without lasermarks that were correctly classi-

fied;

• FP are false positives, retinal images without lasermarks which were classified as

"Laser";

• FN are false negatives, retinal images with lasermarks which were classified as "No

Laser".

2.2.1 Detection of Laser Marks in Retinal Images

Dias et al. suggested one and the very first approach for the automatic detection of laser

marks in DFIs [12]. This method uses two binary classifiers: GPC (Generic Parameter

Classification) and SPC (Structural Parameter Classification), that identifies an image as

"Laser", i.e. showing the presence of lasermarks, should both the outputs of GPC and

SPC be positive and as "No Laser" if either one of them has a negative output.

GPC classifier makes use of various values, obtained through color, focus, contrast and

illumination analysis of the input DFI. A total of fourteen features that are indicators of

general quality parameters are the inputs to this classifier. This classifier takes advantage

of the fact that general quality parameters are divergent in images that contain and images

that do not contain lasermarks.

A first dataset of 40 DFIs with lasermarks and 176 without lasermarks was used to

train the GPC binary classifier, using 4-fold validation, with 75% of the total images used
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for training and 25% for testing. The ratio between images with and without lasermarks

was the same for the training and test subsets.

SPC has four features as inputs: Simple Measure (SM), Colormap 1 (CM1), Colormap

2 (CM2), and Colormap 3 (CM3). SM, or single measure, is computed from the image

structural information. First, a Sobel operator is applied to obtain a gradient image,

where several morphological erosion operations with different structuring elements are

performed. The resulting images are summed, obtaining a final binary image from which

irrelevant, small objects are removed. From this image, SM counts the total foregound

pixels with candidate lasermarks.

CM1, CM2 and CM3 are obtained by histogram projection with three different colormaps,

built with statistical measurements made on a second dataset with 101 DFIs presenting

lasermarks and 141 without lasermarks. CM1, CM2 and CM3 are computed from the

obtained colormaps called eye-fundus, bright marks and dark marks. These 4 features

are inputs to a Feed Forward Neural Network, trained and validated with a 4-fold cross

validation.

A third and final dataset (constituted by the Messidor dataset [13] of 1200 retinal

images without laser marks, plus 996 other images of which 101 present laser marks) was

used to perform classification evaluation. The performance of the algorithm is presented

in Table 2.1,

Dataset Statistical Performance
Sensitivity (101 images) 63.37%
Specificity (2095 images) 99.90%

Table 2.1: João Dias et al. laser mark detection algorithm performance. Adapted from
Table 1 of [12].

The importance of detecting lasermarks was acknowledged by the authors, who con-

clude that these results are remarkable, since the obtained specificity is nearly 100%, a

desirable goal since classifying subjects as treated when they were not, is not medically

acceptable.

2.2.2 Laser Marks Detection From Fundus Images

Tahir et al. presented later an alternative solution for the automatic detection of laser scars

[14]. This method has four main steps: pre-processing, candidate region identification,

feature extraction and classification. Pre-processing step concerns the fact that retinal
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images are often noisy and poorly illuminated. The green channel of the RGB fundus

images is used for being the one with the better contrast. A circular kernel averaging filter

reduces the noise in the green channel after what adaptive histogram equalization [15] is

performed, to enhance constrast. Illumination is then corrected using a top-hat filter.

To assess candidate regions, all possible lasermarks are identified. A binary image

containing the masked candidate regions is computed by thresholding this image, with a

small-valued threshold which still obtains undesirable false detections.

In order to remove false detections, 10 features are computed for each candidate region

[14]: Compactness, Max hue, Max saturation, Standard deviation of saturation, Intensity

mean, Intensity max, Intensity standard deviation, Mean Red channel, Max Red channel

and Max Green channel. Using a minimum distance classifier, each candidate region is

evaluated as being or not a real lasermark, based in the computed features. The image is

classified as presenting lasermarks if any candidate is considered to be a lasermark.

The proposed algorithm achieved the performance values presented in Table 2.2, eval-

uated on a locally gathered dataset consisting of 51 images containing lasermarks and 329

other images without lasermarks. All images have the same resolution and were acquired

with the same camera, and were labeled by ophthalmologists as having or not lasermarks.

Dataset Statistical Performance
Sensitivity (51 images) 94%
Specificity (329 images) 97%

Table 2.2: Faraz Tahir et al. laser mark detection algorithm performance. Adapted from
Table 3 of [14].

These results indicate that the proposed algorithm has a very good performance with

94% sensitivity, even if specificity is 3 percentual points away from 100%. However, it

must be pointed out that the images containing lasermarks were taken with the same

camera, and all have the same resolution.

2.2.3 Contributions to the Automatic Detection of Laser Marks in Ret-

inal Digital Fundus Images

Sousa et al. [7] made a remarkable contribution to this subject, by developing an automatic

algorithm for classification of images containing lasermarks. Combining a total of 65

features, descriptive of the image, which were input to five different tree-based classifiers.

For the training these classifiers, a total of 855 images were used, with 203 of these being

lasermark-containing DFIs, and a second dataset, used for testing, was constituted by
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with 1749 images, of which 135 present lasermarks.

Promising results were reached using a Decision Tree classifier, as shown in Table 2.3.

Measure Statistical Performance
Specificity 98,9%
Sensitivity 88.1%

Table 2.3: Sousa et al. results on Decision Tree classifier. Adapted from Table 5.12 of
[7].

While based on state-of-the-art approaches, this work introduced new concepts in the

detection process, including the use of a scaling factor able compensate for resolution

variations, and the introduction of the segmented vascular network as lasermark-free re-

gion (Figure 2.1). This work used a total of 11 datasets, 3 of which contain lasermarks.

This image variety, with and without lasermarks, ensured for a reliable validation of the

algorithm.

The primary objective of this method was in reducing the workload adressed to opto-

metrists and ophthalmologists, and also to bypass time-consuming processing steps that

are unnecessary if a patient has already been treated. The capacity of images present-

ing lasermarks to deteriorate the performance of further detection algorithms was also a

concern, as stated in previous contributions to this particular subject.

The present thesis, whose main objective was implementing a time and quality-efficient

algorithm for detecting laser marks in DFIs, had the method just described as the primary

reference.

2.3 Lasermark Segmentation Algorithms in Retinal Images

Image processing is a form of signal processing in which the input is an image, a series

of images or a video. In most image processing methods image is treated as a two or

three dimensional signal, to which standard signal processing techniques are applied in

order to obtain modified output image(s) with the expected form. Image Segmentation,

as an image processing technique, is a procedure where a digital image is automatically or

semi-automatically partioned into multiple segments. Segmentation is used to simplify or

change the representation of images in order to ease their visual or computational analysis.

Several segmentation algorithms are used in the digital processing of retinal images

with various objectives. Examples are the Sekhar et al. [16] algorithm with the application

of the Circular Hough Transform to locate the OD which is circular bright object similar

to some laser marks or Salem et al. [17] who suggested a segmentation of retinal blood
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vessels based on the analysis of the Hessian matrix’s eigenvalues, with authors predicting

the same approach could be used to detect blob structures, one of the characteristics of

lasermarks.

The already referred anatomical structures that are present in human retina, are of

interest for this work. Different approaches exist for their detection and example methods

for segmenting the vascular network are presented in [18–20]. The OD can be detected,

for example, using Circular Hough Transform as in [16] or using a morphological adaptive

approach using the segmented vascular network as in Welfer et al. [21]. Niemeijer et al.

[22] also present an automatic method for the segmentation of all these major anatomical

structures.

In this thesis, the interest of segmentation is specifically related with segmenting laser-

marks, and particularly in optimizing the three image segmentation methods that were

used in [7]: Circular Hough Transform (CHT), Laser Mark Segmentation (LMS) and

Frangi Vesselness Filter(FVF), which will be presented in the next subsections.

2.3.1 Laser Mark Segmentation

A Laser Mark Segmentation (LMS) algorithm was proposed by Sohini Roychowdhury

[23]. This algorithm was suggested in the context of segmenting scars resultant from

photocoagulation treatments.

The proposed algorithm is preceeded by pre-processing steps (Figure 2.3 a),b) and c))

in which the image’s green channel is extracted. Using only this channel, pixel intensities

are scaled to a [0,1] range, to which contrast enhancement is applied, obtaining image I. I is

eroded using a morphological structuring element disk of radius r = 15, followed by image

reconstruction as a way of enhancing the compactness of bright regions and resulting in

an image J. J is then subtracted from I, scaled to [0,1] and contrast enhanced, resulting in

a morphologically transformed image, K. In image K the pixels of the Vascular Network

and of the OD’s neighborhood are ignored, through masking operations, and finally a

threshold value obtained with Otsu’s method [24] is applied adaptively resulting in the

final image IM (Figure 2.3 d)).

Four discriminating features are computed from the image: Roundedness, Solidity,

Filled Rate and Compactness[23], which will be reviewed further ahead. These features

evaluate if a candidate region is indeed a lasermark(Figure 2.3 e))
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Figure 2.3: LMS pre-processing steps, candidate regions and final detected lasermarks
(adapted from Figure 6.2 of [23]).

2.3.2 Frangi Vesselness Filter

In 1998, Alejandro Frangi et al. [25] developed a vessel enhancement filter using the eigen-

values of the Hessian matrix of an image2.3. This enhancement was performed in Digital

Subtraction Angiography 2D images and 3D aortoiliac and cerebral magnetic ressonance

angiographies showing the filter simultaneous properties of background and noise supres-

sion while segmenting vessels in maximum intensity projections and volumetric displays.

This method was used in different medical image processing problems since then. Ex-

amples are Pulmonary Vessel segmentation [26], 3D lung vessel segmentation [27], in

coronary artery segmentation in Computed Tomography (also known as CT) images [28–

30] and even in vessels enhancement in DFIs [17, 31, 32].

As cited methods have proven, Frangi Vesselness Filter (FVF) detects tubular, ridge

and blob-like objects in medical diagnosis images with good performance. FVF searches

for this kind of geometrical forms but, based on the fact that the size of these forms

may vary, a multiscale approach is used. Therefore FVF stands as an iterative algorithm

that merges the vesselness measure computed for each scale size σ. For each iteration,

the retinal image is convoluted with a Gaussian filter with a kernel of size σ. Then, the

Hessian matrix is calculated, according to Equation (2.3), where I is the processing image,

H(I) =

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂x∂y

∂2I
∂y2

 (2.3)

λ1 and λ2, eigenvalues of the Hessian matrix, are calculated with | λ1 |<| λ2 |. Figure 2.4

is a summary of the type of objects detected by the 2D Frangi Filter as a function of the

eigenvalues.

Analysing eigenvalues of the Hessian is the equivalent of obtaining the main directions

in which the second order local structure of the image can be decomposed. Therefore,

low λ1 values occur when the structures are tubular while high λ1 values occur when the

structures are blob-like. Also, if λ2 <0, the structures are bright, otherwise the objects
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Figure 2.4: Patterns in 2D, depending on the value of the eigenvalues. N - Null, L -
Low, H - High (adapted from Table 1 of [25]).

have a dark appearance.

Frangi et al. [25] originally proposed a 2D vesselness measure for each scale Vσ, ac-

cording to Equation (2.4),

Vσ =

0, λ2 > 0

exp(− R2
b

2β2 )(1− exp(− S2

2c2 )), λ2 < 0
(2.4)

where Rb = λ1
λ2

is the blobness measure and S =
√
λ2

1 + λ2
2 is the Frobenius norm. If

the value of this norm is low, it means that Vσ is low in the background pixels, where no

structure is present and the eigenvalues are small for the lack of contrast.

For every pixel, the value with the maximum vesselness measure Vσ of computed scales

(all the σ values) is returned. An example of the filter’s performance with σ = {1,3,5,7,9}

is shown by Figure 2.5.

Figure 2.5: Example image of the detected structures using FVF with Figure 2.2a as
input.

2.3.3 Circular Hough Transform

The Hough Transform is an important method patented by Paul Hough in 1962 for the

automatic detection of lines in an image. The Circular Hough Transform (CHT) is one

of the many variations of this first transform [33], which identifies circles and almost-

circular shapes. Several medical image processing problems are solved by this method,

15



as is the case of MAs detection [34] or, as mentioned before, the detection of the OD

[16, 35]. As explained, laser marks may present a circular or asymmetric shape making

this algorithm one of the most effective in detecting lasermark candidates, mainly because

of its robustness to image variations like illumination and noise, often present in digital

fundus images.

To present a brief explanation of the method, in a two-dimentional space, a circle can

be described by:

(x− a)2 + (y − b)2 = r2 (2.5)

where (a,b) is the circle’s center and r is its radius. CHT starts by applying an edge

detection method like Canny or Sobel [36] after what circular patterns are searched by

using a technique equivalent to a convolution of the edge image with a circle operator of

a given radius R. In other words, all the edge candidates cast "votes" of all the points of

a circle of radius R and centered in each of these edges. This process can be interpreted

as a so-called voting scheme in an accumulator matrix, and where a peak is resultant

from the overlap of each circle’s contribution at the center of the original circle. This

method equivalent to a voting scheme can be exemplified by Figure 2.6, where Figure 2.6b)

exemplifies the previously detected candidate edges (Figure 2.61)) lying on an actual circle

(solid circle), and the voting patterns generated by them (dashed circles) which coincide

at the center of the actual circle. Finally Figure 2.6c) is an example peak of the computed

accumulator space.

Figure 2.6: CHT voting pattern: a) Detected edges, b) Circle contributions of each edge
[37] and c) Accumulator array correspondent to a circle detection. The obtained peak is
the center of the circle [34].

After the accumulator matrix is calculated and normalized, circles are easily found by

finding peaks that exceed a certain sensitivity threshold.
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2.4 Classification Algorithms

A classifier is an algorithm that given set of occurrences classes identifies new observations

as belonging to one of these classes, based on the information of training data that contains

past observations whose class is known. The classification algorithms used in this work are

considered to be examples of supervised learning, since there is the presence of a training

set of correctly identified situations. This training information is presented to a classifier

in the form of nominal or numerical descriptors that describe each instance.

Examples of classification problems would be classifying a patient as "Sick" or "Not

sick", identifying a circular shape as "Circle" or "Not a Circle" or even classifying retinal

fundus images as "Contains Lasermarks" or "Does not contain Lasermarks". These ex-

amples are similar to the problem at hand: returning a final binary decision, classifying

an image as containing lasermarks (or "Laser", the positive case), or as not containing

lasermarks (or "No Laser", the negative case).

In this work three binary classifiers were used - Decision Tree (DT) [38], Alternating

Decision Tree(ADT) [39], and Support Vector Machines (SVM) [40].

2.4.1 C4.5 Decision Tree

Ross Quinlan introduced Iterative Dichotomiser 3 (ID3) [38], an algorithm that builds a

classification model which can be expressed by a decision tree. Figure 2.7 exemplifies a

DT that starts as a single node, "Outlook?", with three possible outcomes, and requires a

decision to proceed. One of these outcomes is traversed and either another node is reached

(and a new decision must be made), or a final decision is obtained. Since all the five leaf

nodes of this tree contain a set of two possible outputs, this classifier returns a binary

decision.

For example, an instance of [Outlook=sunny, humid=normal] would be classified

as "True" by the decision tree classifier of figure 2.7.

Figure 2.7: Decision Tree classifier example (adapted from [41]).

During training phase, in which ID3 has the objective of creating the smallest tree pos-
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sible, each node’s atribute is obtained by computing the information gain of all attributes

and selecting the highest information gain of them as the atribute for the corresponding

decision node. The ID3 algorithm stops after all attributes are used or after every instance

of the training set was correctly classified by the model.

However, the ID3 algorithm has some limitations. While searching for the optimal

solution, it solely maintains a single current hypothesis, while earlier (and maybe better)

versions are eliminated; it only operates with nominal atributes; it performs no backtrack-

ing in search, meaning it may converge to locally optimal solutions that are not globally

optimal, which can in turn lead to overfitting.

To overcome these issues, Quinlan et al. [42] developed an extension of ID3 - the

C4.5. The main improvements of C4.5 were the compatibility with continuous variables,

the use Gain Ratio D instead of Information Gain D for attribute selection at each node,

and pruning, a process where the final tree has some of its branches removed as a way of

reducing the overfitting probability. This new algorithm has the same principles of ID3,

despite the enhancements introduced.

2.4.2 Alternating Decision Tree

ADTs were introduced by Freund and Mason [39]. The algorithm was later reviewed and

optimized by Pfahringer et al. [43], who called it the Alternating Decision Tree Induction

algorithm. This latter version of the algorithm is included in WEKA, as referred in [43].

A standard DT has interior nodes where decisions are made and leaf nodes where

"arriving" instances are classified. On the other hand, ADT consists in an alternation of

decision nodes that specify a predicate condition, and prediction nodes, which contain a

single number that is added or subtracted to the instance’s "score". Prediction nodes can

be interior or leaf nodes and the root node is always a prediction node.

The way an instance is classified differs from a typical DT in the fact that all the paths

for which decision nodes are true are followed, summing any traversed prediction nodes

and obtaining a final score. If the final score is positive, the instance is classified with one

of the classes, and if the score is negative it is classified with the remaining one.

The concept can be explained by Figure 2.8. An instance of[A1=true,A2=false]

would enter the root node adding +0.5 to its initial null score. Two decision nodes are

reached after the root where boolean decisions lead to one of two new paths. As indicated

by the leftmost horizontal arrow, since the prediction node condition of [A1=true] is

verified, the "y" path is traversed adding -1.2 to the present score of 0.5. Similar operations
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are performed in the remaining prediction nodes. The final score obtained by the instance

can be expressed by the sum 0+0.5+(−1.2)+(−3.4)+0.2 = −3.9, where all traversed leaf

nodes are indicated by horizontal arrows in the figure. This instance would be classified

with the "negative class", since -3.9 is a negative real number.

Figure 2.8: Alternating Decision Tree example (Fig. 1 of [43]).

In addition, ADT uses the boosting procedure, which reduces bias and variance being

a supervised learning algorithm. Boosting aims to produce strong learners, well-correlated

with the with true-classification, even if only a set of weak learners is provided; each boost-

ing iteration adds a test (called weak hypothesis in both [39] and [43]) and two predictor

nodes to the tree. In each iteration the test chosen is the one that minimizes a function

that measures the impurity of the test. For each boosting iteration, the minimization func-

tion has to be computed for each possible test, which results in an algorithm quadratic in

the number of boosting iterations.

2.4.3 Support Vector Machines

Support Vector Machines (SVM) are mathematical models that work by finding a hyper-

plane or a set of hyperplanes in a high-dimentional space to separate members of two

classes as widely as possible. SVM were introduced by Cortes and Vapnik [40] but can

be traced back as early as 1964 by Vapnik and Lerner. SVM are well known for their

robustness, resilience to overfitting and overall performance being acknowledged as one of

the most successful binary classification algorithms. SVM can be applied to two different

types of data.

When applied to Linearly Separable Data, which can simply be defined as points in a
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plane/space whose classes can be separated by a line/hyperplane, the paramenter to be

maximized is called margin and represents the distance of the separation line or hyper-

plane to the closest members of each class. When applied to Linearly Unseparable Data,

or instances of data that cannot be separated by a line/hyperplane in the plane/space, a

positive slack variable, which allows for the misclassification of points, must be minimized

aiming to reduce the number of misclassifications. Another subtlety of SVM when ap-

plied to Linearly Unseparable Data is the use of kernel-based transformations into higher

dimentional spaces in search of other possible hyperplanes for the separation of data.

This process can be explained by Figure 2.9. The linearly nonseparable data in (A)

can be imagined as a in R2 representation of the dataset present in (B), in R3, which can

be linearly separated by a hyperplane((C)). Therefore, it can be assumed that if we work

in R3 a good linear SVM decision boundary can be found.

Figure 2.9: Non Linear SVM Example.

2.5 Test Platform

The test platform used in this work has the following specifications: Processor: Intel Core

i5-2410M CPU @ 2.30Ghz, RAM: 4GB, Operative System: Windows 7 Professional.

2.6 Materials

This work used Matlab R2008b and WEKA 3.6, a machine learning/data mining software

written in Java. For all the tests performed in this work, several digital fundus images

datasets were used(Tables 2.4 and 2.5), consisting of 10 public datasets(1 through 8, 13
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and 14) and 4 proprietary datasets (9 through 12). Test datasets (Table 2.4) were used

to evaluate the performance of the proposed method while validation datasets (Table 2.5)

were classified to validate the final method with different datasets than those used in the

testing of the previous method in [7]. Each image of these datasets is to be classified as

correspondent to one of the considered binary classes "Laser" and "No Laser". Examples

of these classes are presented in Figure 2.10.

(a) (b)

Figure 2.10: RFI of a healthy patient (a) and of a patient with laser treatment
marks(b).

Table 2.4: Test datasets used.

No Dataset Reference No of Images Laser Marks
1 Messidor (MESSIDOR) [13] 1187 No
2 e-ophtha MA (MA) [44] 148 No
3 e-ophtha NOMA (NOMA) [44] 233 No
4 e-ophtha EX (EX) [44, 45] 47 No
5 e-ophtha NOEX (NOEX) [44, 45] 35 No
6 Vessel-Based Registration (VBR) [46] 22 No
7 50 Healthy Patients (50HP) [47] 100 No
8 Foveal Avascular Zone Detection (FAZD) [48] 60 No
9 Screening (SCR) - 622 Yes
10 Before and After Treatment (BAT) - 49 Yes
11 Proprietary Dataset João Dias (PDJD) [12] 101 Yes

Table 2.5: Validation datasets.

No Dataset Reference No of Images Laser Marks
12 Screening Laser 2015 (SCR15) - 99 Yes
13 High-Resolution Fundus (HRF) [49] 45 No
14 Chasedb (CDB) [50] 28 No

2.6.1 Public Datasets

The datasets 1 to 8 in Table 2.4 result from previous studies and are publicly avaliable

online. All these represent images without lasermarks. These datasets have different
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origins and characteristics:

• MESSIDOR is one of the most used Datasets for teaching purposes, and is also a re-

sourse for many scientific studies. Its images were obtained using a color video 3CCD

camera, from a Topcon TRC NW6 non-mydriatic retinograph. Messidor is composed

of 1200 images of resolutions 1444x960, 2240x1488 and 2304x1536. According to im-

age processing experts at Retmarker S.A., 13 images presenting lasermarks were

excluded from this dataset (See Appendix A).

• MA,NOMA, EX andNOEX are part of a project called ANR-TECSAN - TELE-

OPTHA funded by the French Research Agency. All images of MA and EX contain

DR-related lesions, Microaneurysms and Exudates, respectively. NOMA and NOEX

do not present signs of DR or treatment, however, EX contains many optical arti-

facts capable of misleading automatic detection algorithms. All 363 images have

resolutions of 1440x960, 1504x1000, 2048x1360 or 2544x1696.

• VBR images were acquired with a Topcon 3D OCT-1000 camera and have a resol-

ution of 1200x1143. The dataset consists of 22 pairs of images, 22 are fundus images

and 22 are Optical Coherence Tomography images. The former are the ones we are

interested in for this work.

• 50HP images are from 50 healthy subjects’ left and right eyes. Their resolution is

1612x1536.

• FAZD consists of 60 healthy patients retinal images of resolution 720x576.

2.6.2 Proprietary Datasets

Datasets 9 to 11 (table 2.4) are proprietary datasets made up of images with lasermarks.

Some observations on these datasets are presented below.

• SCR is composed of 419 retinal images without laser marks and 203 retinal images

having lasermarks. These images result from a DR screening program managed by

ARS Centro, and were classified by professional optometrists as having or not laser

marks. All of the images are non-mydriatic and have a 45o FOV and they were

acquired between February, 2014 and January, 2015. There are 94 images captured

using Nidek AFC-330 Retinal Camera 76 of these with a resolution of 1920 by 1920

pixels, and the remaining 18 with 2448x2448. There is one image captured using

CSO Cobra Retinal Camera with 60ox45o FOV and a resolution of 1624 by 1232

pixels. The remaining 527 images were captured using Canon CR6-45NM Retinal
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Camera and have a resolution of 768 by 584 pixels. The totality of images, 622,

corresponds to the number of patients; only one image per patient was selected.

• BAT is composed of 34 retinal images with and 15 without laser treatment scars.

These images were provided by Centro Cirúrgico de Coimbra (CCC). This dataset

is composed by images from 9 patients (See Appendix A)

• PDJD is composed of 101 retinal images with laser marks from a screening program

managed by ARS Centro previous to 2013. All of the images are non-mydriatic

and have a 45o FOV and were captured using Canon CR6-45NM Retinal Camera

and have a resolution of 768 by 584 pixels. This dataset contains images selected

by image processing experts and they were not classified by any optometrist or

ophthalmologist.

2.6.3 Validation Datasets

Validation datasets (Table 2.5) were obtained and used for the purpose of validating the

performance of the final optimized algorithm proposed in this thesis.

• SCR15 is composed of images from the same and ongoing screening program from

SCR but were obtained from February, 2015 to November 2015. As a result this

is also a proprietary Dataset. All images were accquired with a Nidek AFC-330

Retinal Camera and have resolutions of 1920x1920 or 2448x2448. Only one image

per patient was selected.

• HRF is a public dataset aggregating 15 images of healthy patients, 15 images of

patients with diabetic retinopathy and 15 images of patients suffering from glaucoma.

All images have a resolution of 3504x2336.

• CDB is a dataset of 28 images of health patients publicly avaliable online. Its images

have a resolution of 999x960.

Samples of all these datasets are presented in Appendix A.

23





Chapter 3

Algorithm Optimizations

In this chapter, the optimization steps performed on the aforementioned algorithm will be

reviewed and explained. In order to do this, the algorithm itself must be further explained.

Algorithm Review

The algorithm involves four main processing steps: Pre-processing, Segmentation, Features

Computation and finally Classification. Appendix B.1 describes these processing steps in

detail, which involve the following operations, for any input image and in this specific

order: Pre-processing: resizing the image, performed using a bicubic interpolation if the

image does not fit a specific resolution range; segmentation of the anatomical structures,

using a contourlet transform for the Vascular Network and using the method described in

[35] for the OD; computation of the Region of Interest (ROI) mask; uneven illumination

correction to correct luminance; adaptive histogram equalization to enhance contrast, and

finally channel extraction where the most relevant channels for detection are extracted:

Green, Red, Hue and Saturation.

After pre-processing, the segmentation algorithms described in subsection 2.3 are ap-

plied to the green channel of the resultant image. For each algorithm, regions that are

considered to be false detections are discarded resulting in final set of candidate regions,

obtained by merging the regions identified by each segmentation algorithm. The binary

image containing these candidates is used to compute several candidate-related features.

A summarized description of the 65 features computed by the main algorithm is presented

in Appendix B.2, where the first 12 features represent geometrical features, features 13 to

22 represent spatial distribution features, 23 to 38 are intensity based features in the four

image channels extracted, and the last 27 features are texture features based the majority

of which are obtained through the Gray-Level Co-occurrence Matrix of the image [51].
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The classification step, which was not part of this method, was developed using WEKA

in order to test and obtain the final classification using five different tree-based classifiers.

C4.5 Decision Tree was the classifier used to obtain the best classification in both accuracy

and specificity. For this reason, in this work the DT classifier obtained by Sousa et al.

was implemented in Matlab and the time efficiency and the classification improvements

or deteriorations of each optimization were evaluated.

Efficiency Analysis

As previously mentioned, one of the identified problems regarding images containing laser

marks is their capacity to mislead further processing steps, namely the identification of DR-

related retinal lesions. With this problem in mind, it is clear that the algorithm proposed

by [7] may increase the efficiency of other automatic detection methods. Efficiency is

then crucial, since in order to increase the efficiency of such algorithms, as is the case of

the implemented algorithms in Retmarker, automatic detection of lasermarks has to be

performed before these other methods.

As an increased processing time of the major Retmarker algorithm is not desired, an

extensive optimization needed to be made.

In this work, several optimization procedures were performed. This chapter aims to

explain these improvements, why they were made, and the overall impact in the final

processing time, and constitutes the primary contribution of the present thesis to this

field of knowledge, both in the optimization approach and on the strategies which were

proved successful, both in time efficiency and classification performance.

In order to properly evaluate the algorithm most time-expensive steps, the code was

divided in parts where some of the features are computed, and mean times for each code

section were obtained. The reason for this approach is that many of the features are

obtained by the same calculations. For example, Frangi Vesselness Filter returns 4 different

features; likelihood_FVF and number_FVF are both obtained precisely after the removal

of candidate regions considered to be false detections, meaning that considering each

individual feature processing time was not the best strategy.

The eight sectioned parts of code are the following: Pre-processing, Texture, CHT,

LMS, FVF, Intensity Features, Spatial Distribution and Classification. Figure 3.1 repres-

ents how the mean processing time is distributed in these code sections.

Figure 3.1 represents the time percentage associated with each of these code sections.

It can be concluded that CHT is the most time expensive part of the algorithm with
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Figure 3.1: Initial algorithm mean processing time, per section.

45% of the mean processing time, followed by FVF, Pre-processing, and LMS with 20%,

18%, and 12% respectively. It is worth noting that these four sections represent 95% of

the processing time and that the remaining four sections are neglectable at this point.

Pre-processing was the first code section to be optimized, and for a particular reason: all

the steps of pre-processing affect the performance of the segmentation algorithms and of

feature extraction. However, CHT is acknowledged as the primary part of the algorithm

to be optimized.

Throughout this chapter, after each modification introduced in each section, if a modi-

fication used different concepts from the ones used in the previous version, a classification

performance evaluation of the algorithm was obtained on the testing images used in [7].

This was accomplished using the classification algorithm to obtain the best performance

in [7], a DT classifier using eight features. In other words, everytime a major modification

was introduced, the classification resultant from the respective optimization was compared

with the reference classification in order to understand wether the applied modification

affected the results or not.

3.1 Pre-processing Optimization

Cropping

The algorithm that is the foundation of this thesis had an extensive share of pre-processing,

as stated. The first part of it was a resizing.

While this step was maintained, a further cropping of the image was considered and

implemented. The reason behind this choice, in addition to the computational efficiency

of a smaller image, was the unnecessary time-consuming processing of the dark peripheral

regions surrounding the ROI. Furthermore, a great variance of the size of this "black
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border" is noticeable in the testing datasets (See Appendix A.14f) and due to this, aiming

for adaptiveness, the unnecessary borders were cropped.

Figure 3.2: Cropping Example.

The cropping boundaries are achieved searching through the middle vertical and middle

horizontal vectors of the ROI image for the first pixel with value "1" (or belonging to the

ROI), in ascendant and descendant directions. This way, four quantities that represent

the unecessary to process dark regions are obtained. Margins of 1% of the total number

of rows are subtracted to the vertical quantities and of 1% of the total number of columns

is subtracted to the horizontal quantities, each of them rounded to the next integer.

This margin is considered since many kernel based operations are performed in the

image and due to a number of 2D convolutions being performed using by the conv2 Mat-

lab function, which applies the Zero Padding principle [52], visual artifacts appeared in

periphery of the images, interfering with the segmentation algorithms and, for example,

Texture-based Features.

This was the first major enhancement to the algorithm and due to it the algorithm

had its time performance increased substantially, particularly in the datasets with small

ROIs and consequently fewer quantities of useful information.

Scaling Constant

Adding robustness and versatility is desired for such an algorithm, aiming for the most

automated processing possible. For this reason, many of the previous algorithm operations

and kernel sizes related to pre-processing and feature extraction were scaled through the

introduction of a scaling constant This constant is given by,

scaling_constant = ROI_d−OD_d
480− 110 = ROI_d−OD_d

370 (3.1)

where ROI_d and OD_d are the ROI diameter and the OD diameter, respectively.

This constant resulted from empirical observations on the training dataset used in both

[7] and this work, in which the mean value of the ROI diameter was found to be close to
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480 pixels and the mean value for the OD diameter was about 110 pixels.

After experimenting modifications to this constant it was verified to be affecting the

overall classification results negatively. The inclusion of the ROI_d and the factor of 480

could explain this effect. Including the ROI size of the processed image in this constant

removes adaptiveness to the Field of View (FOV) factor since for example two images with

the same ROI_d can be achieved with cameras presenting different FOVs, resulting in a

considerable difference in the ammount of information presented to the algorithm.

Moreover, as it can be exemplified by images in Appendix A, many images do not

present a circular shape. For that reason variants of the constant were experimented.

These included factors like the ROI’s area, a ratio between the ROI’s area and the OD’s

area, the OD’s area, and all the mean value of these factors measured on the training

dataset.

The chosen alternative to the first constant was the diameter of the OD divided by the

mean OD of the dataset later used for training(110 pixels):

scaling_constant_2 = OD_d
110 (3.2)

In adition, all measures obtained from the image during feature extraction (as laser-

marks sizes and distances between them) are normalized to the size of the OD. The new

constant and kernel scaling are expressed in table B.1 of Appendix A.

This modification was made since it did not affect the overall processing time of the

algorithm while resulting in an improvement of the final classification accuracy.

Image Enhancement

The 18% mean time of pre-processing is mainly related to two different image enhance-

ments: uneven illumination correction and contrast enhancement. Although other im-

provements were made, these corrections are the only part of pre-processing (in con-

junction with the applied cropping) in which any modification directly affects the final

pre-processed image, and for this reason they were addressed at this point.

Uneven illumination and poor contrast are normal problems in digital fundus images,

and reasons for these occurences include several technical and instrumentation specific

characteristics. Some of these include: visual artifacts caused by inneficient aiming of

illumination, the presence of impurities on the camera lens, focus-associated blurring, or
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even the presence of lasermarks or bright lesions.

This lack of proper illumination and/or contrast is often enough to introduce misbe-

haviours in some algorithms or, in this case, impair the proper segmentation of lasermarks

and of anatomical structures.

Aiming to reduce the complexity of the former method, several state-of-the-art illu-

mination enhancement techniques [53–55] were considered, namely Gamma Correction of

the Value/Brightness channel in HSV colorspace [56], Top-Hat filtering [57], Mahalanobis

Distance [54] and Homomorphic Filtering [55].

In the initial algorithm, the image was converted to L*a*b colorspace [58] where its

Luminance Channel(L*) color component was adapted to normalize the illumination of

the final image. Since Luminance values represent the brightness of the corresponding

pixel, a mean luminance value map, normalized to [0,1] was obtained, after what the final

L* color component had its brightest areas luminance reduced and its darkest areas lumin-

ance increased. After this process, Adaptive Histogram equalization was applied to this

L* corrected channel enhancing contrast. Finally L* replaces the initial L channel in the

L*a*b colorspace image, which is then converted back to the RGB colorspace, resulting

in a contrast and illumination enhanced image 3.3.

(a) (b)

Figure 3.3: L* color component before (a) and after (b) uneven illumination correction
and contrast enhancement.

This image enhancement is exemplified in Figure 3.4a. This method presented bet-

ter results than any of the mentioned alternatives in conjunction with the segmentation

algorithms, being confirmed as the best approach for this specific method. Even though

is must pointed out that Gamma Correction of the Value channel in HSV colorspace was

the method to better aproximate this previous approach.

It is worth noting that, in the majority of Digital Fundus Image processing problems,

Green Channel (Figure 3.4b) is state-of-the-art acknowledged as the channel to generally
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(a) (b)

Figure 3.4: Image after pre-processing step - RGB (a) and Green Channel (b).

present a better contrast [14, 53, 59, 60]. For this reason, additional processing is only

performed in this channel. CHT was the next code section to be optimized, for the general

impact it has on the algorithm’s mean time performance.

3.2 Circular Hough Transform Optimization

CHT detects circles in the preprocessed green channel of the image. While the edge de-

tector present in CHT, usually Canny detector, removes the noise by using a Gaussian

filter, this type of filtering weakens important edges, decreasing true detections and pos-

sibly increasing false detections. An alternative approach was achieved by Jie and Ning’s

in [61] and reproduced by [7] that consisted in applying a bilateral filter (BF) to the image

and then using Otsu’s method for thresholding [24]. BF does perform a suitable smoothing

for this problem, however, it totals a computation time as high as 14 seconds for some

images. This is because Bilateral Filter computes an additional range kernel for restricting

the neighborhood pixels’ averaging, resulting in a nonlinear and computationally intensive

averaging process.

For this reason an alternative filter was the first idea to be tested. BF proved very

effective for this application in [7] because of its smoothing while preserving edges prop-

erty. Searching for methods with similar properties [62], three options were considered:

Anisotropic Diffusion [63], Guided Filter [64] and Shiftable Bilateral Filter (SBF)[65].

Anisotropic Diffusion is an iterative method that was proved slower than BF without the

introduction of improvements. Both Guided Filter and SBF are much faster than Bilateral

Filter (both about 30 times faster for an example resolution of 584x768) and were chosen

to be tested, replacing the former BF. These steps required extensive testing since CHT is

the best suited segmentation algorithm for the detection of lasermarks in this method (as

pointed by Sousa et al.), which meant that a poorly implemented CHT could compromise
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the whole algorithm. Adapting these two filters to this problem and choosing one of them

was one the primary concerns of this thesis.

3.2.1 Guided Filter

Guided Filter [64] is an edge-preserving smoothing filter that computes its filtering output

using a guidance image. The guidance image can be the image itself, a further processed

version of the image, or a completely different image (of the same size as the primary input

image). This filter has been used in applications like ASIC real-time video processing [66],

haze removal [67] or Visual tracking [68]. Being a neighborhood operation in the processed

image, this filter also takes into account statistics of the corresponding spatial window in

the guidance image.

When the guidance image provided is the input image itself, the filter takes into account

its edges and promotes structure transference while smoothing background. The authors

state that Guided Filter produces outputs similar to Bilateral Filter but that it has a

better performance near edges and, apparently, this was the primary problem associated

with Guided Filter for the implemented method. What generally happens is that Guided

Filter results in a much larger number of CHT circle detections (compared to BF), many

of which are false detections, when applied with an adaptive regularization parameter ε

(based on the difference between maximum and minimum gray levels of the image), a

kernel similar to BF, and the CHT threshold of 0.225 used in the previous method (for

the consideration of a circle in its normalized to [0,1] range accumulator array).

(a) (b)

Figure 3.5: Circles detected by CHT with Guided Filter.

The threshold parameter of CHT was modified aiming to prevent this false detections

problem, unsuccessfully. When this threshold was increased, a lower rate of false detections

was verified but the true detection rate deteriorated in the same manner, aggravating the
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final classification. On the other hand, when this threshold was increased, many circles

were detected both in images that have them and in images that do not (Figure 3.5).

It was therefore concluded that, for this specific application, Guided Filter does not

equals BF’s ability of smoothing the image without compromising edges.

3.2.2 Shiftable Bilateral Filter

Shiftable Bilateral Filter (SBF) is a method proposed by Chaudhury et al. [65] that ap-

proximates BF using trigonometric kernels (raised cosines) as a substitute of the gaussian

range kernel that restricts the performed averaging. Time efficient approaches aiming to

aproximate Bilateral Filter’s output had already been proposed with polynomial kernels

[69], but in [65] it has been observed that, for a fixed number of terms, the approximation

quality with trigonometric kernels surpasses the one using polynomial kernels. Later, the

same author proposed an improved and revised version of the Shiftable Bilateral Filter

(SBF) in [70].

SBF presents a good aproximation of BF combining the background smoothing while

preserving edges property and a high computational efficiency. In the context of this

work, and much like Guided Filter, a larger number of CHT circle detections was verified.

However, for SBF, an adjustment of the CHT threshold was enough to obtain an efficient

circle detection. Figure 3.6 presents a comparison for the same image between the CHT

method output with the former BF and with SBF, respectively, aiming to compare the

detections obtained with the initial CHT and CHT using SBF.

(a) (b)

Figure 3.6: Circles detected by CHT with (a) BF and (b) SBF.

Detections obtained with the new method resemble the ones with the former one

implemented in the original algorithm, a fact verified for the remaining test datasets.

This resemblance was reached employing an adequate threshold for the consideration of
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circles of 0.275, in opposition to the former 0.225 (in the normalized accumulator array).

This threshold increase contributed to reduce the rate of false detections of the previous

method since, from this moment on, a greater number of votes is needed for a circle to be

detected (subsection 2.3.3).

A range of radii had to be chosen in order to minimize false detection rate, promote

versatility, and minimize the circle radii range to be searched by the method. To do this,

the new optimized CHT was applied to the training dataset with a large range of radii.

For each image, the diameters of the detected circles were stored in a vector, and for each

diameter value, a ratio between it and the diamater of the OD was calculated. The results

are presented in the histogram of Figure 3.7.

Figure 3.7: Ratio(D/di) for all the circles detected in the dataset NOMASCR.

In this histogram, the vertical red and blue lines indicate the maximum and minimum

radius value detected, respectively. It can be assessed from the graphic that if a range in

D/di of [4,23] is chosen, a minor error is commited. This range defined a CHT radii search

range of,
[
D
23 ,

D
4

]
, where D is the Diameter of the of the optic disc.

For CHT and the remaining segmentation algorithms one of the rejection criteria for

the invalidation of lasermarks was their location. In the work developed by Sousa et al.

[7], if a detected circle lies in the vicinity of the Vascular Network or of the OD, it is

ignored.

In this work it was verified that computing the location of the Fovea did not repres-

ent a significant aggravation of the computional efficiency, and for this reason, Fovea’s

location was included as a third rejection criteria for the three segmentation algorithms,

contributing for the rejection of more false detections. If the distance between the center

of a detected circle to the center of the Fovea is less than half the diameter of the OD, it

is discarded.
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3.2.3 LMS and FVF Optimization

As explained in subsection 2.3, FVF detects tubular and blob-like structures and LMS

detects regions based on a morphologically transformed image IM . After experimenting the

methods, the concepts behind each of them were not modified although their computation

times were optimized significantly.

Both these methods, in addition to morphological operations, image reconstruction,

and the application of multi-scale Frangi Filter 2D (in the case of FVF) [25], make use of

a Matlab function from the image processing toolbox called regionprops, a useful meas-

urement tool for binary images. However, some of the measures performed by regionprops

require a significantly computational complexity, the majority of which are used by FVF

and LMS.

FVF consists on the aplication of a two-dimentional Frangi filtering to the image for the

detection of blob structures in the image. This filter is explained in section 2.3. One of the

options for its optimization could be to reduce the number of individual values of σ of the

original algorithm σ = {1, 3, 5, 7, 9}, which contribute similarly for the total mean time.

For each σ, the algorithm performs an iteration and computes a vesselness measure Vσ for

each pixel. The final filter output per pixel is based on the maximum vesselness measure

obtained for each of the computed scales σ (subsection 2.3.2). For this reason, the mean

contribution of each individual σ was measured, in the training dataset. The minimum

mean contribution was presented by σ = 1 with 5.96%. The algorithm was tested using

only the most relevant sigma scales, σ = {3, 5, 7, 9}. While the visual difference of the

generated filtered images is minimal, the method classification’s performance was affected

negatively.

As the method was not able to be optimized by a fewer-calculations tradeoff, an altern-

ative to FVF was considered: a similar multi-scale vesselness filter algorithm proposed by

Jerman et al. [71]. The author proposes a new vessel enhancement filter which presents

notable results and when compared to other four state-of-the-art enhancement filters.

Images (b) and (c) of Figure 3.8 show the best set of parameters which led to the most

efficient detection for each of the two methods when performed on image (a).

FVF, for this specific task, revealed itself more efficient in properly segmenting regions

that truly are lasermarks in a time-efficient fashion, and for this reason it is confirmed as

the state-of-the-art best segmentation algorithm for this optimization purpose. Jerman’s

method seems more accurate presenting better definition and detail of marks, however, it

presents false detections in some "No Laser" datasets’ images and was not considered due
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(a) (b) (c)

Figure 3.8: (a) Test Image (b) Frangi and (c) Jerman vesselness filters obtained seg-
mentation.

its lack of accuracy, for this specific method. It needs, unlike FVF, a smaller ammount

of sigma scales (σ = {1, 3, 5}) and provides very detailed segmentations. Comparing only

the filters computations FVF is faster since, in order to obtain final regions exemplified in

image (c) of Figure 3.8, additional processing steps of the filter’s output were required and

must be summed up; these include the removal of a circular shape artifact surrounding the

image (through the computation of a secondary ROI) or median filtering of the output.

Since the interest lies in optimizing the overall time efficiency of the algorithm, FVF was

maintained.

The selection and evaluation of blobs structures of FVF is made by using region-

props, specifically two different calls of this Matlab function. The first call measures

the segmented candidate regions (after Otsu’s method for thresholding is applied to the

filtered image) in calculating four metrics: its Centroid, Major Axis Length, Minor Axis

Length, and Eccentricity. After this, the Eccentricity (ECC) parameter is used to validate

candidates removing each region that verifies ECC > 0.92. In a next step the Matlab

function bwselect, which in a binary image keeps only the selected regions, was used to

only maintain in the thresholded binary image the valid candidates. A second call of the

computationally complex regionprops is made to compute once again the measures of the

valid marks. ECC is later used to compute the likelihood of each mark to be a lasermark,

and to weight the area of each mark resulting in two specific features(likelihood_FVF and

weighted_area_FVF).

These steps can be recuced to one call of the regionprops function saving all the in-

formation of each mark in a matrix and removing all considered-to-be false detections and

selecting them with bwselect for the obtention of the final candidates binary mask. Later

the candidate lasermarks are only considered to be valid if not located in the neighbor-

hoods of the vascular network, of the OD or of the fovea.
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The LMS algorithm was reproduced from [23] in [7] and presented seven different calls

of the already mentioned regionprops funtion. Manipulating vectors, an approach was

obtained using one call of the function, which resulted in significant decrease of the com-

putational time. Furthermore, Roundedness and Solidity, described below, were calculated

for all the marks, when several of these values were later discarded.

After the call of regionprops, candidates with an area lower than 100 pixels are con-

sidered too small for representing lasermarks and are removed. In addition, and much

like the remaining segmentation methods, candidate lasermarks are considered invalid if

located in the neighborhoods of the vascular network, of the OD or of the fovea.

Finally, and only for each validated segmented region, Roundedness (f1) and Solidity

(f2), two of the features established in [23], are calculated. These are defined as:

Roundedness is defined as the ratio of the major by minor axis length of the region -

since most lasermarks have a circular form this measure defines how circular the segmented

region is.

Solidity is the ratio of the candidate’s region area by its convex hull area(the area

enclosing the region) - laser marks are convex structures having high solidity, close to

unit.

If these parameters verify: 1 < f1 < 2.5 and f2 > 0.8 the candidate is kept. If one of

these conditions is not verified, the candidate is discarded.

After only the relevant candidates are retained, two new classification features that

were introduced are calculated: roundedness_LMS and solidity_LMS, which re-

spectively represent the mean Roundedness and the mean Solidity of the valid lasermark

candidates detected by LMS. This additional processing does not represent a significant

increase of the computational time.

Comparatively, LMS is the method that presents more false detections, which was the

main reason for the inclusion of these two new features as it seemed imperative to include

measures which evaluate the detected marks likelihood of being in fact lasermarks and

LMS’s performance in the data mining process. CHT and FVF already computed two

geometry-related features and one likelihood-related features regarding detected marks.

3.3 Code-based Optimizations

The algorithm to be optimized was written in Matlab, which means several notions must

be taken into account in order to perform a conscient optimization regarding all possible

resources this language offers.
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The optimizations referred in this section did not solve code bottlenecks but rather

worked as an overall optimization of the entire algorithm, yet they represent a considerable

optimization contribution. While their main objective is to reduce computational time,

they do not interfere with the algorithms final result; they only introduce differences in

the approach of solving mathematical and programming operations.

Matlab is an interpreted language. In other words, Matlab code does not need to be

explicitly compiled. As a consequence, Matlab code is (to some extent) interpreted line

by line, executing the commands it is instructed to, which means spending time reading

each line. This is the reason behind Matlab’s interpreter inferior speed when compared to

pre-compiled languages such as C/C++ or Fortran.

However, Matlab has precompiled functions that compute basic matrix/vector oper-

ations, meaning Matlab is able to equal and even surpass other compiled languages in

what concerns matricial operations. This section explains the majority of the code-based

optimization steps that were made.

Figure 3.9: Matlab profiler’s example report (before LMS optimization).

In order to quantify the processing time of each considered code section, the perform-

ance measure functions tic/toc were used to accomplish precise measurements. But to

discover which functions were contributing most to the high computational mean time of

the algorithm, Matlab’s Profiler tool was used. This tool records functions’ execution time

and was of great utility in uncovering the most time consuming tasks and where to apply

a greater optimization effort.

Figure 3.9 is the report of Matlab’s profiler before the last optimizations of section

3.2.3 were implemented. Note that running the profiler increases computational time

significantly. From this report it can be noted that inside the main extraction function,

extract_features_laser_final, almost 5,5 seconds are spent. LMS is one of the most time-
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expensive functions inside this main function. However, almost all the function’s time is

spent by regionprops, a native matlab function. Regionprops was being called as follows:

stats = regionprops(bw_LMS,′Centroid′,′MajorAxisLength′,

′MinorAxisLength′,′Area′,′ConvexArea′); after what detected regions were evalu-

ated. Then bwselect was used to choose only the valid candidate marks, based in the

detected centroids, and then another regionprops call was made to calculate Major Axis

Length, Minor Axis Length and Centroids, when these regions had already been segmen-

ted. The approach used instead was to successively delete the matrix storing the data

segmented by regionprops. This procedure saved more than one second for each image as

the profile call in Figure 3.10 shows.

Figure 3.10: Matlab profiler’s report after LMS optimization.

The first step taken was to analyse the presence of repeated operations, as removing

them contributes to accelerate the algorithm and decreases the ammount of code to be

optimized. As a result a great number of repeated operations were eliminated. The most

relevant examples are the stated repetitive calls of regionprops in the calculations of both

FVF and LMS and in the calculations of intensity features on the four extracted channels

of the image. Cropping the image also contributed to eliminate repeated or unproductive

operations, for example computing CHT, LMS and FVF in the outer regions of the image.

All code sections lacked pre-allocation, to some extent. Pre-allocation, as in any

other programming language is defined as finding a place in memory large enough (or a

range of adresses) to store the information of a variable (e.g. a matrix) in a continuous

way.

Differently to other programming languages, Matlab performs its own pre-allocation.

However, memory-related problems emerge from this mechanism as Matlab requires vari-

ables to be saved continuously in memory.

A pratical example: when a vector with 100 elements is declared and stored in memory,

but later 50 more elements are concatenated to it, if any of the 50 addresses imediately
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next to the 100 initial ones is occupied, other contiguous and empty 150 adresses have

to be found where the new vector of 150 elements will be stored. Therefore, if Pre-

allocation is not performed by the programmer, the processor will likely search the system

memory for new space to store variable everytime a variable is grown. For this reason,

pre-allocating promotes memory and time efficiency. In this example, if the final vector

size was previously known, 150 elements could have been allocated in the first declaration

of the variable, guaranteeing that the processor can quickly access the whole variable

continuously, hence efficiently.

Figure 3.11: Matrix centers_auxiliar is growing inside a loop.

A bad practice in Matlab, related to the pre-allocation topic, is allowing a variable to

grow inside a loop (Figure 3.11). This is perhaps one of the worst pre-allocation practices

in Matlab, since it implies the search in every iteration for a new space in memory for

new memory contiguous adresses. This is increasingly inefficient the greater the matrix to

be stored. Whenever a loop cannot be avoided, a considerable (predicted and protected)

amount of space can be allocated to a matrix variable, and the number of iterations inside

the loop is stored. When the last iteration is made, the matrix or vector can simply

be truncated in a number of elements equal to the number of iterations, avoiding the

memory-expensive growth inside a loop as Figure 3.12 exemplifies.

Figure 3.12: Variable pre-allocated and later truncated.
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Understanding this necessity, the variables used in each code section were pre-allocated,

either with a size equal to the size they would present in final calculations or with a

considerable and protected size and later truncated. A total of 51 growing inside loops

matrices were pre-allocated throughout the initial algorithm.

Functions are an essential part of programming, allowing code to be organized and

structured, combining a grow in complexity and readability of code. Therefore, sectioning

code into functions may help increase the overall execution of code, as they handle variables

internally returning and keeping in memory only those that will be further manipulated

or presented in the final return of a main function. This is of great relevance specifically in

Matlab, as there is the necessity of using multiple variables since Matlab is more efficient

in creating new variables in opposition to typecasting. As a consequence, creating more

variables is normally more efficient, but keeps them in memory and functions allow unused

variables to be discarded, promoting cache and general programming efficiency.

In order to take advantage of function handling, the code was sectioned into eight

functions, resembling the code sections mentioned in the beginning of this chapter (Figure

3.1 presents these functions). From this point, the main algorithm’s function receives an

image which inputs the pre-processing function, after six additional functions compute the

returning features, which in turn are input to the eight and final function that classifies

the image as "Laser" or "No Laser".

This way, fewer variables are stored in memory while the extraction is being made, res-

ulting a cleaner, faster and easier to understand and optimize code. Table 3.1 summarizes

the operations performed by each function.

Table 3.1: Algorithm’s functions and their operations, by computing order.

Function Name Performed Operations

Pre-Processing
Obtains ROI, Vascular Network, OD, Fovea, Constants.

Crops the image. Corrects brightness and contrast.
Extracts channels Green, Red, Hue and Saturation.

CHT Finds circles and circular structures in the image;
Applies rejection criteria to invalidate false detections.

FVF Finds blobs structures in the image;
Applies rejection criteria to invalidate false detections.

LMS Finds structures resembling lasermarks;
Applies rejection criteria to invalidate false detections.

Intensity
Computes Intensity-based features considering

the candidate lasermarks detected in the
segmentation algorithms for the four considered channels.

Spatial Distribution
Computes Spatial Distribution features
considering the candidate lasermarks

detected in the segmentation algorithms.
Texture Computes Texture features in the image’s

green channel pixels inside the ROI.
Classification Receives the final features and classifies

the image as "Laser" or "No Laser".
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In Matlab it is also possible to declare secondary functions inside primary functions.

If a function is only used by any other particular function, it can be declared inside this

last one, granting that when the first function is called, Matlab already knows where to

find the inside-declared function. This work took advantage of this fact. Examples, of this

application are: in CHT chaccum function, which computes the accumulator array of the

transform; MaxFilter, that computes the T parameter of SBF; Hessian2D, that obtains the

Hessian matrix of the image for further processing by FVF, and all the feature-calculating

functions, which are secondary functions of the main extraction function.

As mentioned, the Matrix Laboratory code is mostly interpreted line-by-line resulting

in control flow loops, as for and while, being inefficient practices in this programming

language. One way of avoiding loops is by using Vectorization.

Figure 3.13: Vectorization example.

A vectorized computation is one that takes advantage of vector operations. Vectoriz-

ation is one of the most general and effective techniques to write efficient Matlab code,

however, it is not always an easy task and many approaches to vectorization and ways

of programming it exist, hence vectorization is not universal, being highly dependent of

each particular situation. An example is shown in Figure 3.13 where the for cycle can be

easily avoided. Only one condition is verified to enter the cycle which makes vectorizing

it a simple task by using general vector logic. The vectorized code is faster than the one

containing a for loop even when centroids variable has a single pair of elements, the x

and y coordinates of a centroid. In this particular case, the efficiency improvement grows

linearly the more values centroids has. As a comparison example, if centroids is a 200x2

42



matrix,

Loop: Elapsed time is 0.001586 seconds.

Vectorized: Elapsed time is 0.000058 seconds.

or approximately 27 times faster. If centroids is a 2000x2 matrix,

Loop: Elapsed time is 0.030793 seconds.

Vectorized: Elapsed time is 0.000113 seconds.

or approximately 273 times faster.

A good understanding of referencing also strengthens good practices for Matlab pro-

grammers, allowing a broader range of vectorizing options. For example, a 5x5 matrix A

is stored in memory linearly, as a one dimension 25-element array, in column-major order.

An index is the reference to to an element’s position in that one-dimensional array, such

as A(13). A(13) is the exact same value as A(3,3), but it is faster to scan down columns

than down rows. This is because column-major order means that elements along a column

are sequential in memory, while elements along a row are further apart. This referencing

awareness is even more important the larger the matrices to be computed are.

Helpful Vectorization Matlab functions in this work were min, max, mat2gray, logical,

reshape, repmat, meshgrid, cumprod, accumarray, norm, ones, zeros, nonzeros, sort, find,

among others. Different functions were also tried in order to improve code execution

time. logical is a more efficient function in the use of memory than bwlabel for dealing

with binary images. strtok is useful for dealing with input names but required variables

growing inside loops, so fileparts was used instead.

When optimization and the use of another functions is concerned, mex files have to be

referred. Binary mex files, or Matlab Executable files, are dynamically linked subroutines

that the Matlab interpreter loads and executes like a native Matlab function. In other

words, it is a way of calling routines of other pre-compiled languages like C/C++ or

Fortran. In latest Matlab versions mex files are not recomended by Mathworks. However,

in version Matlab 2008b mex files were considered. But since the majority of the code

was vectorized or already took advantage of Matlab most powerful tools, mex files ended

up not being used. At this point, the functions that presented a larger execution time

and that could be called as mex files were regionprops, medfilt2 and applycform, all of

which are Matlab native functions. Nevertheless, medfilt2 already calls a mex file in its

algorithm form, for efficiency reasons.
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3.4 Feature Selection and Binary Classification

The last optimization to be made relies on a feature selection step for the training of

binary classifiers, since the classification models that will be chosen will receive as input

only some of the 67 features computed.

The chosen training dataset NOMASCR, has a total of 855 images, of which 203 are

"Laser" images and 652 are "No Laser" images. These 855 images result of merging datasets

NOMA (233 images) and S (203 "Laser" images and 419 "No Laser" images). This was

the chosen training dataset in order to allow classification and time-efficiency comparisons

with the previous method.

WEKA, a machine learning algorithm package written in Java, was the primary tool for

data exploration, providing an overview of all the data per instance, allowing an efficient

analysis of features and of their utility in separating classes. In this work three binary

classifiers were considered: Decision Tree (DT) [38], Alternating Decision Tree(ADT)

[39], and Support Vector Machines(SVM) [40].

To obtain subsets of features for each of the chosen classifiers, two types of feature

selection methods were used - Filter methods and Wrapper methods. Filter methods

feature selection is important in several classification settings. Filter methods analyze

intrinsic data properties, independently of the used classifier. By ordering these features by

their measure of importance with a filter method, a threshold can be applied removing less

important features. In these methods usually the potential interactions among elements

of the joint set of features are neglected. For this reason, sometimes filter methods result

in redundant features.

Wrapper methods consider a specific classifier and evaluate subsets of variables while

taking into account, unlike Filter Methods, the possible interactions between features,

which is translated in choosing from all possible subsets of features, therefore, higher

computational power is required. Wrapper Methods also present limitations, like the

increasing overfitting risk when the number of instances is insufficient or the significant

computation time given a large feature set.

Embedded Methods are a coupling of both the above described methods. They aim to

combine the advantages of both Filters and Wrappers and minimize their limitations [72].

The feature selection procedure was to filter data with two Filter Methods - Inform-

ation Gain(IG) and Gain Ratio(GR) - obtaining two initial subsets (Appendix D) after

what Wrapper methods for each classifier were applied to the IG and GR filtered subsets,

resulting in six final subsets of features later used to train the classifiers.
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Two initial subsets were obtained by applying filter methods (IG and GR) to the

training dataset, thresholded by score 1 0.1, resulting in two different feature subsets,

one for each filter.

Wrapper methods were applied to these two subsets, one for each of the used classific-

ation algorithms, resulting in 6 more feature subsets which were used to train classifiers.

WEKA was set to perform inner stratified 5-fold cross-validation on each of these gener-

ated training datasets.

The following Chapter describes results of the feature selection approach, the obtained

results of the test datasets’ classification with each trained classifier followed by a validation

in three other datasets, and finally the efficiency of the performed optimization is compared

to the former method.
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Chapter 4

Experimental Results

In this chapter, the obtained experimental results will be presented and discussed. These

results are subdivided into Feature Selection, Classification, and Optimization reflecting all

subjects this work addressed. In addition, Appendix C refers general mean time processing

divisions between algorithms’ functions and the classification obtained for the best classifier

obtained in [7], after each major optimization was performed. A brief summary of the

image classification features used in this work is presented in Figure B.2 of Appendix B.

4.1 Feature Selection Results

The IG-filtered subset contains 43 features and the GR-filtered subset contains 44 features

(Appendix D). To these, a subset evaluator wrapper method was applied for each classifier.

The features of the best subsets found for each classifier on the IG-filtered features are

the following:

Figure 4.1: Best subsets obtained with the IG-filtered features.
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The features of the best subsets found for each classifier on the GR-filtered features

are the following:

Figure 4.2: Best subsets obtained with the GR-filtered features.

4.2 Classification Results

In this section, the final classification results obtained are presented. The six feature

subsets presented in the previous section were used to train the respective binary classifier.

Since both ADT-based wrappers returned the same features, five diferent classifications

were obtained. Stratified 5-fold cross validation is performed on the training dataset

(NOMAS) after what the classifier is tested with the remaining datasets. Some statistical

measures accompany each classification.

In addition to what has been introduced in subsection 2.2,

• T = TP + TN, or the correct classifications;

• F = FN + FP, or the incorrect classifications;

To avoid redundancy only GR_SVM, the classifier with the best performance, will be

presented in this chapter. The remaining classifiers’ results can be consulted in Appendix

E.

After a stratified 5-fold cross validation using an SVM classifier with the features

GR_SVM on the images of the training dataset, the following results were obtained

GR_SVM TP TN T FP FN F SPE(%) SEN(%) ACC(%)
NOMASCR 160 641 801 11 43 54 98,31 78,82 93,68

The trained classifier resulted in a SVM model which WEKA needed 0.28 seconds to

build. By testing this classifier in all the test datasets, that total 1749 images (135 "Laser"
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and 1614 "No Laser"), the following results were obtained:

Table 4.1: GR_SVM classifier tested on test datasets.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)
MESSIDOR 0 1181 1181 6 0 6 99,49 - 99,49

MA 0 148 148 0 0 0 100,00 - 100,00
EX 0 47 47 0 0 0 100,00 - 100,00

NOEX 0 35 35 0 0 0 100,00 - 100,00
VBR 0 22 22 0 0 0 100,00 - 100,00
50HP 0 100 100 0 0 0 100,00 - 100,00
FAZD 0 54 54 6 0 6 90,00 - 90,00
BAT 22 14 36 1 12 13 93,33 64,71 73,47
PDJD 99 0 99 0 2 2 - 98,02 98,02
Total 121 1601 1722 13 14 27 99,19 89,63 98,46

Specificity: 99.19%, Sensitivity: 89.63%, Accuracy: 98.46%

Additionally, datasets SCR15, CDB, and HRF were classified as a way of validating

the optimized method.

Table 4.2: GR_SVM classifier tested on validation datasets.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)
SCR15 86 0 86 0 13 13 - 86,87 86,87
HRF 0 43 43 2 0 2 95,56 - 95,56

Chasedb 0 28 28 0 0 0 100,00 - 100,00

4.3 Optimization Results

The results in the previous section and Appendix E present GR_SVM as the training

subset with the best classification, with the respective SVM classifier. For this reason, the

optimized algorithm includes classification based on this model. As stated, the described

algorithm has been optimized in order to obtain a satisfying time efficiency. Initially, the

algorithm in [7] presented the time-efficiency results in Table 4.3:

With the optimizations performed, time efficiency results are presented in Table 4.4.

In order to quantify the contributions of the performed optimizations, the mean time

for each code section (or each function) was obtained for both the initial and the optimized

algorithm using the same datasets (Test Datasets - Table 2.4). These mean times are

presented in table 4.5, where mean processing times are presented, namely the initial,

final and resultant from each optimization step. The final column represents the final

time-efficiency improvements of each code section.

These efficiency measurements translate into a mean decrease of time of 79,07% in which
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Table 4.3: Initial algorithm processing time for each test dataset.

Dataset Processing Time

Name No Images Mean Pixels Seconds Minutes Mean/image(s)
MESSIDOR 1187 696320 24797,77 413,296 20,89

MA 148 699392 3755,84 62,597 25,38
EX 47 699392 1346,53 22,442 28,65

NOEX 35 699392 937,52 15,625 26,79
VBR 22 619008 458,74 7,646 20,85
50HP 100 619008 2309,62 38,494 23,10
FAZD 60 414720 1413,69 23,561 23,56
BAT 49 715037 1319,72 21,995 26,93
PDJD 101 680767 1687,80 28,130 16,71

Table 4.4: Final algorithm processing time for each test dataset.

Dataset Processing Time

Name No Images Mean Pixels Seconds Minutes Mean/image(s)
MESSIDOR 1187 696320 5245,81 87,430 4,42

MA 148 699392 721,16 12,019 4,87
EX 47 699392 234,08 3,901 4,98

NOEX 35 699392 168,86 2,814 4,82
VBR 22 619008 101,95 1,699 4,63
50HP 100 619008 561,90 9,365 5,62
FAZD 60 414720 263,73 4,396 4,40
BAT 49 715037,0079 325,18 5,420 6,64
PDJD 101 680767,3663 337,60 5,627 3,34

Table 4.5: Efficiency improvements quantified.

Function
Mean time (seconds)

Initial Cropping CHT FVF&LMS Code-based Reduction(%)
Pre-processing 5,967 4,424 4,550 4,512 1,642 72,48

CHT 9,753 9,364 1,688 1,631 1,030 89,44
FVF 4,341 3,647 3,641 2,641 0,759 82,52
LMS 2,709 2,338 2,475 1,575 0,748 72,39

S. Distribution 0,694 0,415 0,519 0,446 0,294 57,64
Intensity 0,117 0,041 0,072 0,054 0,022 81,20
Texture 0,160 0,175 0,199 0,194 0,055 65.63

Classification 0,001 0,001 0,001 0,001 0,001 0,0
Total 21,741 19,405 12,144 10,052 4,550 79,07
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several different resolutions, present in the test datasets, were considered (See Chapter

2.6).

4.4 Discussion

On a first and introductory analysis, in seems clear that the former method in [7] was

improved both in classification and time efficiency performance by the introduction of

alternatives in the majority of the algorithm processing steps.

Considering the performed feature selection, it is interesting to note that Alternat-

ing Decision Tree-oriented wrapper methods chose exactly the same features from two

different sets of pre-filtered features. This could be explained by the training process of

this classifier, in which boosting is taken into account. Boosting is based on an impurity

measure that is computed in order to add new features to the classifier.

Another consideration is the fact that in [7] it was pointed that texture descriptors

(which are a total of 27 different features) were not present in any of the wrapper subsets

used for training classifiers. In the subsets presented in this work this is not the case.

All the wrapper-resultant subsets present one or more Texture Features, and in fact the

features energy, entropy, and skewness are present in more than one of these subsets.

Texture features, which were considered not so relevant for the detection of lasermarks

in the previous algorithm, present an important contribution in this thesis’ final results.

These features were calculated using only the pixels contained in the ROI (in both works),

which means that except for pre-processing changes, the image information remains the

same in these two approaches.

It must be stated that Circular Hough Transform is the best segmentation algorithm

of this method. The author of the previous method concluded this as well and after major

changes in its processing, with a new filter, new restrictions and new parameters, this

continues to be the case. The motivation for this statement relies on empirical observations

and the fact that number_CHT (the number of circles detected by the CHT method)

is always choosed by wrappers. This is the case in the presented subsets and was also

verified throughout the whole testing phase. The fact that the ADT classifier (both IG

and GR filtered) kept 3 of the 4 CHT-related features also points in this direction as the

impurity measure of ADT ranked these features high enough to be present in the final

subset.

A curious occurrence in these results is the fact that the features that were introduced

by this work (subsection 3.2.3), roundedness_LMS and solidity_LMS, were both
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selected by the wrapper which originated the classifier that obtained the best performance;

in fact it was the only wrapper method to chose them. A closer inspection of the GR and

IG filtered subsets presented in Appendix D it can be noted that the IG filtered subset

only included solidity_LMS which was the third worst ranked feature by this measure.

In the GR filtered subset both the features were kept and they rank last and third worst

in this measure.

Considering the results presented in Appendix C, it can be first noted that classification

results were affected as soon as the first pre-processing modifications were introduced.

This is not surprising at all, since the trained classifier which presented the initial results

would need to be retrained in order to achieve the optimal result. However, this classifier

was only used as a reference to understand if the classification was being affected. It

can be observed that classification accuracy did not vary in a great manner with all

the optimizations introduced, which means information was not lost. This was also the

case after the FVF and LMS optimizations and the following code-based optimization do

not introduce any differences in classification results, as they were purely computational

approach changes. After this last optimization step (See Figure C.5) pre-processing is

now the most time expensive step with 36% of the mean processing time and CHT, which

initially represented almost half of the processing time per image, occupies now only 23%

of this total mean time per image. Classification was and still is the quickest function to be

computed. The performed optimizations are concluded successful has the mean processing

time was reduced in about 80%.

Regarding classification results, and as referred in 2.2.3, the previous method had

the best classification performance with a C4.5 Decision Tree classifier that presented

an Accuracy of 98,1%, a Specificity of 98,9% and a Sensibility 88,1%. Given this fact,

Decision Tree was again considered in this work, in conjunction with another very similar

tree-based binary classifier, Alternating Decision Tree, and Support Vector Machines.

This work reassured that Tree-based classifiers are a good approach for this specific

problem and introduced Support Vector Machines to this specific classification problem

improving the efficiency of the method in which the obtained performance of 98,46%

Accuracy, 99,19% Specificity and 89,63% represent an improvement of the former method

of 0.29 p.p. in Specificity, of 1.53 p.p. in Sensitivity and of 0.36 p.p. in total Accuracy.

Additional explanations should be made regarding the validation datasets classification

(Validation Datasets - Table 2.5). The results presented in Table 4.2 show a total of 2

False positives obtained in the HRF dataset and in addition 13 images with lasermarks
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failed to be detected. Considering the most concerning of these false classifications, the

false positives, the HRF misclassified images were further inspected and are presented in

Figure 4.3.

(a) (b)

Figure 4.3: Misclassified images of HRF dataset.

In its official site, the dataset is referred as containing 15 images of healthy patients,

15 images of glaucomatous patients and 15 images of patients with Diabetic Retinopathy

images, but no reference to the presence of lasermarks is made. By consulting image

processing professionals at Retmarker, it was concluded these two images actually present

photocoagulation lasermarks. It is interesting to verify a useful detection by the final

algorithm, which detected lasermarks in images of a public dataset whose presence was

not referred. This consideration means the classification results of the validation datasets

must be re-examined, for a total of 73 images without lasermarks and 99 images with

lasermarks. Of these 172 images, 13 images were misclassified, with zero false positives

and 13 false negatives resulting in an accuracy of 92,44%, a specificity of 100% and a

sensitivity of 86,87%. These results are similar to the ones obtained in the previous test

datasets, except in total accuracy. However, comparatively, it must be noted that the

validation datasets have almost as many lasermarks images as the test datasets (99/135,

respectively) but that the number of no laser images is clearly unbalanced (73/1614,

respectively). The test datasets present, in fact, a better reality aproximation of DR

incidence. In the conjunction of all tested images, with this correction, the following

results were obtained:

Images Accuracy
No Laser (1687 images) 99,23%

Laser (234 images) 88,46%
Total (1921 images) 97,92%

Observing time-efficiency results, a decrease of almost 80% of the mean computational

time was obtained, where a wide variety of image resolutions is included. It can further
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be noticed that the datasets which presented the greatest computational mean times were

50HP and BAT with 5,62 and 6,64 seconds per image, while PDJD presents the lowest

mean time of 3,34 seconds per image. Both 50HP and BAT present the images with the

greatest resolution of the datasets used in this work when compared to the ROI size of the

images, or in other words when compared to the quantity of useful information. PDJD

presents an the exact opposite example; its images present a small ROI which decreases

its mean computational as less information is processed.

The improvements that were introduced in this work to the previous method, result

from various modifications that were implemented or tried. These include:

• State-of-the-art segmentation algorithms being tested against other valid or proven

methods as Guided filter or Adaptive Bilateral Filter, and other new methods like

the vessel enhancement filter in [71];

• Pre-processing techniques were also a focus with Gamma Correction or Brightness

Value Enhancement in HSV colorspace being good alternatives but that were un-

able to outperform the existent ones, which were kept. On the other hand, further

cropping the images presented relevant time efficiency improvements;

• A modified constant for scaling calculations and measurements and to introduce

further adaptiveness of kernel-based operations;

• The introduction of two new features (roundedness_LMS and solidity_LMS)

related to one of the segmentation algorithms;

• The training of binary classifiers, introducing two different classifiers;

• The use of a binary Support Vector Machines classifier that presented the best

classification results;

• Extensive data mining and a great number of tests were performed on the algorithm.

Guided Filter and its application requires further explanation. It is referred by its

authors as having a better performance near edges. It was verified in this work that for

this specific application if performs so well near edges that even weak edges are maintained

extremely augmenting the false detection rate, affecting classification negatively.

Observing the Feature subsets obtained in the previous method, it was observed that

while spacial and intensity descriptors were always present, the majority of chosen features

were ones related to CHT, FVF and LMS. Since the results presented in this work are
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on par with the best results presented in [7] and that only at most 3 out of 11 features

in the subsets are related to the segmentation algorithm, it is safe to assume the current

method extracts more information from images than the previous one, particularly in what

concerns intensity-based descriptors (features 50 to 65). Even if CHT has been modified

considerably, the principles of LMS and FVF did not suffer major changes. Since the

same datasets and similar segmentation algorithms were used, the methods should perform

similarly, but the remaining features appear more frequently. This is due to an important

pre-processing that was made: a further cropping of the image. Further inspection of the

datasets show several different sized ROIs, thus variable unnecessary information. As a

consequence, further adaptiveness is obtained with cropping since pre-processed images

presented to the segmentation algorithms have a greater uniformity in size than before.

Retraining the classifier when more images are accquired is a possibility since their

training time is really small compared to the processing time of an image, a diference of

one order of magnitude.

Also of note, public datasets of DFIs containing lasermarks were not found throughout

the elaboration of this work or do not exist. All the datatets with lasermarks used in this

work were provided by Retmarker S.A..

The 5-fold cross validation performed on NOMASCR, for the subset of features GR-

SVM, classified correctly 93,68% of the images, with a Specificity of 98,31% and Sensibility

of 78,82%. This sensibility differs considerably from the global one of classification results.

As referred in subsection 2.2.1, the PDJD dataset (which resulted from that same study),

lacks variation in resolution, quality, models of cameras and even types of photocoagulation

laser marks. This was the first study of this specific topic, and PDJD was used to test the

implemented method in conjunction with the Messidor dataset and 996 more "No Laser"

images, justifying the use of the dataset. Furthermore, if PDJD lacks these variations it

is less representative of the reality and for that reason a sensibilty of 98.02% was obtained

in this particular Dataset.

Concerning the remaining datasets, the only dataset in which results are less appealing

is the BAT dataset with 93,33% Specificity and 64,71% Sensibility. Yet, BAT is a really

unique dataset in the thesis and it is composed of images of patients before and after

photocoagulation treatment of a total of nine patients (kindly provided by Centro Cirúrgico

de Coimbra).

For all the 9 patients, at least one true positive was detected. In other words, consid-

ering only the lasermarks images of each patient one or more was detected as containing
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lasermarks (of the images that in fact contain, lasermarks) which is equivalent to a sensib-

ility of 100% for these specific patients since, in a screening initiave, this is the necessary

condition for admiting a treated patient. In a clinical context the evaluation that is made

is always a per patient one. The false positive that was obtained represents the misclas-

sification of that patient, which translates in an accuracy of 88.89%. The obtained False

Negative is presented in figure 4.4. The patient to which this image belongs, suffers from

a condition called Central Retinal Vein Occlusion, a vascular disorder commonly charac-

terized by superficial hemorrhages that originate the lesions that can be observed in the

figure, which were misinterpreted by the algorithm.

Figure 4.4: The only False Positive obtained in the BAT dataset.
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Chapter 5

Conclusion and Future Work

This work was a pratical implementation of Sousa et al. [7] algorithm and had the primary

objective of optimizing it. Several aspects of pre-processing, detection and classification

were enhanced.

This work contributed to validate state-of-the-art methods and improve some of them.

Moreover, due to the optimization performed and the obtained classification efficiency the

algorithm is ready to be employed in screening initiatives which is also relevant as a way

of enhancing other detection methods, without a dramatic time increase. Thus, this thesis

had specific guidelines.

Firstly, the previous method was carefully measured in both time and classification

performances, after which a bibliographic research of existent methods was performed,

searching for optimization oportunities.

Considering the previously studied execution time of the algorithm, some parts were

considered first as were percentually considered to be the most time consuming tasks.

Several methods were then tested for comparison with the already avaliable methods,

in search of the best capable and time-optimal sequences of possible pre-processing and

feature extraction providing adaptiveness to provided images.

Data inspection and mining was always present using tools like WEKA and Matlab,

in the search for the best suitable data for classification.

An extensive optimization taking into account Matlab tools and subtleties was ap-

plied with the objective of presenting the most efficient algorithm possible for real-time

applications, as Retmarker.

The final evaluation of the applied methods was made by choosing adequate classifiers,

training them and testing their respective classification performance. Three additional

datasets were obtained for the purpose of validating the algorithm after a first test with
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the remaining test datasets.

In the light of these results, it can be concluded that the main goal of this work was

accomplished: to optimize, implement and evaluate the previous algorithm for the detec-

tion of laser marks with the purpose of its integration on the main Retmarker algorithm,

without compromising the classification performance obtained by the previous method.

The grading of Retinal Fundus Images is a complex task, even for human experts and

the optimized method provides a contribution in this subject by time-efficiently identifying

a noticeable quantity of specific lasermark-containing Digital Retinal Fundus Images in

an timely fashion, since a reduction rounding 80% of the processing time was achieved

without degradation of the previously obtained results and even improving them, even if

marginally.

The results obtained are concluded similar to the previous state-of-the-art methods of

João Dias et al. [12], Faraz et al. [14] and Sousa et al. [7]. A constant comparison with

the last method is provided throughout this thesis, as it was the starting point of this

work.

Regarding the two previous approaches of [12] and [14], the presented method obtained

a marginally lower specificity but a much higher sensibility than [12] even if the test

datasets are not exactly the same. Relatively to the method proposed in [14], the presented

method obtained a higher specificty, but a lower sensibility, yet the images used in this

work are not publicly avaliable which complicates comparisons with this method.

Relevant conclusions can be taken from this work, as the mentioned contribution of

texture descriptors which presented a pertinent contribution in this classification approach,

or as the SVM supremacy over all the other tested classifiers.

A suggestion for a future work is a partnership with a specialized treatment institution

in order to gather more images with and without laser treatment scars with the objective of

improving the existent classifier by an online training approach, in other words, re-training

the classifier in real time when new images enter the system. This approach would provide

additional robustness to the method, since new images with resolution and camera type

equal to the very next ones to be classified would enter the system.

Another suggestion could be the addition of histogram projection in different colormaps

as suggested by [12]. Since lasermarks are either dark or bright it seems this technique

could be explored with greater depth.
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Appendix A

Datasets Examples

Dataset Messidor (1187 retinal fundus images)

(a) (b) (c)

(d) (e) (f)

Figure A.1: Messidor example images.

As stated in section 2.6 of Chapter 2, 13 images of the original Messidor dataset

(which has a total of 1200 images) were not considered. These images were iden-

tified as containing lasermarks by Retmarker S.A. image processing professionals

and, since the Messidor dataset was initially chosen as one of the best measures of

specificity, they were not considered.

Messidor
20051020_44843_0100_PP.png 20051020_54209_0100_PP.png
20051021_40377_0100_PP.png 20051021_40450_0100_PP.png
20051021_59459_0100_PP.png 20051021_59504_0100_PP.png
20051205_31396_0400_PP.png 20051212_41432_0400_PP.png
20051213_62648_0100_PP.png 20051214_40912_0100_PP.png
20051214_41582_0100_PP.png 20051214_56821_0100_PP.png
20051214_57940_0100_PP.png -

Table A.1: DFIs not considered from the Messidor Dataset.
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Dataset MA (148 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.2: MA example images.
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Dataset NOMA (233 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.3: NOMA example images.
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Dataset EX (47 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.4: EX example images.
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Dataset NOEX (35 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.5: NOEX example images.
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Dataset VBR (22 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.6: VBR example images.
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Dataset 50HP (100 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.7: 50HP example images.
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Dataset FAZD (60 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.8: FAZD example images.
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Dataset SCR (622 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.9: SCR example images ((a) to (d) "No Laser", (e) to (h) "Laser").
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Dataset BAT (49 retinal fundus images)

(a) (b) (c)

(d) (e) (f)

Figure A.10: BAT example images.

As stated in section 2.6 of Chapter 2 the BAT dataset has a specific constitution

representing nine different patients. The structure of this dataset can be summar-

ized by table A.2

Patient Images
"No Laser" "Laser"

#1 2 4
#2 2 6
#3 2 3
#4 1 3
#5 1 8
#6 2 1
#7 2 4
#8 1 2
#9 2 3

Table A.2: BAT Dataset discrimination.
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Dataset PDJD (101 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.11: PDJD example images.
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Dataset SCR15 (99 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.12: SCR15 example images.
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Dataset CDB (28 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.13: CDB example images.
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Dataset HRF (45 retinal fundus images)

(a) (b)

(c) (d)

(e) (f)

Figure A.14: HRF example images.
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Appendix B

Initial Algorithm Considerations

Table B.1: Kernels and Constants used.

Constant
Name

Constant Value Constant meaning

constant tiles 8 x scaling constant Used in Adaptive Histo-
gram Equalization

constant lumin-
ance

28 x scaling constant Kernel size for obtaining
luminance map

constant median 5 x scaling constant Kernel size of median fil-
ter

constant vessels ROI/37 x scaling constant Dilation constant of the
vascular network

constant min
circles

D/23 Minimum circle radius
considered by CHT

constant max
circles

D/4 Maximum circle radius
considered by CHT

constant LMS 15 x scaling constant Disk structuring element
radius

constant area
LMS

100 x scaling constant Pixel threshold for remov-
ing objects in LMS

constant FVF 100 x scaling constant Pixel threshold for remov-
ing objects in FVF
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Figure B.1: Algorithm to be optimized.
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Figure B.2: Computed Features.
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Appendix C

Code Sections Efficiency

Figure C.1: Initial algorithm mean processing time, per section.

Table C.1: Initial algorithm classification with Sousa et al. DT classifier.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)
MESSIDOR 0 1175 1175 12 0 7 98,99 - 98,99

MA 0 148 148 0 0 0 100,00 - 100,00
EX 0 47 47 0 0 0 100,00 - 100,00

NOEX 0 34 34 1 0 1 97,14 - 97,14
VBR 0 22 22 0 0 0 100,00 - 100,00
50HP 0 99 99 1 0 1 99,00 - 99,00
FAZD 0 57 57 3 0 3 95,00 - 95,00
BAT 21 14 35 1 13 14 93,33 61,76 71,43
PDJD 98 0 98 0 3 3 - 97,03 98,03
Total 119 1596 1715 18 16 34 98,89 88,15 98,06

Specificity: 98.89%, Sensitivity: 88.15%, Accuracy: 98.06%
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Figure C.2: Algorithm mean processing time, per section, after preprocessing improve-
ments.

Table C.2: Algorithm classification with Sousa et al. DT classifier, after preprocessing
modifications.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)
MESSIDOR 0 1171 1171 16 0 16 98,65 - 98,65

MA 0 148 148 0 0 0 100,00 - 100,00
EX 0 47 47 0 0 0 100,00 - 100,00

NOEX 0 34 34 1 0 1 97,14 - 97,14
VBR 0 22 22 0 0 0 100,00 - 100,00
50HP 0 99 99 1 0 1 99,00 - 99,00
FAZD 0 59 59 1 0 1 98,33 - 98,33
BAT 19 13 32 2 15 17 86,67 55,88 65,31
PDJD 100 0 100 0 1 1 - 99,01 99,01
Total 119 1593 1712 21 16 37 98,70 88,15 97,88

Specificity: 98.70%, Sensitivity: 88.15%, Accuracy: 97.88%
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Figure C.3: Algorithm mean processing time, per section, after CHT improvements.

Table C.3: Algorithm classification with Sousa et al. DT classifier, after CHT modifica-
tions.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)
MESSIDOR 0 1176 1176 11 0 11 99,07 99,07

MA 0 148 148 0 0 0 100,00 100,00
EX 0 47 47 0 0 0 100,00 100,00

NOEX 0 33 33 2 0 2 94,29 94,29
VBR 0 22 22 0 0 0 100,00 100,00
50HP 0 99 99 1 0 1 99,00 99,00
FAZD 0 60 60 0 0 0 100,00 100,00
BAT 16 13 29 2 18 20 86,67 47,06 59,18
PDJD 98 0 98 0 3 3 0,00 97,03 97,03
Total 114 1598 1712 16 21 37 99,01 84,44 97,88

Specificity: 99.01%, Sensitivity: 84.44%, Accuracy: 97.88%
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Figure C.4: Algorithm mean processing time, per section, after FVF and LMS improve-
ments.

Table C.4: Algorithm classification with Sousa et al. DT classifier, after FVF and LMS
modifications.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)
MESSIDOR 0 1176 1176 11 0 11 99,07 99,07

MA 0 148 148 0 0 0 100,00 100,00
EX 0 47 47 0 0 0 100,00 100,00

NOEX 0 33 33 2 0 2 94,29 94,29
VBR 0 22 22 0 0 0 100,00 100,00
50HP 0 99 99 1 0 1 99,00 99,00
FAZD 0 60 60 0 0 0 100,00 100,00
BAT 16 13 29 2 18 20 86,67 47,06 59,18
PDJD 98 0 98 0 3 3 0,00 97,03 97,03
Total 114 1598 1712 16 21 37 99,01 84,44 97,88

Specificity: 99.01%, Sensitivity: 84.44%, Accuracy: 97.88%

Figure C.5: Algorithm mean processing time, per section, after code-based improve-
ments.

79



Appendix D

Feature Selection

Entropy, in in a classification context, is the expected necessary information to

classify a sample.

A common information theory measure used in the training of Decision Tree

Classifiers and entropy-based evaluator is the Information Gain of a feature F ,

which is the change in entropy H or the difference between two entropy values:

IG(F ) = H(S)−H(F ) (D.1)

where S is a training set that is composed by s data samples with m classes,

which are given by

H(S) = −
m∑
i=1

pi log2(pi) (D.2)

H(F ) = −
n∑
j=1

H(S)s1j + s2j + ... + smj
s

(D.3)

where:

• pi is the probability that a random sample belongs to class Ci which is equal

to si

s
.

• sij is the number of samples of class Ci in a subset Sj
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Gain Ratio is a modification of the Information gain measure where the issue

involving the bias of this latter attribute evaluator (where atributes with a larger

number of atributes were favored) was solved by normalizing Information Gain with

the Intrinsic Information of a feature. This is the reason why the improved C4.5

Decision Tree algorithm uses this measure instead of Information Gain used in its

predecessor, ID3.

The Gain Ratio measure of a feature is the Information Gain measure of that

feature divided by its intrinsic information:

GR(F ) = IG(F )
SIS(F ) (D.4)

where the intrinsic information measure is given by

SIS(F ) = −
n∑
j=1

|Sj|
|S|

log2(
|Sj|
|S|

) (D.5)

Gain Ratio decreases as the intrinsic information gets larger, hence the priorit-

izing of wider ranged features does not happen with Gain Ratio, which can in turn

reduce the probability of overfitting.
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Table D.1: IG-filtered and GR-filtered feature subsets and their respective individual
value.

GR IG
moran_null_hipot 0.367 number_CHT 0.438

moran_i 0.325 weighted_area_CHT 0.417
determinant 0.313 area_CHT 0.385

trace 0.299 max_laser_green 0.385
likelihood_CHT 0.296 moran_i 0.383

hull_area 0.294 m_dist_total 0.378
max_eigen 0.292 likelihood_CHT 0.343

number_CHT 0.288 hull_area 0.333
max_laser_green 0.281 v_dist_total 0.311

weighted_area_CHT 0.278 moran_null_hipot 0.308
likelihood_FVF 0.257 area_FVF 0.303

area_CHT 0.257 weighted_area_FVF 0.297
v_dist_total 0.257 number_FVF 0.292
radius_var 0.255 variance_var_hue 0.287

m_dist_total 0.252 determinant 0.286
area_FVF 0.216 trace 0.277

var_laser_green 0.213 max_eigen 0.274
weighted_area_FVF 0.212 area_LMS 0.269

number_FVF 0.209 variance_var_green 0.258
variance_var_hue 0.206 variance_var_sat 0.256

hull 0.204 variance_var_red 0.250
area_LMS 0.202 max_laser_hue 0.249

var_laser_red 0.200 number_LMS 0.246
variance_var_green 0.197 radius_var 0.245
max_laser_hue 0.191 var_laser_hue 0.240
number_LMS 0.189 max_laser_red 0.233

variance_var_sat 0.188 point_density 0.233
var_laser_sat 0.186 radius_mean 0.220

variance_var_red 0.183 likelihood_FVF 0.220
point_density 0.183 max_laser_sat 0.211

cluster_prominence 0.181 var_laser_green 0.210
radius_mean 0.175 hull 0.203
max_laser_sat 0.172 mean_laser_red 0.202
mean_laser_hue 0.169 mean_laser_green 0.202
max_laser_red 0.167 var_laser_red 0.200
var_laser_hue 0.166 var_laser_sat 0.186
mean_laser_red 0.150 mean_laser_sat 0.184
mean_laser_green 0.147 bright_lesions 0.173

smoothness 0.145 mean_laser_hue 0.169
avg_contrast 0.145 solidity_LMS 0.167
solidity_LMS 0.144 skewness 0.138

mean_laser_sat 0.143 cluster_shade 0.112
roundedness_LMS 0.131 - -
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Appendix E

Other Classification Results

After a stratified 5-fold cross validation using an DT classifier with the features

IG_DT on the images of the training dataset, the following results were obtained:

IG_DT TP TN T FP FN F SPE(%) SEN(%) ACC(%)
NOMASCR 159 636 795 16 44 60 97,55 78,33 92,98

The trained classifier resulted in an DT model with 6 leaves and a total of 11

nodes (Appendix F), which WEKA needed 0.01 seconds to build, and that uses only

3 of the initial 8 features. By testing this classifier in all the test datasets, that total

1749 images (135 "Laser" and 1614 "No Laser"), the following results were obtained:

Table E.1: IG_DT classifier tested on test datasets.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)

MESSIDOR 0 1180 1180 7 0 7 99,41 - 99,41

MA 0 148 148 0 0 0 100,00 - 100,00

EX 0 47 47 0 0 0 100,00 - 100,00

NOEX 0 34 34 1 0 1 97,14 - 97,14

VBR 0 22 22 0 0 0 100,00 - 100,00

50HP 0 100 100 0 0 0 100,00 - 100,00

FAZD 0 56 56 4 0 4 93,33 - 93,33

BAT 19 14 33 1 15 16 93,33 55,88 67,35

PDJD 97 0 97 0 4 4 - 98,02 98,02

Total 116 1601 1719 18 10 28 99,19 85,93 98,28

Specificity: 99.19%, Sensitivity: 85.93%, Accuracy: 98.28%
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After a stratified 5-fold cross validation using a DT classifier with the features

GR_DT on the images of the training dataset, the following results were obtained:

GR_DT TP TN T FP FN F SPE(%) SEN(%) ACC(%)
NOMASCR 160 644 804 8 43 51 98,77 78,82 94,04

The trained classifier resulted in an DT model with 10 leaves and a total of 19

nodes (Appendix F), which WEKA needed 0.02 seconds to build. By testing this

classifier in all the test datasets, that total 1749 images (135 "Laser" and 1614 "No

Laser"), the following results were obtained:

Table E.2: GR_DT classifier tested on test datasets.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)

MESSIDOR 0 1172 1172 15 0 15 98,73 - 98,73

MA 0 147 147 1 0 1 99,32 - 99,32

EX 0 47 47 0 0 0 100,00 - 100,00

NOEX 0 33 33 2 0 2 94,29 - 94,29

VBR 0 22 22 0 0 0 100,00 - 100,00

50HP 0 100 100 0 0 0 100,00 - 100,00

FAZD 0 54 54 6 0 6 90,00 - 90,00

BAT 19 14 33 1 15 16 93,33 55,88 67,35

PDJD 98 0 98 0 3 3 - 97,03 97,03

Total 117 1589 1706 25 18 43 98,45 86,66 97,54

Specificity: 98.45%, Sensitivity: 86.66%, Accuracy: 97.54%
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After a stratified 5-fold cross validation using a ADT classifier with the features

IG/GR_ADT on the images of the training dataset, the following results were

obtained:

IG/GR_ADT TP TN T FP FN F SPE(%) SEN(%) ACC(%)
NOMASCR 162 639 801 13 41 54 98,01 79,80 93,68

The trained classifier resulted in an ADT tree model with 21 prediction nodes

and 10 decision nodes using 6 of the 10 selected features (Appendix F), which

WEKA needed 0.21 seconds to build, using 7 of the initial 11 features. This classifier

represents two of the subsets found during feature selection phase. This is because

ADT-based wrapper returned the same features for each filtered subsets with IG

and GR. By testing this classifier in all the test datasets, that total 1749 images

(135 "Laser" and 1614 "No Laser"), the following results were obtained:

Table E.3: IG/GR_ADT classifier tested on test datasets.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)

MESSIDOR 0 1178 1178 9 0 9 99,24 - 99,24

MA 0 146 146 2 0 2 98,65 - 98,65

EX 0 46 46 1 0 1 97,87 - 97,87

NOEX 0 34 34 1 0 1 97,14 - 97,14

VBR 0 22 22 0 0 0 100,00 - 100,00

50HP 0 100 100 0 0 0 100,00 - 100,00

FAZD 0 54 54 6 0 6 90,00 - 90,00

BAT 20 13 33 2 14 16 86,66 58,82 67,35

PDJD 97 0 97 0 4 3 - 96,04 96,04

Total 117 1593 1710 21 18 39 98,70 86,67 97,77

Specificity: 98.70%, Sensitivity: 86.67%, Accuracy: 97.77%
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After a stratified 5-fold cross validation using an SVM classifier with the features

IG_SVM on the images of the training dataset, the following results were ob-

tained

IG_SVM TP TN T FP FN F SPE SENS ACC
NOMASCR 160 641 801 11 43 54 98,31 78,82 93,68

The trained classifier resulted in a SVM model which WEKA needed 0.28 seconds

to build. By testing this classifier in all the test datasets, that total 1749 images

(135 "Laser" and 1614 "No Laser"), the following results were obtained:

Table E.4: IG_SVM classifier tested on test datasets.

Dataset TP TN T FP FN F SPE(%) SEN(%) ACC(%)

MESSIDOR 0 1181 1181 6 0 6 99,49 - 99,49

MA 0 148 148 0 0 0 100,00 - 100,00

EX 0 47 47 0 0 0 100,00 - 100,00

NOEX 0 34 34 1 0 1 97,14 - 97,14

VBR 0 22 22 0 0 0 100,00 - 100,00

50HP 0 100 100 0 0 0 100,00 - 100,00

FAZD 0 56 56 4 0 4 93,33 - 93,33

BAT 21 14 35 1 13 14 93,33 61,76 71,38

PDJD 97 0 97 0 4 4 - 96,04 96,04

Total 118 1602 1720 12 17 29 99,26 87,41 98,34

Specificity: 99.26%, Sensitivity: 87.41%, Accuracy: 98.34%
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Appendix F

Classification Models

Figure F.1: Decision Tree Classifier trained using the features IG_DT.
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Figure F.2: Decision Tree Classifier trained using the features GR_DT.
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Figure F.3: Alternating Decision Tree Classifier trained using the features
IG_ADT/GR_ADT.
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