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“Only in silence the word,

Only in dark the light,

Only in dying life:

Bright the hawk’s flight

On the empty sky.

-The Creation of Éa”

Ursula K. Le Guin, A Wizard of Earthsea
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Abstract

In this work we derive a full ab-initio theory for photoluminescence
(PL) based on Non-equilibrium Green’s function theory (NEGF). We be-
gin from the second quantisation Hamiltonian for the particles which
intervene in the dynamics after the system is driven out-of-equilibrium
by a laser pulse, considering all possible interactions. Using the func-
tional differentiation technique we arrive at a set of integro-differential
equations for the propagators of electrons, phonons, and photons which
extends and generalises Hedin’s set of equations.

We then recover the Baym-Kadanoff equations (BKE) for the electronic
lesser Green’s function and show that the interactions which affect the
electronic degrees of freedom (electron-electron, electron-phonon, and
electron-photon) can be reduced to a GW like self-energy. We treat
the coherent scattering terms responsible for the elemental excitations
within the Coulomb-hole Screened-Exchange (COHSEX) approxima-
tion. We simplify the functional dependence of dynamical scattering
terms and remove contributions from memory effects by applying the
Generalised Baym-Kadanoff ansatz and the Completed collision ap-
proximation. We further simplify the BKE by introducing the Low-
intensity approximation which assumes that a low density of excited
carriers is created by the laser pump during experimental measure-
ments. This leads to the recovering of the Boltzman limit of the BKE
but with time-dependent lifetimes for each decay channel.

Next we connect the macroscopic measured quantity-the divergence of
the Poynting vector-with the functions which contain the information
on the microscopic interaction. For this we derive the Bethe-Salpeter
equation for the electron-photon correlation by performing the analytic



continuation to the real axis using Langreth’s theorem. Within the
COHSEX approximation we obtain the pair-photon lesser and greater
correlation function in a matrix form and analyse the pole structure of
the correlation function. This allowed us to select the contributions to
the emission spectrum.

Finally we implement this approach in YAMBO and apply it to PL in
monolayer hBN and WS2. Within the Tamm-Dancoff and the non-
interacting particle approximations, the spectra obtained properly de-
scribe the dynamics of the systems when changing the frequency and
duration of the laser pump and the temperature of the sample. For WS2

we predict a Stokes shift of at most 0.03 eV and obtain the position of
the emission peak within 0.1-0.2 eV of the reported experimental val-
ues.



Resumo

Neste trabalho apresentamos a derivação de uma teoria de primeiros
princı́pios baseada no formalismo de funções de Green fora do equilı́brio
para a fotoluminescência (PL). Começamos com a segunda quantização
no Hamiltoniano de todas as partı́culas que intervêm na dinâmica do
sistema após este ser levado para um estado excitado por um laser,
e considerando todas as interações possı́veis. Através da técnica da
diferenciação funcional chegamos a um sistema de equações integro-
diferenciais para os propagadores de electrões, fonões e fotões, que ex-
tende e generaliza o sistema de equações de Hedin.

A seguir, recuperamos a equação de Kadanoff-Baym (BKE) para a função
de Green eléctrica “menor” e provamos que as interacções que afectam
os graus de liberdade dos electrões (electrão-electrão, electrão-fonão,
electrão-fotão) podem ser descritas a uma energia-própria do tipo GW .
Os termos coerentes de dispersão, que são responsáveis pelas excitações
elementares, são tratados ao nı́vel da aproximação Coulomb-hole Screened-
Exchange (COHSEX). A dependência funcional dos termos de dispersão
dinâmica é simplificada e os efeitos de memória são removidos, através
da aplicação do ansatz generalizado de Baym-Kadanoff e da aproximação
de Colisões Completas. A simplificação da BKE é levada adiante com
a introdução da aproximação de baixa intensidade, o que pressupõe
que uma baixa densidade de transportadores excitados é criada pelo
laser durante as medições experimentais. Isto permite-nos recuperar a
equação de Bolztman, mas agora com constantes de decaimento depen-
dentes do tempo para cada fenómeno de dissipação.

Depois fazemos a conexão entre a quantidade macroscópica que é me-
dida - a divergência do vector de Poynting - e as funções que contêm



a informação sobre as interacções ao nı́vel microscópico. Para este fim
derivamos a equação de Bethe-Salpeter para o caso da correlação en-
tre electrões e fotões, utilizando a continuação analı́tica e o teorema de
Langreth, que nos permitem passar do plano imaginário para o eixo
real temporal. As funções maior e menor de correlação par-fotão são
obtidas, dentro da aproximação COHSEX, e reduzidas a uma forma ma-
tricial. Estas matrizes são depois usadas para analisar as propriedades
analı́ticas das funções de correlação, o que nos permite seleccionar as
contribuições para o espectro de emissão.

No fim, implementamos este formalismo no YAMBO e usamo-lo para
obter o espectro de PL em camadas isoladas de hBN e WS2. No limite
das aproximações de Tamm-Dancoff e de partı́culas não interactuantes,
os espectros obtidos descrevem correctamente a dinâmica do sistema
consoante a energia e duração do laser e da temperatura da amostra.
Prevemos para o WS2 um desvio de Stokes até os 0.03 eV e obtemos
para a posição do pico de emissão valores que se encontram entre 0.1 a
0.2 eV afastados dos valores encontrados na literatura experimental.
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Chapter 1

Introduction

“Begin at the beginning,” the
King said, very gravely, “and
go on till you come to the end:
then stop.”

Lewis Carrol, Alice in
Wonderland

1.1 Photoluminescence

Luminescence is the spontaneous emission of radiation by a system after excita-

tion from an external source. Depending on the source which drove the system out

of equilibrium we get different designations for the emission of light: thermolumi-

nescence, if it is caused by heating the system; chemiluminescence, if it is due to a

chemical reaction; and so on. For the specific case where the excitation is caused

by photo-absorption (electromagnetic radiation) the process is called photolumi-

nescence (PL).

Photoluminescence and has a wide range of technological applications, such

as the use of luminescent molecules as markers in in vivo imagining techniques.

In Fig. 1.1 we can see an example of such a molecule, toluene, where different

solutions are irradiated with UV light. In the every-day life, materials which have

luminescent properties can be used for lightning or in screens.
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Figure 1.1: a) Photoluminescence spectra measured in toluene. b) Photograph under
irradiation at 365 nm [1].

Biological and technological applications of photoluminescence are dependent
on the possibility of tuning or increasing the frequency of the emitted light. This
inevitably requires a deep knowledge of the complex interplay of the dynamics
after excitation by electromagnetic radiation. If we are interested in simulating
a photo-luminescent material, a possible way to do so is through ab-initio com-
putational electronic structure methods, which have already demonstrated their
usefulness in quantitative predictions without the need of external ad-hoc param-
eters.

We can also wish to study luminescent system with potential technological ap-
plications in the laboratory. Through spectroscopic techniques we can obtain a
wide range of information about the interplay of dynamical processes which occur
in the system before and during light emission. Various sophisticated methods al-
low us to study different properties of a given material after it has been irradiated

2
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by light. Three commonly used techniques and what they allow us to study are,
for instance:

• Time-resolved photoluminescence (TR-PL) - recombination kinetics, surface
recombination, transport dynamics;

• Spatial-resolved photoluminescence (SR-PL) - inhomogeneities and trans-
port properties;

• Time-spatial-resolved photoluminescence (TSR-PL) - carrier transport dy-
namics.

In this work we will be focusing on the theoretical description and simulation
of TR-PL experiments, which are often carried out using a pump and probe laser
fields.

1.2 Pump and Probe experiments and Photolumines-
cence

The impressive progress in ultrafast and ultrastrong laser-pulse technology has
paved the way to non-equilibrium (NEQ) femtosecond spectroscopies [2–6]. Un-
like conventional spectroscopies, the sample is driven away from equilibrium by
a strong laser pulse (the pump) and then probed with a weaker field (the probe).
This second field is used to monitor a wealth of physical properties of the mate-
rial in order to disclose the complex properties of the excited system trough the
different phases of the real-time evolution [7, 8]. Indeed, experiments are carried
out using pump pulses with frequency in the infrared-ultraviolet range and ul-
trashort probe pulses (down to a few hundreds of attoseconds). By varying the
delay between the pump and the probe pulses one can monitor the excited-state
dynamics in a wide range of energies and time scales.

In Fig. 1.2 we can see a schematic representation of the elemental processes
which are induced by the perturbation with a strong1 laser field. There, an ex-

1This is a relative term. Usually experiments are carried out with lasers whose intensity is much
lower than the one needed to destroy the electronic structure of the material, but is still capable of
creating a population of excited particles which is around 10% to 20% of the total population of
particles in the material.

3



1. INTRODUCTION

ternal laser pulse first excites a certain density of carriers from the valence to

the conduction bands. The duration of this process is directly controlled by the

duration of the laser field. In addition, the density of carriers is dictated by the in-

tensity of the laser that also controls the amount of energy transferred to electrons

and holes [7–13].

+

-
ωγ

+

-
-

+

ωqλ
ωe-h

ωqλ
ωe-h

-

+
ωγ

(a) (b) (c)

Figure 1.2: Schematic representation of the different processes induced by the in-
teraction of a material with a short and intense laser pulse. The action of the laser
creates electron-hole pairs [process (a)]. These pairs interact trough the screened
Coulomb interaction (zig-zag line) creating transient excitonic states. After the photo-
excitation the carriers undergo repeated collisions with other carriers and with the
lattice [process (b)]. During these processes phonons and electron-hole pairs are emit-
ted and/or absorbed. Finally, after pico to microseconds, the excited carriers eventu-
ally relax to the ground state emitting photons [process (c)]. !� and !0

� are photon
energies, !q� is a phonon energy, and !e�h represents and electron-hole pair energy.

Already during this first step static and coherent correlation effects play a cru-

cial role. As an example, it is well known that the absorption of light is accom-

panied by the formation of excitonic states [14], i.e., bound electron-hole pairs

created by the initial laser excitation. Nevertheless, at this stage the quantisation

of the electromagnetic field is not necessary and indeed, in studying simple optical

absorption the simpler classic treatment is commonly adopted [14, 15].

After the photo-excitation (panel b)) the carriers will relax by dissipating and

transferring energy among themselves and to the lattice. During this first step of

the dynamics (which can be as long as few pico-seconds) the ensemble of electrons

interact via repeated collisions mediated by the Coulomb (e-e) and the electron-

4



1.3 Theoretical state of the art

phonon (e-p) interactions. Indeed, the complex interaction of the carriers with the
lattice imposes the quantisation of the atomic oscillations in the form of phonon
modes. These then enter naturally in the dynamics and must be included in a
coherent framework together with the excitonic effects.

The last step in the dynamics (panel c)) of the photo-excited carriers is the
recombination with the consequent spontaneous light emission, which requires
the quantisation of the electromagnetic field. As a consequence, it is evident
that a comprehensive description of all phases of the dynamics following a photo-
excitation event require the simultaneous quantistic treatment of electron, phonons
and photons. This is well beyond the state-of-the art and it represents one of the
goals of the present work.

In a typical pump and probe experiment (P&p), a weaker and perturbative sec-
ond laser pulse is used to probe the system at any time between the processes (a)
and (c) of Fig. 1.2. A wealth of time-dependent observables are then measured
experimentally, such as: the change in the absorption of the probe induced by
the pump (transient absorption) [16–18]; the time-dependent light emission spec-
trum [19]; and the time-dependent photo-electron spectrum [20, 21].

We should point out that in a real material the situation is rather more com-
plex. The presence of impurities, bound excitons, defects, for example, can result
in the quenching of peaks in the spectrum, as new non-radiative channels are
open to the electrons, and give rise to additional peaks, since electron-hole pairs
will have access to extra recombination channels.

1.3 Theoretical state of the art

1.3.1 Ground state theories

The most up-to-date scheme to calculate and predict the ground- and excited-
state properties of a wide range of materials is based on the merging of Density-
Functional-Theory (DFT) [23] with Many-Body Perturbation Theory (MBPT) [14].
DFT is a broadly used ab-initio ground-state theory, that allows us to quickly and
accurately compute the electronic density and total energy without adjustable pa-
rameters, for a wide range of materials. The application of standard perturba-
tion theory to DFT gives the so-called Density-Functional Perturbation Theory

5
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Figure 1.3: Illustrative scheme for possible radiative recombination processes in a
real material [22].

(DFPT) [24, 25]. DFPT is a powerful computational tool for the direct treatment
of phonons. However, the DFT computation of excited electronic states proper-
ties, like band-gap energies, remains out of reach for the formalism [23], as it is
a ground state theory. As a result, MBPT is often a preferred alternative to DFT
for that purpose. It is based on the accurate treatment of correlation effects by
means of the Green’s function formalism. MBPT is formally correct and leads to a
close agreement with experiment [26], but is extremely computationally demand-
ing. A natural way to solve this issue is to merge the quick DFT calculation with
the accurate MBPT one. This method is often referred to as ab-initio Many-Body
Perturbation Theory (ai-MBPT) [14]. In this method, DFT provides a suitable
single-particle basis for the MBPT scheme, facilitating the study of realistic sys-
tems starting from their atomic structure rather than having to recur to models.
This method has been applied successfully, for example, to correct the well-known
band-gap underestimation problem of DFT [27].

Therefore, as far as equilibrium properties are concerned, the theoretical and
methodological developments have constantly contributed to create a consistent
and efficient framework that can now count on a number of well established stan-
dards and codes.

6



1.3 Theoretical state of the art

1.3.2 Out-of-equilibrium theories

The situation in the out-of-equilibrium case is rather different. Indeed the stan-

dard tools of equilibrium MBPT cannot be applied and one has to switch to more

advanced non-equilibrium Green’s function (NEGF) techniques. From a purely

theoretical point of view the NEGF theory has been extensively studied and re-

viewed in many books [10–13]. Nevertheless its development has been mainly

confined to simple models or specific models suitable to interpret specific proper-

ties. A merging with DFT, in the NEGF case, is still at the very beginning and

an inclusive approach is lacking. As a main consequence there are few standard

numerical tools which can be used even by non-experts or experimentalists to sup-

port their observations. This is one of the main motivations of the present work.

The NEGF theory is indeed, as far as the electron-electron (e-e) interaction is

concerned, at an excellent level of development. By using the Keldysh contour

formalism [28] we can obtain the Baym-Kadanoff equations (BKE) that govern

the electronic motion. The fundamental ingredient of the BKE is the self-energy,

which embodies all the information on the many-particle interaction. The self-

energy can be calculated from single-particle quantities [28]. The BKE can also be

reduced to a Boltzmann-like equation in the Markovian limit [28].

The e-p interaction has been widely studied both at equilibrium and out-of-

equilibrium. In equilibrium the MBPT approach has been applied and reviewed

in Ref. [29]. In this case the nuclear effects are included by deriving a full set of

self-consistent equations for the screened interaction and the self-energy operator.

Also the merging of MBPT and DFT has been studied [30, 31] and applied [32–

36]. In the out-of-equilibrium case the theory is well known as well and it leads

to a combined description of both the electronic and phononic dynamics [11, 37,

38]. In this case the merging with DFT has been only very recently introduced

within the simplified Markovian limit [39] or in the more general scheme based on

the Generalised Baym-Kadanoff ansatz (GBKA) and on the Completed Collision

approximation (CCA) [21, 40].

It is crucial to note, at this point, that in all the above cases the electron-

photon (e-�) interaction is neglected and the electromagnetic interaction is treated

7



1. INTRODUCTION

classically. This approach is suitable unless we are not interested in the long-time

carrier dynamics and in the transient light emission spectrum.

Another family of theoretical studies is connected to the bridging of the very

general theories based on the NEGF with the actual experiments that are per-

formed in a typical P&p setup.

The case of the carrier dynamics is the most natural and easy to introduce as

it is a simple by-product of the BKE. Once that GBKA and the CCA are applied

the equation of motion for the electronic occupations is obtained [21, 37–40].

The time-resolved light absorption of the probe field has been studied within

the NEGF formalism in Ref. [41]. Starting from the BKE and introducing an adi-

abatic approximation, an equation of motion for the linear response function is

derived and shown to reduce to the well-known Bethe-Salpeter Equation (BSE) in

the absence of the pump field or when this is weak enough to be possible to ap-

ply the low-intensity regime approximation (LIA). Both the LIA and the adiabatic

ansatz will be introduced and extensively used in this work.

In order to study photoluminescence (PL) the inclusion of the e-e and e-p inter-

actions is not enough. Indeed light emission is possible only when also the elec-

tromagnetic field is quantised and it appears as a evolving term in the BKE. As in

the e-e and e-p cases also the inclusion of the e-� interaction has been studied [42–

44]. In those works the theory is bridged with the BSE but the e-p interaction,

and therefore the photo-excited carriers relaxation, is neglected. Alternatively e-

p interaction has been included [43, 45, 46] but, in that case, neglecting the e-e

interaction and, therefore, the formation of excitonic states.

A field that has been developed in parallel to MBPT is the one based on time-

dependent DFT (TD-DFT). Here the most used tool is the time-dependent Kohn-

Sham equation [23] that has been applied to study out-of-equilibrium regimes [47,

48]. TD-DFT provides an alternative and powerful tool where, however, the de-

scription of e-e and e-p interactions is quite problematic. Indeed, TD-DFT has

been mainly applied to low-dimensional systems [49] or to study very short-time

effects [50] where relaxation, dissipation and formation of excitonic states can be,

within specific approximations, neglected. Quantised electromagnetic fields have

also been recently introduced within DFT [51].

8
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1.4 Main goals and work outline

The main goal of this work is to derive from NEGF a theoretical framework with
which we can treat PL and connect it with a feasible first principles computational
approach. In order to do so, we must begin by creating a complete theoretical
framework which describes in a quantistic way the dynamics of electrons, phonons,
and photons and the interactions between them. Following that, we must focus on
deriving a connection between the PL spectrum and the quantities which contain
information on the dynamics of the excited system. Once that is accomplished,
the necessary equations should be implemented in the code YAMBO [52] and then
tested in a set of materials under different excitation conditions in order to confirm
the validity of what was implemented in the code and the equations which were
derived.

In this chapter we have introduced the basic concepts of photoluminescence
and the basics of an TR-PL experiment used to study this phenomena. We have
also discussed the essencial processes involved in a P&p experiment and the state
of the art at which their description is currently.

In chapter 2 we lay down the theoretical foundations which support this work
within th Keldysh contour formalism. We arrive at an extension of Hedin’s set of
equations which includes the functions associated with photons and phonons.

In chapter 3 we obtain the Baym-Kadanoff equation for the electronic density.
With the simplifications introduced by the GBKA and the CCA we are able to
derive a closed set of equations for the reducible electronic polarisation and the
transverse polarisation function.

In order to compute the PL signal, we study in chapter 4 expected pole struc-
ture of the emission spectrum within the non-interacting particle approximation
and the excitonic picture of the Bethe-Salpeter equation (BSE). Using these re-
sults, we derive in chapter 5 the connection between the divergence of the Poynting
vector and the density-density correlation function.

The resulting equations have been implemented in the code YAMBO. In order
to test the code and the equations, we have performed a series of tests on two
monolayers, hexagonal Boron-nitride (hBN) and tungsten disulphide (WS

2

). These
results are presented in chapter 6.

9



1. INTRODUCTION

We present the main conclusions of this work in chapter 7. Also, in the ap-
pendices we present complementary information about the (TD)-DFT, MBPT and
NEGF theories (see Appendix A), some conventions on linear algebra which are
used in chapter 2 (see Appendix C). We also show the main arguments behind
the merging between DFT and MBPT in Appendix B, and in Appendix D we de-
scribe the technical details for the inversion algorithms needed to compute the PL
spectrum coming from the BSE.

1.5 Note on the content

Some of the work presented in this thesis, aside some modifications and correc-
tions, has already been published in Ref [53]. Namely Sections 1.2 and 1.3, Chap-
ters 2 and 3, and Appendices B and C.
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Chapter 2

Propagators and response
functions on the Keldysh
contour

“It’s no use going back to
yesterday, because I was a
different person then.”

Lewis Carroll, Alice in
Wonderland

2.1 The quantisation of electrons, nuclei, and photons

We start with the non relativistic Hamiltonian of a system of interacting electrons

moving under the action of an external electromagnetic field and of the internal

electron-nucleus interaction:

ˆH =

ˆH
0

+

ˆH
int

, (2.1a)

ˆH
0

=

X

i

h (ˆri) + ˆT
n

+

ˆH� +
ˆH
n�n

, (2.1b)

ˆH
int

=

ˆH
e�e

+

ˆH
e�n

+

ˆH
e�� . (2.1c)

Equations (2.1a) to (2.1c) include terms describing the single-particle dynam-

ics ( ˆTn and ˆH�) and interaction terms due to the mutual interaction of electrons,
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nuclei and photons ( ˆH
n�n

, ˆH
e�n

, ˆH
e�e

and ˆH
e��). In the above equation, h (r) rep-

resents the single-particle operator and it is summed over the electronic positions

ri.

Depending on the choice of the non-interacting part of the Hamiltonian, h can

include, aside from the kinetic part, some kind of initial correlation in the form of a

mean-field potential. This is an essential ingredient in the merging of many-body

techniques with ab-initio methods.

The electronic and nuclear kinetic parts are

ˆT
e

= �1

2

Z

d

3

r

ˆ †
(r)r2

ˆ (r), (2.2a)

ˆT
n

= �
X

R

r2

R

2MR
, (2.2b)

with R the generic position of the nucleus with mass MR. In Eq. (2.2a) ˆ (r)

and ˆ †
(r) are, respectively, the electron creation and annihilation operators in

the Schrödinger’s picture. The spinorial degrees of freedom are not considered

here to keep the notation as simple as possible. The extension of the present

theory to include their effect can be done starting from Pauli’s equation and using

the minimal coupling transformation. We also use the convention of representing

vectors with a bold symbol (like A) and tensors using a double arrow over-script

(like
 !D ). Through this work band indices will be represented by a Latin subscript

(i, j, ...), while Cartesian directions and branch indices will be denoted by Greek

labels (↵,�, ...).
ˆH� is the non-interacting Hamiltonian for the transverse photons

ˆH� =

X

q,�

!q
ˆd†q,�

ˆdq,�, (2.3)

with q and !q the photon’s momentum and energy, � its polarisation, and ˆd†q,� and
ˆdq,� the creation and annihilation operators, respectively (also in Schrödinger’s

picture).

The first group of interaction terms, ˆHn-n and ˆHe-e, describe the nuclear-nuclear

and e-e interactions, respectively. Those do not make the different sub-spaces of

electron, nuclei and photons interact but build up internal (purely electronic and

12
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nuclear) correlation effects:

ˆH
e�e

=

1

2

Z

d

3r d3r0 ˆ †
(r) ˆ †

(r0)v(r� r0) ˆ (r0) ˆ (r), (2.4)

with v (r� r0) the bare Coulomb potential. The nucleus-nucleus interaction reads
as:

˜H
n�n

=

1

2

X0

R,R0
ZRZR0v

�

R�R0� , (2.5)

with
P0

ij =
P

i 6=j and ZR the nucleus atomic number.
The e-� interaction, ˆH

e�� , is given by

ˆH
e�� = �1

c

Z

d

3r ˆA(r) · ˆJ(r) + 1

2c2

Z

d

3r ⇢̂(r) ˆA2

(r). (2.6)

Here, the paramagnetic electronic current and the density are defined as

ˆJ(r) =
1

2i

h

ˆ †
(r)r ˆ (r)� c.c.

i

, (2.7a)

⇢̂(r) = ˆ †
(r) ˆ (r). (2.7b)

We work in the second quantisation formalism and introduce a suitable single-
particle basis with orthonormal wave-functions {'i (r)}. Then, the creation and
annihilation field-operators ˆ †

(r) and ˆ (r) for a particle at position r in space are
expanded according to

ˆ (r) =
X

i

'i (r) ĉi. (2.8)

The one-particle density-matrix operator takes the form

⇢̂(r, r0) = ˆ †
(r) ˆ (r0) =

X

ij

'⇤
i (r)'j(r

0
)⇢̂ji, (2.9)

with ⇢̂ji = ĉ†i ĉj .
The first important step is the quantisation of the electromagnetic field that, as

it will be clear shortly, will appear as an explicit ingredient of the time evolution.
We start by rewriting the vector potential of the electromagnetic radiation in terms
of photon creation and annihilation operators

ˆA(r) =
X

G,q,�

✓

2⇡c2

!q+G⌦

◆

1

2

h

ˆdq+G,�e
i(q+G)·r

+

ˆd†q+G,�e
�i(q+G)·r

i

e�(q+G), (2.10)

13
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with ⌦ being the volume of the lattice and e�(q + G) the polarisation vectors

orthogonal to the photon’s momentum q+G.

We aim at describing any kind of system by using a super-cell approach. This

means that the periodic part of the system (if any) is represented by a unit cell

of volume ⌦s containing N momenta q (⌦ ⌘ N⌦s). This unit cell is periodically

repeated displaced of a generic vector G of the reciprocal lattice. In the case of iso-

lated systems N = 1 and ⌦s is chosen large enough to avoid spurious interactions.

The e-p interaction arises from the term ˆH
e�n

where the nuclear and electronic

densities are coupled via the Coulomb interaction

ˆH
e�n

= �
Z

d

3

d

3R
⇢̂(r) ˆN(R)

|r�R| . (2.11)

ˆN (R) is the nuclear density operator that we take as the counterpart of the elec-

tronic case. The actual definition of the nuclear density is a delicate issue that has

been already discussed in Ref. [29].

2.2 Coupling to external perturbations

The Hamiltonian H describes the complete dynamics of the coupled systems of

electrons, photons and phonons. In order to rewrite this dynamics in the form of

equations of motion for the corresponding Green’s functions we can use two equiv-

alent paths. One is based on the standard diagrammatic technique [54] which

constructs approximations for the different terms of the theory by using a geo-

metrical and graphical approach. An alternative approach, that we follow here, is

based instead on the equation of motion approach [55]. This methods leads, both

in the equilibrium and the out-of-equilibrium regimes, to a closed set of integro-

differential equations that at the equilibrium are known as Hedin’s equations [56].

In order to extend these equations to account for the correlated dynamics of

electrons, photons and phonons in an out-of-equilibrium context we start by dis-

cussing some key aspects of the purely electronic case. In the equation of motion

approach the Hamiltonian is perturbed with a fictitious time-dependent term

ˆH (t) = ˆH +

ˆH
ext

(t) . (2.12)
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In the original derivation of Hedin’s equations [55] ˆH
ext

(t) describes the coupling
of the electronic charge with an external fictitious field �

ext

(r, t) that, at the end
of the derivation, is set to zero:

ˆH
ext

(t) =

Z

d

3r �
ext

(r, t) ⇢̂ (r, t) . (2.13)

Now the problem is that this perturbation cannot be used in the present case
where we want to describe a quantised electromagnetic field. The reason is that
the vector potential is now quantised and it cannot be set to zero at the end of
the calculations. This is connected to the existence of a vacuum energy of the
electromagnetic field.

To solve this problem we follow a different path. We notice that the external
potential �

ext

(r, t) is solution of the Poisson equation

r2�
ext

(r, t) = �4⇡⇢
ext

(r, t) . (2.14)

The solution of Eq. (2.14) can be rewritten in integral form

�
ext

(r, t) =

Z

d

3r0 v
�

r� r0
�

⇢
ext

�

r0, t
�

, (2.15)

that, plugged into Eq. (2.13), yields

ˆH
ext

(t) =

Z

d

3r ˆ�0 (r) ⇢
ext

(r, t) , (2.16)

with ⇢
ext

the inhomogeneous part of Eq. (2.14) and ˆ�0(r) is the potential operator
corresponding to ⇢̂(r).

By comparing Eq. (2.13) with Eq. (2.16) we notice that, now, the potential can
be quantised and the external charge set to zero. As it will be clear in the follow-
ing, these two procedures are equivalent, as far as the solely electronic limit is
concerned.

Another important aspect is that we can now couple the external test charge
to the potential generated by both the nuclear and the electronic charges:

ˆ� (r, t) =

Z

d

3r0 v
�

r� r0
�

h

⇢̂
�

r0
�

� ˆN(r0)
i

=

Z

d

3r0 v
�

r� r0
�

n̂(r0), (2.17)

where n̂ = ⇢̂ � ˆN is the total internal density of the system, since now we have
to account for the quantised nuclei as well. By following Ref. [29] we introduce
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an external perturbation of the nuclear density, N
ext

(R, t), that is coupled, via
Eq. (2.15), to the electric potential generated by the nuclei, ˆV

n

(r, t).
A similar procedure can be applied to the perturbation induced by an external

vector potential by using the equation of motion
✓

1

c2
@2t �r2

◆

A
ext

(r, t) =
4⇡

c
J?
ext

(r, t) . (2.18)

In this way the total interaction part of the Hamiltonian looks like

ˆH
ext

(t) =

Z

d

3r ˆ�(r, t)⇢
ext

(r, t)� 1

c

Z

d

3r ˆA(r) · J
ext

(r, t)�
Z

d

3R ˆV
n

(r)N
ext

(r, t). (2.19)

The last term in Eq. (2.19) describes the coupling with the nuclear motion. This
was first introduced by Baym in Ref. [57] and also used in Ref. [29]. Here, we work
with a fictitious external density in order to maintain coherence with the other
perturbative terms. As it will be clear later on, we use these external quantities
to decouple the dynamics of electrons, nuclei, and photons. In Eq. (2.19) we have
neglected the second term on the right hand side of Eq. (2.6). The reason is that
this term is multiplied by 1/c2 and therefore, for a given order in the perturbative
expansion it leads to correction much smaller than those induced by the A · J
term. From a diagrammatic point of view the ⇢A2 term is responsible of a series of
diagrams well-known and studied in the e-p problem [30], where they arise from
the second-order e-p interaction. In the e-� case, however, these diagrams can be
safely neglected.

2.3 Green’s functions and the Keldysh contour

The time evolution in non-equilibrium processes is more complicated than for equi-
librium systems because it is not guaranteed that after an arbitrarily long enough
time the system will return to the ground state. The extension of Hedin’s equa-
tions to an out-of-equilibrium system can be done by defining a contour in the
complex plane known as the Keldysh contour [11]. The contour runs as shown in
Fig. 2.1 with the upper (positive) branch running from an instant t

0

where the sys-
tem is assumed to be at equilibrium to an unknown state. The system is brought
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back to equilibrium via the lower (negative) branch and it is this mathematical
description for the time evolution which allows us to have all the necessary rules
to derive a system of equations similar to the original one of Hedin’s [11].

The Green’s function G (1, 2) for non-equilibrium processes is defined on the
Keldysh contour [12]:

G (1↵, 2�) = �i�
Tr

n

⇢
0

TC

h

ˆSC
ˆ I (1↵)

ˆ †
I (2�)

io

Tr

n

⇢
0

ˆSC

o , (2.20)

where the subscripts ↵, � = ±1 indicate the branch on the Keldysh contour where
the time argument of the respective operator is located. The operator TC is the
contour time ordering operator. In Eq. (2.20) we introduce the compact notation
1 ⌘ (r

1

, t
1

). Note that the time t runs on the Keldysh contour.
The transition from the Heisenberg picture (where the electron operators are

usually defined) to the interaction one is done via the following expression

ˆO (t↵) = ˆS (�1, t↵) ˆOI (t↵) ˆS (t↵,�1) , (2.21)

where ˆO is a generic operator and

ˆS
�

t↵, t
0
↵

�

= T↵exp

"

�i↵
Z t

↵

t0
↵

d⌧ ˆH↵
ext,I(⌧)

#

. (2.22)

Note that, in Eq. (2.22), the time arguments lie on a single time branch of the

T ime

+

�

Figure 2.1: The Keldysh contour. Any time index runs on the contour which defines
a natural time ordering that only in the upper branch is equivalent to the ordering in
the standard real-time axis.

Keldysh contour. This implies that we can introduce a branch specific evolution
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operator, ˆS↵ (t, t0) ⌘ ˆS (t↵, t0↵). With this definition the overall time evolution oper-
ator, ˆSC , entering Eq. (2.20) can be rewritten as

ˆSC =

ˆS�(�1,1)

ˆS
+

(1,�1), (2.23)

and we have that the expectation value of ˆO taken on the contour is

h ˆO (1)iC =

Tr

n

⇢
0

TC

h

ˆSC
ˆOI (1)

io

Tr

n

⇢
0

ˆSC

o . (2.24)

The structure of Eq. (2.20) with respect to the position of the time arguments on
the Keldysh contour defines the different kind of Green’s functions:

G (1

+

, 2
+

) ⌘ Gc (1, 2) , (2.25a)

G (1�, 2+) ⌘ G<
(1, 2) , (2.25b)

G (1

+

, 2�) ⌘ G>
(1, 2) , (2.25c)

G (1�, 2�) ⌘ Gc̃ (1, 2) . (2.25d)

In Eqs. (2.25a) to (2.25d), Gc is the time-ordered or causal Green’s function,
G< and G> are the lesser and greater Green’s functions, and Gc̃ is the anti-time-
ordered Green’s function.

2.4 Equation of motion for the Green’s function on the
Keldysh contour

In order to obtain the equation of motion for G we start from i@t
1

G (1↵, 2�). From
Eqs. (2.20) and (2.25a) we get

@t
1

TC

h

ˆSC
ˆ I (1↵)

ˆ †
I (2�)

i

= � (1↵ � 2�) TC

h

ˆSC

i

+TC

h

ˆSC@t
1

ˆ I (1↵)
ˆ †
I (2�)

i

+ i↵TC [
ˆSC

ˆH
ext

(t
1↵)

ˆ I (1↵)
ˆ †
I (2�)]� i↵TC [

ˆSC
ˆ I (1↵)

ˆH
ext

(t
1↵)

ˆ †
I (2�)]. (2.26)

In the second term of the right-hand side of Eq. (2.26) we have the time derivative
of the electron annihilation operator that is, in the interaction picture,

i@t
1

ˆ I(1) =

h

ˆ I(1), ˆHI(t1)
i

=



ˆh (1)� i

c
ˆA(1) ·r

1

+

ˆ�(1)

�

ˆ I(1). (2.27)
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ˆHI is the representation, in the interaction picture, of ˆH
ext

(t), defined in Eq. (2.12),
while the third and fourth terms in Eq. (2.26) give

i↵TC [
ˆSC

ˆH
ext

(t
1

)

ˆ I (1↵)
ˆ †
I (2�)]� i↵TC [

ˆSC
ˆ I (1↵)

ˆH
ext

(t
1

)

ˆ †
I (2�)] =

= �i↵�
ext

(1)Tc[
ˆSc

ˆ (1↵) ˆ 
†
(2�)]. (2.28)

Equations (2.26)-(2.28), finally, lead to the following equation of motion for G:


i@t
1

� ˆh (1)� i

c
h ˆA (1↵)iC ·r

1

� U (1↵)

�

G (1↵, 2�) = � (1↵ � 2�)+

i

�G (1↵, 2�)

�⇢
ext

(3�)

�

�

�

�

3

�

=1

↵

� r
1

·
�G (1↵, 2�)

�J
ext

(3�)

�

�

�

�

3

�

=1

↵

. (2.29)

In Eq. (2.29) we defined the total potential

U (1) = �
ext

(1) + hˆ� (1)iC , (2.30)

and used the following identities for the functional derivatives

�G (1↵, 2�)

�⇢
ext

(3�)
= i� hˆ�� (3�)iC G (1↵, 2�)� �� hˆ� (3�) ˆ (1↵)

ˆ †
(2�)iC , (2.31)

and

�G (1↵, 2�)

�J
ext

(3�)
= i

�

c
h ˆA (3�)iC G (1↵, 2�) +

��

c
h ˆA (3�)

ˆ (1↵)
ˆ †

(2�)iC . (2.32)

Equation (2.29) can also be used to define the noninteracting Green’s function
in order to rewrite it as Dyson equation or, alternatively, as BKE. Indeed we start
by noticing that G

0

is the solution of Eq. (2.29) when �G
�⇢

ext

=

�G
�J

ext

= 0:

[i@t
1

� h
tot

(1↵)]G
0,H (1↵, 2�) = � (1↵ � 2�) , (2.33)

with

h
tot

(1) = h (1)� i

c
h ˆA (1)iC ·r

1

� U (1) . (2.34)

Equations (2.33) and (2.34) imply that

G�1

0,H (1↵, 2�) = [i@t
1

� h
tot

(1↵)] � (1↵ � 2�) . (2.35)

Here the subscript “H” in Eq. (2.33) indicates that contributions from the Hartree
self-energy are already included in the zeroth order Green’s function. We can
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remove this contribution from the zeroth order by defining the Hartree self-energy,
⌃H, which is given by

⌃H(1, 2) = ⌃
k
H(1, 2) + ⌃

?
H(1, 2)

= �(1, 2)



�iw
0

(1, 3)G(3, 3+) +
1

c
Aind ·⇧(1, 10)G(1, 10)|

1

0
=1

+

�

, (2.36)

where we have used w
0

(1, 3) = �(t
1

, t
3

)v(r
1

� r
3

) and Aind stands for the induced
vector potential. The first term on the right-hand-side corresponds to the longi-
tudinal Hartree self-energy, ⌃k

H, while the second term is the transverse Hartree
self-energy, ⌃?

H. We will analyse later on the implications which arise from these
terms. With this, we can recover the usual zeroth order Green’s function, G

0

(1, 2),
which is the solution of the differential equation

[i@t
1

� h
ext

(1↵)]G0

(1↵, 2�) = � (1↵ � 2�) , (2.37)

with

h
ext

(1) = h (1)� i

c
Aext (1) ·r1

� �ext (1) . (2.38)

By using Eq. (2.36) and Eq. (2.37) we can further rewrite Eq. (2.29) in terms
of the bare and of the fully interacting Green’s functions. This is clearly a step
towards the final form of the Dyson-type equation:

G (1↵, 2�) = G
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=4
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#

. (2.39)

The electromagnetic field and the nuclei are now quantised, so the entire the-
oretical scheme is closed only when the equations of motion for their propagators
are introduced. It is interesting to note that all different effects induced by the
mutual interactions (e-e, e-p, e-�) will mix together in the dressing of the total
fields connected to the external sources. This dressing involves the ensemble of
electrons, photons, and phonons via oscillations (collective and not) described by
the corresponding response functions.

As it will be clear, in difference with the well known purely electronic case new
response and vertex functions must be introduced.
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2.5 Equation of motion for the electromagnetic potentials

2.5 Equation of motion for the electromagnetic poten-
tials

The equation of motion for the fields are obtained by taking the macroscopic aver-
age of U and h ˆAi. From classical electrodynamics, we know that the scalar poten-
tial U is the solution of the Poisson equation

r2U(1) = �4⇡[⇢
ext

(1) + hn̂(1)iC ], (2.40)

while the expectation value of the vector potential h ˆAi satisfies the equation of
motion
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(1, 2)J
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(2) . (2.41)

The ? superscript means that only the transverse part of the current enters in
the Eq. (2.41). This is obtained from the total current vector using the transverse
delta function

�?↵� (1, 2) = � (t
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2.6 Response and vertex functions, and self-energies

The equation of motion for G, Eq. (2.29), is still written in an obscure way and
the different physical ingredients describing the complex many-body dynamics are

hidden inside the functional derivatives


�G
(

4

�

,2
�

)

�⇢
ext(3)

and �G
(

4

�

,2
�

)

�J
ext

(3

�

)

�

. In this section

we investigate the structure of these derivatives by introducing the longitudinal
and transverse response function and vertex functions.

We start by noticing that, as a consequence of the Green’s function definition,
it follows that

G (1↵, 2�)G
�1

(2� , 3�) = � (1↵ � 2�))
�G (1↵, 2�)

�h (3�)
=

= �G (1↵, 4⌘)



�G�1

(4⌘, 5⇠)

�h (3�)

�

G (5⇠, 2�) , (2.43)
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for any well behaved function h. In Eq. (2.43) we have introduced the right G�1

function that acts on the right arguments of G. Note that an alternative for-
mulation can be introduced by using the left G�1 defined in such a way that
G�1

(1↵, 2�)G (2� , 3�) = � (1↵ � 2�) [55].
We can now apply a second rule that states that:

�G�1

(4⌘, 5⇠)

�h (3�)
=

�G�1

(4⌘, 5⇠)

�g (6�)

�g (6�)

�h (3�)
. (2.44)

From Eqs.(2.43) and (2.44) we get that, by using h = ⇢ and g = U [see Eq. (2.30)],

�G (1↵, 2�)

�⇢
ext
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3
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=1

↵

= G (1↵, 4⌘) �̃ (4⌘, 5⇠, 6�)W (6�, 1↵)G (5⇠, 2�) . (2.45)

With Eq. (2.45) we can introduce the scalar (longitudinal) part of the total self-
energy operator, ⌃

long

, defined as:

i

�G (1↵, 2�)

�⇢
ext
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�

�

�

3

�

=1

↵

= ⌃

k
xc (1↵, 3�)G (3� , 2�) , (2.46)

and, from Eq. (2.45), it follows that

⌃

k
xc (1↵, 2�) ⌘ G (1↵, 3�) �̃ (3� , 2� , 4�)W (4�, 1↵) . (2.47)

The definition of the self-energy operator naturally introduces scalar response
function

W (1, 2) =
�U (1)

�⇢
ext

(2)

, (2.48)

and the irreducible longitudinal vertex function � (1, 2, 3)

�̃ (1, 2, 3) = ��G
�1

(1, 2)

�U (3)

. (2.49)

A similar procedure can be applied to the other derivative that appears in
Eq. (2.29), �G

�J
ext

. At difference with the charge derivative this new term is a vector
and we use Greek symbols (↵,�, ...) to label its Cartesian components. By applying
the following substitutions to Eqs.(2.43) and (2.44)

�

�⇢
ext

) �

�J
ext,↵

, (2.50a)

�

�U
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�A↵
, (2.50b)
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we get that
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Equation (2.51) allows us to introduce the second important term in the total self-
energy corresponding to its transverse contribution, ⌃?

xc

:

⌃

?
xc

(1↵, 2�) = �ri
�G (1↵, 2�)

�J
ext,� (3�)

�

�

�

�

3

�

=1

↵

=

= i ⇧i (1, 3)
3

X

✓=1

G (1↵, 4⌘) ˜�✓ (4⌘, 5⇠, 6�)D✓� (6�, 3�)G (5⇠, 2�)

�

�

�

�

�

3

�

=1

↵

. (2.52)

where

⇧ (1, 2) = � i

2

(r
1

�r
2

) = ⇧ (1) +⇧⇤
(2) . (2.53)

The transverse self-energy, Eq. (2.52) further introduces two functions. The trans-
verse photon propagator, which we will call

 !D (1, 2),

 !D (1, 2) = � c

4⇡

� h ˆA (1)iC
�J

ext

(2)

, (2.54)

and the transverse vertex (vectorial) function �,

˜� (1, 2, 3) = �4⇡

c

�G�1

(1, 2)

� h ˆA (3)i
. (2.55)

We notice now that the longitudinal screened potential and vertex are connected,
via Eq. (2.40), to the total density. This includes both an electronic and a nuclear
component. It is then clear that the nuclear motion enters directly in the electronic
dynamics via the longitudinal components.

This sharp separation between longitudinal and transverse components of the
theory is the consequence of using the Coulomb gauge. Although the latter al-
lows the electromagnetic field to be separated into two independent parts the en-
tire theory still follows the same structure as its version without quantised fields
which was presented in Section A.1.2, that is, we can still define a set of equations
analogous to the one of Hedin. As we will see shortly, the final expression for the
self-energy will also be split in a longitudinal and in a transverse part.
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The final step of this section is obtained by using Eqs.(2.52) and (2.49) to define
the total self-energy, ⌃ = ⌃

long

+ ⌃

trans

. This can be introduced in Eqs.(2.39) and
(2.29) to obtain the final form of the equation of motions for the G written as time-
derivative

[i@t
1

� h
ext

(1)]G (1↵, 2�) = � (1↵ � 2�) + ⌃ (1↵, 3�)G (3� , 2�) , (2.56)

and as Dyson-type equation

G (1↵, 2�) = G
0

(1↵, 2�) +G
0

(1↵, 3�)⌃ (3� , 4⌘)G (4⌘, 2�) . (2.57)

Equations (2.56) and (2.57) are equivalent and represent two different formula-
tions of the KBE.

From the equation of motion for the scalar and for the vector potential we can
now derive the equations governing the response functions. Indeed these functions
describe the change in the observables due to the total (external plus induced)
perturbations and provide a connection between Eq. (2.40), (2.41), and (2.29). In
the following sections we analyse separately the two contributions: transverse
(photon-induced) and longitudinal (electronic and phonon-mediated).

2.7 The photon-induced response function

The photon-induced response function represents the transverse photon propaga-
tor. We start from Eq. (2.41) and divide the total current in an external and an
induced part: J

tot

= J
ext

+ J
ind

. Thus, we can express the solution of Eq. (2.41) as
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(2)] , (2.58)

where D
0

(1, 2) is the free transverse photon propagator, solution of
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By applying the chain rule, Eq. (2.43) we derive the equation of motion for the
transverse photon propagator

 !D (1, 2) =
 !D

0

(1, 2) +
 !D

0

(1, 3)
 ̃!
P (3, 4)

 !D (4, 2) , (2.60)
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where we have defined the irreducible transverse photon polarisation
 ̃!
P (3, 4):

 ̃!
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. (2.61)

To obtain the equation for the transverse polarisation we need a microscopic
expression for the induced current, J

ind

. This is related to the electronic Green’s
function by

J
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In deriving Eq. (2.62) we have omitted the ⇢A term as we are considering averages
on states with a fixed population of photons such that hd†q+G,�iC = hdq+G,�iC = 0.
This implies that h⇢̂ (1) ˆA (1)iC = 0. From Eqs.(2.61) and (2.54), we finally get a
closed expression for the transverse photon polarisation
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2.8 Phonon-induced response function

We now look into the screened Coulomb interaction W defined in Eq. (2.48). By
using Eq. (2.30), we obtain

W (1, 2) = w
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(1, 2) + w
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, (2.64)

where w
0

(1, 2) = �(t
1

� t
2

)/|r
1

� r
2

| is the bare Coulomb interaction, and p
e

is the
irreducible longitudinal electronic polarisation:

p̃
e

(1, 2) =
� h⇢̂(1)iC
�U(2)

. (2.65)

Equation (2.64) includes two contributions. The first term in the square brackets
comes from the electronic density (via pe) and the second term from the nuclear
density (via �N/�⇢). Thus, by following Ref. [29], we separate W into an electronic
plus a nuclear part.
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The electronic polarisation is still defined, as in the purely electronic case [55],
in terms of the electronic component of the total density

h⇢̂(1)iC = �iG(1, 1+), (2.66)

from which it immediately follows that

p̃
e

(1, 2) = iG(1, 2)�̃(3, 4, 2)G(4, 1). (2.67)

Again, in the derivation of Eq. (2.67) we used Eq. (2.43).
The last term on the right-hand-side of Eq. (2.64) is due to the change in the

nuclear density induced by a change of the purely electronic part of the external
charge. Indeed, this is the source of e-p interaction that describes the link between
the nuclear motion and the electronic dynamics:

� h ˆN(3)iC
�⇢

ext

(2)

. (2.68)

In order to link this quantity to the microscopic correlation functions we need to
introduce the nuclear density-density correlation function, D, given by

D(1, 2) = �i h� ˆN(1)�

ˆN(2)iC , (2.69)

where the fluctuation of an operator is expressed as � ˆO =

ˆO � h ˆOi.
It is now possible to define an equation for D thanks to the introduction of the

external nuclear charge N
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in Eq. (2.19). As the interaction with the electronic
density is
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If now we use the solution of the Poisson equation to rewrite�ˆ� in terms of charge
variations, we get
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Using the same procedure of above we can evaluate a similar derivative, �hn̂(1)i
�N
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(2)

.
In this case the interaction with N
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is
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(r, t). It follows then that
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By using again the solution of the Poisson equation we get that

� h ˆN(3)i
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. (2.73)

We can now easily evaluate Eq. (2.68) via Eq. (2.73). Taking into account the
definition of n̂ we can use the functional derivative chain rule to obtain a Dyson-
type equation
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Iterating the equation leads to the following solution:
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(5, 2), (2.75)

which we can then insert in Eq. (2.64) to obtain the final expression for the total
screened interaction

W (1, 2) = w
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+ [1� w
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Solving Eq (2.76) in order to W leads to two separate contributions

W (1, 2) = W
e

(1, 2) +W
ph

(1, 2). (2.77)

The first term, W
e

, accounts for the interactions among the electrons and has no
direct contribution from the nuclei

W
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while the second term introduces the effects of the contribution from the nuclear
density fluctuations

W
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(1, 2) = [1� w
0

p̃
e

]

�1

(1, 3)W
e

(3, 4)D(4, 5)w
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2.9 Vertex functions

In Eqs. (2.45) and (2.51), we have introduced a longitudinal and a transverse ver-
tex function, both irredubicle. The equations of motion that govern their dynamics
can be easily found by differentiating the inverse of the Dyson equation, Eq. (2.39)

G�1

(1, 2) = G�1

0

(1, 2)� ⌃(1, 2). (2.80)

Thus we can write for the irreducible longitudinal vertex, given by Eq. (2.49), the
following equation
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G(4, 6)�̃(6, 7, 3)G(7, 5), (2.81)

and for the irreducible transverse part [Eq. (2.54)] we have that
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G(4, 6)˜�(6, 7, 3)G(7, 5), (2.82)

Vertex and response functions are the ingredients we need to close the equation
of motion for the Green’s function in a set of integro-differential equations. At
this stage, it is important to note that through the functional derivative �⌃

�G all
interactions mix together in a complex dynamics.

2.10 Final form of the Hedin’s equations

We are now ready to present the full set of the Hedin’s equations. The first equa-
tion gives us the electron propagator G:

G(1, 2) = G
0

(1, 2) +G
0

(1, 3)⌃(3, 4)G(4, 2). (2.83)

The second equation allows us to obtain the self-energy
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(2.84)
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in which, with respect to the original Hedin’s equations, the second and fourht
terms on the right-hand-side are now present, due to the quantisation of the EM
field. The fourth and fifth equations describe the screened Coulomb interaction

W (1, 2) = W
e

(1, 2) +W
ph

(1, 2), (2.85)

and the transverse photon propagator

 !D (1, 2) =
 !D

0

(1, 2) +
 !D

0

(1, 3)
 ̃!
P (3, 4)

 !D (4, 2). (2.86)

In order to evaluate them, we need the longitudinal
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(1, 2) = iG(1, 2)�̃(3, 4, 2)G(4, 1), (2.87)

and transverse polarisation
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0
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=1

. (2.88)

These equations form the sixth and seventh Hedin’s equations that introduce
the corresponding vertex functions, whose equations of motion represent the last
two Hedin equations:

�̃(1, 2, 3) = �(1, 2)�(1, 3) +
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and where we have defined, to simplify the notation,

˜

⌃

k
(1, 2) = ⌃xc(1, 2) + ⌃

?
(1, 2), (2.91)

and

˜

⌃

?
(1, 2) = ⌃xc(1, 2) + ⌃

k
(1, 2). (2.92)

The only missing term is the equation of motion for D, the nuclear density-
density correlation function. However it has been shown [29] that the electronic
and nuclear parts of Hedin’s equations can be safely decoupled. As a consequence
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Figure 2.2: Diagrammatic representation of the Hedin’s equations. The bullet repre-
sents a ⇧ differential operator, defined in Eq. (2.53).

the D propagator can be thought as to be given and the purely electronic and pho-

tonic components of Hedin’s equations can be solved self-consistently. We have

represented the new set of Hedin’s equations in diagrammatic form in Fig. 2.2 and

in schematic form in Fig. 2.3. The latter representation also provides a method

to solve the equations self-consistently. Starting from a reasonable approximation

for the longitudinal and transverse parts of the self-energy ⌃, we can evaluate the

longitudinal and the transverse vertex, respectively, �̃ and ˜�. Then we can obtain

the longitudinal and transverse irreducible polarisations, p̃e and
 ̃!
P and incorpo-

rate the results in the photon propagator
 !D and, assuming that we have a good
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2.11 The GW approximation

G

⌃

�pe

W

(a)

G

 !D  !
P

�

⌃

�pe

W

(b)

Figure 2.3: Schematic representation of the different formulations of Hedin’s equa-
tions. (a) Longitudinal case. This is widely used in the literature in its equilibrium
and out-of-equilibrium versions. When the interaction with the quantised electromag-
netic field is switched on, a new pentagon must be added [case (b)] where the corners
are the photon propagator and the transverse electronic polarisation and vertex func-
tion. The dashed lines correspond to the generalised GW approximation where all
vertex functions are neglected.

description for the nuclear oscillations in the form of the phonon propagator D, the

screened longitudinal interaction W . Finally, we can obtain the expression for the

Green’s function, G. This is analogous to the usual description for a self-consistent

MBPT calculation, only that in this case we have two sub-cycles to evaluate: one

for the transverse and another for the longitudinal electromagnetic field.

2.11 The GW approximation

The GW approximation [27] is based on the assumption that the corrections to

the vertex can be ignored. In the present case, it corresponds to ignore the second

term in Equations (2.89) and (2.90) so that the vertex functions acquire a simple
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form:

˜�GW
(1, 2, 3) = �4⇡

c
⇧(1, 10)�(1, 3)�(10, 2)|

1

0
=1

+ , (2.93)

and

�̃GW
(1, 2, 3) = �(1, 2)�(1, 3). (2.94)

As a consequence both the longitudinal and transverse polarisation functions turn
into an independent-particle representation

p̃GW
e

(1, 2) = iG(1, 2)G(2, 1), (2.95)

and

˜PGW
↵� (1, 2) = i⇧↵(1, 1

0
)G(1, 2)⇧�(2)G(2, 10)|

1

0
=1

. (2.96)

The final expression for the electronic exchange-correlation part of the self-energy
in the GW approximation is then given by

⌃

GW
xc (1, 2) = i

2

4G(1, 2)W (2, 1) +
3

X

↵,�=1

⇧↵(1, 1
0
)G(1, 2)⇧�(2)D�↵(2, 1

0
)

3

5

�

�

�

�

�

�

1

0
=1

. (2.97)

The longitudinal GW self-energy has been extensively studied and its formulation
for the e-e and e-p parts are well known.

2.12 The reducible representation and the Hartree self-
energy

In the previous section we focused on the irreducible functions, i.e. functional
derivatives of G or G�1 with respect to the total longitudinal potential U(1) or the
total vector potential hA(1)i. As we saw in the the equations for the irreducible
vertices [see Eqs. (2.81) and (2.82)] this means that the corresponding longitudi-
nal/transverse Hartree component of the self-energy does not appear in kernel of
the longitudinal/transverse vertex. We saw in Eq. (2.36) that we can write

⌃

k
H(1, 2) = �i�(1, 2)w0

(1, 3)G(3, 3+) (2.98)
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⌃ =
RI

kj

k ji

I

⇡(e� p)
I

D

⇡(e� e)
I

k

l

⇡(e� �)
I

Figure 2.4: The generalised GW approximation for the three kind of interactions: e-
e, e-p, and e-�. The wiggled propagator in the e-e case represents a statically screened
interaction, as explained in Ref. [40].

for the longitudinal Hartree self-energy, and

⌃

?
H(1, 2) = �(1, 2)

1

c
Aind(1) ·⇧(1, 10)G(1, 10)|

1

0
=1

+ (2.99)

for the transverse Hartree self-energy. By using Eq. (2.58) we can easily express
the induced vector-potential as

Aind(1) = �
4⇡

c

 !D
0

(1, 2)Jind(2), (2.100)

thus allowing us to rewrite Eq. (2.99) as

⌃

?
H(1, 2) = �(1, 2)

4⇡i

c2
⇥

⇧(1, 10)G(1, 10)
⇤

1

0
=1

+

 !D
0

(1, 3)
⇥

⇧(3, 30)G(3, 30)
⇤

3

0
=3

+

, (2.101)

which can be taken as the energy coming from the interaction between the induced
currents in the material.

Before progressing we should first present the formulations of the extended
system of Hedin’s equations using the reducible functions, as it is usually done in
the equilibrium formalism. We start by noticing that, if in the derivation of the
equation of motion for

 !D we use Aext in the chain rule, we then obtain
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 !D (1, 2) =
 !D

0

(1, 2) +
 !D

0

(1, 3)
 !
P (3, 4)

 !D
0

(4, 2), (2.102)

where
 !
P is the reducible transverse polarisation, given by

 !
P (1, 2) = �4⇡

c

�Jind(1)

�Aext(2)
= i⇧↵(1, 1

0
)G(1, 3)��(3, 4, 2)G(4, 10)|

1

0
=1

. (2.103)

In the equation above we have introduced the reducible transverse vertex, � which
is given by

�(1, 2; 3) = �4⇡

c

�G�1

(1, 2)

�Aext(3)

=

4⇡

c
⇧(1, 10)�(1, 3)�(10, 2)|

1

0
=1

+ +

�⌃(1, 2)

�G(4, 5)
G(4, 6)�(6, 7, 3)G(7, 5), (2.104)

and unlike in Eq. (2.82), here the kernel in the second term on the right hand
side has the full contribution of all the parts of the self-energy. A similar set of
equations can be derived for the reducible longitudinal functions. We start from
the reducible longitudinal polarisation pe

pe(1, 2) =
� h⇢̂(1)i
��ext(2)

= iG(1, 3)�(3, 4, 2)G(4, 1), (2.105)

which immediately leads to the definition of the reducible longitudinal vertex �

�(1, 2; 3) = ��G
�1

(1, 2)

��ext(3)
= �(1, 2)�(1, 3) +

�⌃(1, 2)

�G(4, 5)
G(4, 6)�(6, 7, 3)G(7, 5). (2.106)

As it is in equilibrium theory, we can easily derive a relation between the reducible
and irreducible polarisations. For the longitudinal case we obtain the usual rela-
tion

pe(1, 2) =
� h⇢̂(1)i
�U(3)

�U(3)

��ext(2)
= p̃e(1, 3)



�(3, 2) + w
0

(3, 4)
� h⇢̂(4)i
��ext(2)

�

= p̃e(1, 2) + p̃e(1, 3)w0

(3, 4)pe(4, 2), (2.107)

while for the transverse case we get that

 !
P (1, 2) = �4⇡

c

� hˆJind(1)i
� h ˆA(3)i

� h ˆA(3)i
�Aext(2)

=

 ̃!
P (1, 3)

"

�(3, 2)� 4⇡

c

 !D
0

(3, 4)
� hˆJind(4)i
�Aext(2)

#

=

 ̃!
P (1, 2) +

 ̃!
P (1, 3)

 !D
0

(3, 4)
 !
P (4, 2) (2.108)
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2.12 The reducible representation and the Hartree self-energy

In the equilibrium formulation of the theory, where the vector potential is not
quantised, there is no need to distinguish between the longitudinal and transverse
parts of the self-energy. However, we see from Eq. (2.101) that the corresponding
transverse Hartree term would be expanded in powers of 1/c2, making it negligible
unless the microscopic paramagnetic currents are very intense.
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Chapter 3

The time dependent BSE

“Would you tell me, please,
which way I ought to go from
here?”
“That depends a good deal on
where you want to get to,” said
the cat.

Lewis Carroll, Alice in
Wonderland

3.1 A simplified formulation using a single–time den-
sity matrix representation

The BKE [Eq. (2.56)] is very hard to solve for practical applications and in realistic

materials. The reason is the complex two–times dependence and spatial non–

locality that enormously increases the complexity of the problem compared to the

more common methods used in the ai–MBPT scheme [14].

An approach that is attracting great interest is based on the reduction of the

complex equation for G (1↵, 2�) in a closed equation for the density matrix, ⇢ (1) ⌘
�iG (1�, 1+) = �iG<

(1, 2). This approach is based on the GBKA [58] [Eq. (3.21b)]

and, in the most recent approaches, on the CCA [40, 41, 59].

The aim of this section is to extend the derivation of a simplified KBE to the

general case of the simultaneous presence of e-e, e-p, and e-� interactions.
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We start by expressing all quantities in the second quantisation basis

G (1, 2) =
X

i,j

�⇤i (r1)�j (r2)Gij (t1, t2) , (3.1)

⌃ (1, 2) =
X

i,j

�⇤i (r1)�j (r2)⌃ij (t1, t2) , (3.2)

in such a way to remove the spatial dependence and concentrate our attention on
the time arguments.

In this single-particle basis, the KBE for G<
(t, t0) can be rewritten in a com-

pact, matrix-like form:

[i@t � h
ext

(t)]G<
�

t, t0
�

=

Z

d¯t
⇥

⌃

r
(t, ¯t)G<

�

¯t, t0
�

+ ⌃

<
(t, ¯t)Ga

�

¯t, t0
�⇤

+ H.c., (3.3)

and its adjoint

i@t0G
<
�

t, t0
�

�G<
�

t, t0
�

h
ext

�

t0
�

=

Z

d¯t
⇥

Gr
(t, ¯t)⌃<

�

¯t, t0
�

+G<
(t, ¯t)⌃a

�

¯t, t0
�⇤

+ H.c.. (3.4)

In Eqs.(3.3) and (3.4) the retarded/advanced functions carry a superscript r/a

and are defined in terms of the lesser and greater functions according to

Xr
(t, t0) = [Xa

(t0, t)]† = ✓(t� t0)
⇥

X>
(t, t0)�X<

(t, t0)
⇤

, (3.5)

where X can be G, ⌃ or any other two-time correlation function.
By adding the Eqs. (3.3) and (3.4), and taking the derivative on the macroscopic

time-axis, T = (t+ t0) /2 we get the equation of motion for ⇢ (T ) = �iG<
(T, T )

d

dT
⇢ (T ) + i [h

ext

(T ) , ⇢ (T )] = �S [{G}, {⌃}] (T ) , (3.6)

where all the self-energy effects are embodied in the complex collision integral,
given by S [{G}, {⌃}] (T ) that is still a function of the 7 two-times Green’s functions
and self-energies:

S [{G}, {⌃}] (T ) =
Z

d¯t
⇥

⌃

>
(T, ¯t)G<

(

¯t, T ) +G<
(T, ¯t)⌃>

(

¯t, T )� (7�?)

⇤

. (3.7)

In Eq. (3.7), the (7�?) indicates that the second part of the integral is obtained
from the first part by exchanging >(<) with <(>). Such splitting has already been
discussed in Refs. [15] and [40].
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3.1 A simplified formulation using a single–time density matrix
representation

The collision integral includes contributions from self-energies which can be
local or nonlocal in time, ⌃ (t, t0) = ⌃s (t) �(t � t0) + ⌃c (t, t0). The local part of the
self-energy defines a coherent part of S moving out of the time integral:

S [{G}, {⌃}] (T ) = Scoh

(T ) + Sdyn

[{G}, {⌃}] (T ) . (3.8)

The dynamical integral requires some approximations in order to reduce it to a
functional of only the density. Such approximations will be introduced shortly.

The coherent part is embodied in the h
ext

(t) term which turns into

i [h
ext

(T ) , ⇢ (T )] + S [{G}, {⌃}] (T ) = i [h (T ) , ⇢ (T )] + Scoh

[⇢] (T )+

+ Sdyn

[{G}, {⌃}] (T ) , (3.9)

with

Scoh

[⇢] (T ) = i [⌃s (T ) , ⇢ (T )] . (3.10)

The different possible approximations to ⌃s reflect the different kind of physics in-
troduced in the dynamics and can already account for important effects. Different
cases can be considered:

(i) A mean-field potential that mimics the correlation effects. An example
is DFT, where ⌃s (t) is local in space and given by the sum of the Hartree and
exchange-correlation potential.

(ii) HF self-energy. In this case the exclusion principle and quantum statis-
tics (the requirement for the electronic wave function to be antisymmetric) are
included. The Hartree-Fock (HF) self-energy reads:

[⌃s (t)]pq = V pq
mn
⇢nm (t) , (3.11)

with the four-index tensor V ij
mn

= 2 [w
0

]imnj � [w
0

]imjn and [w
0

]imnj the two-electron
bare Coulomb integrals:

[w
0

]imnj ⌘
Z

dr dr0�⇤i (r)�
⇤
m

�

r0
�

v
�

r� r0
�

�n
�

r0
�

�j (r) . (3.12)

(iii) Hartree plus a Coulomb Hole and Screened Exchange (COHSEX) self-energy.
In this case correlation is included using a linear-response approximation, but dy-
namical effects are neglected. The COHSEX self-energy reads as

[⌃s (t)]pq = V pq
mn

(t) ⇢nm (t) , (3.13)

39



3. THE TIME DEPENDENT BSE

with, now V (t) ij
mn

= 2 [w
0

]imnj � W [⇢ (t)]imjn and W the screened Coulomb hole
potential. This is routinely calculated in the random-phase approximation (RPA)
where

W [⇢]
�

r, r0
�

⌘
Z

dr "�1

RPA

[⇢] (r, r)w
0

�

r� r0
�

. (3.14)

The choice of the local part of the self-energy is essential as it already describes a
large part of the level of correlation embodied in the many-body dynamics. It has
been formally proved, for example, that in the linear regime the COHSEX self-
energy describes excitonic effects and reduces Eq. (3.6) to the well known Bethe-
Salpeter equation [15].

The collision integral Sdyn

(T ) in Eq. (3.9) is nonlocal in time and its functional
form is uniquely determined once an approximation for the correlation self-energy,
⌃c, is made. Let us consider here the GW approximation [Eq. (2.97)] that can be
rewritten, by using Eq. (3.1), in a very general and compact form as

⌃

7
ij

�

t, t0
�

= i

X

I

h

�

RI
�†

G7 �t, t0
�

RI
i

ij
W7

I

�

t, t0
�

. (3.15)

In Eq. (3.15), RI and G are matrices [see Eqs. (3.1) and (3.2)] and the prod-
uct in the square brackets represents a matrix multiplication. In Eq. (3.15), and
from this point onward, we use the Einstein convention that repeated indices are
summed over. WI , instead, is a scalar function. RI and W have different defini-
tions depending on the kind of interaction they are describing.

(a) In the e-p case I = (q�) and represents the phonon branch (�) and momen-
tum (q) pair. It follows that

RI
ij = R(q�)

ij ⌘
Z

dr�⇤i (r) @q�Vn (r)�j (r) , (3.16)

with @q� the derivative of the bare ionic potential (Vn) along the phonon state (q�).
Note that, if the present formalism is applied on top of DFT, Vn (r) is replaced by
the dressed self-consistent derivative of the DFT ionic potential as discussed in
Ref. [30].

(b) In the e-� case the I index represents the photon polarisation index (�) and
momentum (q) and

RI
ij =

Z

dr eiqI

·r�⇤i (r) (e� ·r)�j (r) . (3.17)
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3.2 Generalised Baym-Kadanoff ansatz

(c) In the e-e case the derivation of the analytic expression for RI is more

mathematically involved. At the same time, however, this procedure has been

extensively studied in the literature. We take as reference [40, 60] to rewrite the

out-of-equilibrium screened e-e interaction as an effective interaction with a time-

dependent plasma of electron-hole pairs with scattering amplitudes given by

RI
ij =

Z

dr�⇤i (r)W [⇢]
�

r, r0
�

�j (r)
⇥

�I

�

r0
�⇤

, (3.18)

where I = (k, l) and �I (r) ⌘ �⇤k (r)�l (r). In this case, indeed, the elemental

excitations are electron-hole pairs (k, l).

In all of the three cases above, W has the form

W7
I

�

t, t0
�

⌘W7
I

�

t� t0
�

⌘ (�i)N±
I e±i!

I

(t�t0). (3.19)

In Eq. (3.19), N±
I acquires different meanings depending on the interaction. In the

e-p case it represents the occupation of the phonon bath at a given temperature

that, for simplicity, we assume to follow Bose-Einstein statistics1. As such, in the

e-p and e-� cases we will have that N+

I = NI (�) + 1 and N�
I = NI (�), where

NI (�) is the Bose occupation and � = 1/kBTlt, with kB the Boltzmann constant

and Tlt the lattice temperature. In the e-e case then N+

kl = ⇢kk (t) [1� ⇢ll (t)] and

N�
kl = ⇢ll (t) [1� ⇢kk (t)]. By using Eq. (3.19) into Eq. (3.15) we get that

⌃

7
ij

�

t, t0
�

=

X

I

h

�

RI
�†

G7 �t, t0
�

RI
i

ij
N±

I e±i!
I

(t�t0). (3.20)

3.2 Generalised Baym-Kadanoff ansatz

Now that W7 is rewritten in Eq. (3.19) as a function of the time difference, in order

to close Eq. (3.6) in the space of the single-time density matrices we introduce the

1In order to have a full time evolving picture where the occupation functions of photons and
phonons are time dependent and different from the distributions at equilibrium we would need to
carry out an extended derivation by taking into account the simultaneous set of equations of motion
for the occupation functions of electrons, phonons, and photons.
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3. THE TIME DEPENDENT BSE

generalised Baym-Kadanoff ansatz. The GBKA is an ansatz for G7 which turns
it, and hence the collision integral, into a functional of ⇢ and Gr/a:

G<
(t, t0) = �Gr

(t� t0)⇢(t0) + ⇢(t)Ga
(t� t0), (3.21a)

G>
(t, t0) = +Gr

(t� t0)⇢̄(t0)� ⇢̄(t)Ga
(t� t0), (3.21b)

where ⇢̄ = 1 � ⇢. It is necessary to express the propagator Gr as a functional of
⇢, so that we can transform Sdyn

(t) into a functional of the density matrix, and
by doing that closing Eq. (3.6). Reasonable approximations to the propagator will
depend on the system which we are studying, with one of the most common being
the quasi-particle (QP) propagator

Gr
(t, t0) = �i✓(t� t0)Te�i

R
t

t

0 d¯t hqp

(

¯t). (3.22)

In the case of (small) finite systems, the choice hqp = heq (usually heq is the HF
single-particle Hamiltonian) is a good choice1. For extended systems, however,
relaxation requires a damping factor which we lack in heq, thus preventing the
system to relax. In these cases we can correct the propagator by adding non-
Hermitian terms given by the quasi-particle lifetimes hqp = heq + i⌘ [33, 40, 61,
63, 64].

By using Eq. (3.20) we rewrite Sdyn

(T ) as:

Sdyn

ij [{G}, {⌃}] (T ) ⌘ Sdyn

ij [{G}] (T )

= i

X

I

Z

dt
nh

�

RI
�†

G>
(T, t0)RIG<

(t0, T )
i

ij
W>

I

�

T � t0
�

+

h

G<
(T, t0)

�

RI
�†

G>
(t0, T )RI

i

ij
W>

I

�

t0 � T
�

� (7�?)

o

, (3.23)

and, finally, we use Eqs. (3.21b) and (3.21b0), to rewrite the first terms of Eq. (3.23):
h

�

RI
�†

G>
(T, t0)RIG<

(t0, T )
i

ij
W>

I

�

T � t0
�

= (�i)
X

±

h

�

RI
�†

Gr

(T � t0)⇢
�

t0
�

RI⇢
�

t0
�

Ga

(t0 � T )
i

ij
N±

I e±!
I

(T�t0), (3.24)

with ⇢ij (T ) ⌘ �ij � ⇢ij (T ). We now notice that, because of the time ordering of
Gr/a, the integral in Eq. (3.23) runs between �1 and T .

1This means that any deviation introduced by fast dynamics and e-e and e-p interactions is
ignored [61, 62].
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3.3 Completed collision approximation

In order to obtain a final expression that can be easily compared with the Boltz-
mann equation we use a drastic but simple approximation for Gr/a based on the
non-interacting approximation:

Gr
ij (T ) ⇡ �i✓ (T ) e�i"

i

T �ij . (3.25)

Equation (3.25) allows us to carry on to the final steps of the derivation in a more
comfortable way by introducing the scattering matrix SIs

ij as

SIs
ij (T ) ⌘ �i

Z T

�1
dt
h

e�is!
I

t
�

RI
ki

�⇤
ei("j�"

k

)(T�t)
i

⇥
⇥

⇢kl (t)R
I
ln⇢nj (t)N

�s
I � ⇢kl (t)R

I
ln⇢nj (t)N

s
I

⇤

| {z }

⇠Is
kj

(t)

. (3.26)

In Eq. (3.26), we have also defined the ⇠Iskj (t) function. The Sdyn

(T ) can be finally
rewritten in terms of S as

Sdyn

ij (T ) ⌘ i

X

I,±

⇥

eis!I

TSIs
ij (T ) + H.c.

⇤

. (3.27)

3.3 Completed collision approximation

The time integral in Eq. (3.26) can be removed analytically by using the com-
pleted collision approximation. This is based on the adiabatic ansatz introduced
in Ref. [41] which is based on the assumption that the characteristic time scales
of the electronic dynamics are much longer compared to the time window where
the physical properties are calculated. We will discuss more in detail the adia-
batic ansatz in the next sections. Here we just formulate it by approximating
⇠Iskj (t) ⇡ ⇠Iskj (T ) in Eq. (3.26), so to take it outside the time integral. At this point,
this can be solved analytically leading to the final expression for the S function:

SIs
ij (T ) ⇡ (�i)

�

RI
ki

�⇤ e�is!
I

T

"k � "j � s!I + i0

+

⇠Iskj (T ) . (3.28)

By plugging Eq. (3.28) into (3.27) we get the final, explicit, form of Sdyn

(T ):

Sdyn

ij (T ) = �i
X

Is

"

�

RI
ki

�⇤
⇢kl (T )R

I
ln⇢nj (T )N

�s
I �

�

RI
�†
ik
⇢kl (T )RI

ln⇢nj (T )N
s
I

("k � "j � s!I � i0

+

)

�H.c.

#

. (3.29)
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Figure 3.1: Schematic representation of the different links between the terms of
Eq. (3.31) and the most elemental physical processes occurring in a typical pump-
and-probe experiment: the photo excitation (a), the relaxation via e-e scattering (b),
the relaxation and dissipation via e-p scattering (c), and the final, slow, radiative re-
combination (d). It is crucial to note that the use of ⌃COHSEX allows to include excitonic
effects (caused by the electron-hole attraction) in all the processes.

Equation (3.29) represents an important result of this work. It shows that for any
kind of interaction (e-e, e-p, e-�) the scattering term of the equation of motion for
the density matrix can be rewritten in a closed form. Now, before moving to the
next section where we will turn Eq. (3.29) into a working scheme to calculate sev-
eral quantities, we want to analyse in detail the structure of Sdyn in order to draw
its very general properties. In simple terms Eq. (3.29) represents an elemental
scattering event, where an initial state (i) is scattered in a series of states [(k), (l),
(n), and finally (j)] via the emission/absorption of an elemental excitation (photon,
e-h pair, phonon).

In order to see this graphically, we proceed as follows. We associate a density
matrix ⇢ij (T ) with a single line connecting the state j to the state i, while ⇢ij (T ) is
represented by a double line. A large circle (�) will represent a generic interaction
matrix RI . A label I will denote an adjoint matrix

�

RI
�†. A wiggled line, instead,
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Sdyn
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Figure 3.2: Graphical representation of Eq. (3.29). A single line represents the den-
sity matrix ⇢, while the double line is its adjoint, ⇢. The wiggled line, in the spirit of
Fig. 2.4, represents a generic interaction propagator.

represents the propagation of an excitation (I, s). By using these simple rules
Sdyn

ij (T ) can be graphically represented as shown in Fig. 3.2.

Now, the next step is to link the properties of Sdyn

(T ) to the actual quantities
that are measured in a typical pump-and-probe experiment. The procedure that
reduces the complex dynamical equation to the simple Eq. (3.29) form is schemat-
ically represented in Fig. 3.1.

3.4 Carrier dynamics, transient absorption, and light
emission in the adiabatic regime

In the typical experiment sketched in Fig. 1.2, a strong pump laser field is followed
by a second weaker probe field whose physical properties are measured as a func-
tion of the pump-probe temporal delay. The low intensity of the probe and pump
field and their temporal duration and delay can be used to simplify further the
equations. Those are the physical basis for the low-intensity approximation and
for the introduction of the adiabatic ansatz regime. These two special regimes are
motivated by well-defined physical arguments that are introduced in this section.

The aim of this section is to use the fact that Eq. (3.29) is closed in the space of
the density matrices and rewrite all possible observables relevant to the dynamics
schematically represented in Fig. 1.2 as functions of the time-dependent density
matrix.
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3. THE TIME DEPENDENT BSE

3.4.1 Adiabatic ansatz

The adiabatic ansatz has been first introduced in Ref. [41] and in the following we

present a short review in order to introduce the physical basis for the low-intensity

and completed collision approximations. The temporal geometry of the pump and

probe fields must appear explicitly in Eq. (2.19) connected to two components of

the external charge

⇢
ext

(1) = ⇢p
ext

(1) + ⇢P
ext

(1) , (3.30)

with ⇢P/p referring to, respectively, the pump/probe components of the external

charge. These terms define the pump and probe fields, EP/p
(1) = �r�P/p

ext

(1). In

a P&p experiment we have that, in general, |EP | � |Ep| and the two fields are

separated by a temporal delay ⌧ .

The delay time ⌧ is a crucial ingredient of the dynamics. Indeed the pump

field excitation induces several processes with different time-scales. The laser

excitation induces off-diagonal matrix elements of the density matrix ⇢ij , which

in turn corresponds to a laser-induced current J (1) =

P

ij jij (r1) ⇢ji (t1), with jij

the matrix elements of Eq. (2.7a). The time-scale which describes the decay of the

polarisation and of the current, ⌧
pol

, is dictated by relaxation processes.

At the same time, the pump excites electrons from the valence to the conduction

bands and these carriers first relax towards the band minimum (in the case of

electrons) and band maximum (in the case of holes). This relaxation occurs on a

time scale ⌧
carr

. Thus, after a time ⌧
max

= max (⌧
pol

, ⌧
carr

), we may say that the

system is in a quasi-stationary state. In this regime the time to relax back to the

ground state is dictated by e-� scattering and can be of the order of picoseconds.

The key assumption of the adiabatic ansatz is that the delay ⌧ is chosen in

such a way that, for times t ⇡ ⌧ , we have that ⇢ (t+�t) ⇡ ⇢(t), if �t ⌧ ⌧
max

. The

fundamental idea of such approximation is that, during the measurement process,

the non-equilibrium configuration of the system is frozen.

By using Eq. (3.30) in the external interaction term of h, we can now make

explicit the different terms contributing to Eq. (3.6). We start by using the COH-

SEX for the coherent part, and by splitting Sdyn in the three terms induced by the
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Figure 3.3: Depiction of the characteristic times which control a pump-and-probe
experiment: �P is the duration of the laser pump; ⌧p is the lifetime of the dressed
probe; ⌧carr the time needed for occupations to stabilise; ⌧pol is the duration in which
the polarisation dephases; ⌧scatt is the time needed to return to an equilibrium state.
The delay between the pump and the probe fields, ⌧ , is also displayed. Picture taken
from Ref. [41].

different possible interactions

d

dT
⇢ (T ) + i [h

ext

(T ) , ⇢ (T )]

= �Scoh

[⇢] (T )� Sdyn

e�e [⇢] (T )� Sdyn

e�p [⇢] (T )� Sdyn

e�� [⇢] (T ) . (3.31)

The physical contents of the above equations are made clear by Eq. (3.29). In all
the three cases the elemental process described by Sdyn is a single transition from
the electronic state i to the electronic state j by spanning all possible intermediate
states composed by an electron in the level k and a plasma (e-e case), phonon (e-
p case), and photon (e-�) excitation. The fact that it is a single transition is a
consequence of the use of a GW approximation.

We start by noticing that, when the external pump and probe fields are zero, ⇢
is diagonal:

⇢ij (T )|EP

=Ep

=0 = �ijfi. (3.32)

Equation (3.31) is a non-linear equation whose non-linearity is driven by the pump
field. This non-linearity mixes the diagonal and off-diagonal components of ⇢ cre-
ating a complex interplay between the induced carrier occupations and the related
polarisation. However, in the case of a low-intense pumping field, if the system has
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3. THE TIME DEPENDENT BSE

reached the quasi-stationary state, we can approximate in the right-hand side of

Eq. (3.29):

⇢kl (T ) ⇡ �klfk (T ) , (3.33a)

⇢kl (T ) ⇡ �kl [1� fk (T )] . (3.33b)

We will refer to this set of approximations as low-intensity approximation (LIA).

This is a well-established physical regime used in a wealth of experimental setups

where the density of carriers created in the conduction bands is low enough to not

alter substantially the physical properties of the material.

3.4.2 Carrier dynamics

In the LIA, the complex structure of the dynamical kernel in Eq. (3.29) can be

further reduced to a compact and simple form:

Sdyn

ij (T ) ⇡ Sdyn

ij (T )
�

�

�

LIA

= i

X

n

h

�(�)

ijn (T ) ⇢nj (T ) + ⇢in (T ) �
(+)

nij (T )

��̃(�)

ijn (T ) ⇢nj (T )� ⇢in (T ) �̃
(+)

nij (T )
i

, (3.34)

with

�(±)

ijn (T ) = (�i)
X

Is

�

RI
ki

�⇤
fk (T )RI

knN
�s
I

("k � "j � s!I ± i0

+

)

, (3.35a)

�̃(±)

ijn (T ) = (�i)
X

Is

�

RI
ki

�⇤
(1� fk (T ))RI

knN
s
I

("k � "j � s!I ± i0

+

)

. (3.35b)

In obtaining Eqs. (3.34), (3.35a), and (3.35b) we have used the LIA only on the

internal density matrices as their indexes are free and do not impose the Sdyn to

be diagonal.

We can now link Eq. (3.31) to the complex dynamics we were aiming at describ-

ing at the beginning of this work, schematically represented in Fig. 1.2. Physically,

the different contributions to Sdyn represent the different channels that concur to

the dynamics following the primary pump excitation. To see in practice their effect

we move to the splitting of Eq. (3.31) in carrier and polarisation dynamics.
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The equation of motion for the carrier occupations is readily obtained by taking

the diagonal components of the ⇢, solution of Eq. (3.31). In this case, the diago-

nal components of Sdyn acquire a simple interpretation. Indeed, from Eqs. (3.34),

(3.35a), and (3.35b) it immediately follows that

Sdyn

ii (T )
�

�

�

LIA

= 2⇡
X

Isk

|RI
ki|2

⇥

(1� fk (T )) fi (T ) � ("i � "k � s!I)N
�s
I

�fk (T ) (1� fi (T )) � ("i � "k � s!I)N
s
I ]

=

X

I

�(I,e)i (T ) ⇢ii (T )� �(I,h)i (T ) ⇢ii (T ) . (3.36)

Equation (3.36) represents a generic Markovian scattering of the electron/hole [la-

belled by the (e/h) superscripts] in the state i to the generic state k mediated by

the emission (s = +1) or absorption (s = �1) of a generic boson of energy !I . In the

e-e case, this boson is an additional electron-hole pair. In the e-p case the boson is

a phonon, and in the e-� channel it is a photon.

In the e-p and e-e cases, Eq. (3.36) reduces to the equation derived previously

[40] and applied to the interpretation of the time-resolved two-photon photon-

emission experiment of bulk silicon [21]. However, the present case extends the

derivation to the e-� channel. This extension defines in a pure NEQ framework

the radiative electron/hole lifetimes. At difference with the usual formulation [65]

the �i lifetimes are time-dependent and depend on the time fluctuations of the car-

rier occupations. Moreover, by means of the presence of Scoh, the coupling with the

external laser field is correctly described.

3.4.3 Light absorption

Starting from the equilibrium condition, an external field will induce an electronic

dipole defined as the expectation value of the dipole operator, which in turn is

defined in terms of the density matrix

ˆd = ⌘p · ˆd ⌘
Z

dr (⌘p · r)⇢̂(r, r) = dij ⇢̂ji, (3.37)

with dij =

R

dr'⇤
i (r)(⌘p · r)'j(r) the dipole matrix elements. For simplicity, in

Eq. (3.37), we have assumed that the pump and probe fields are polarised along
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3. THE TIME DEPENDENT BSE

the ⌘p direction. The time-dependent expectation value of the dipole operator,
d (T ), is then given by

d (T ) = h (T ) | ˆd| (T )i = dijh (T ) |⇢̂ji| (T )i, (3.38)

and can be calculated using the electronic reducible polarisation function p
e

(1, 2)

as

�d (T ) = dij

Z

dt0pji
lk
,e

�

T, t0
�

dklEp

�

t0
�

=

Z

dt0
⇥

d � �
�

T, t0
�

� d
⇤

Ep

�

t0
�

. (3.39)

In Eq. (3.39) we used the conventions listed in App. C [see Eq. (C.2)].
The absorption coefficient S⌧

(!) can be easily calculated from the density-
density linear response function, �, as [41]

S⌧
(!) = �2!|e (!) |2= [d � �⌧

(!) � d] , (3.40)

with �⌧
(!) defined in Sec.3.5 and obtained from � (t, t0) by applying the adiabatic

ansatz. The problem is now how to calculate �.
From Eq. (3.39) and the definition of the total (external plus induced) scalar

field [Eq. (2.30)] we know that the matrix components of the reducible electronic
polarisation function can be written as

�ji
lk

�

t, t0
�

= �i✓
�

t� t0
�

h g|
h

ĉ†iH (t) ĉjH (t) , ĉ†kH
�

t0
�

ĉlH
�

t0
�

i

| gi, (3.41)

which, together with its irreducible counter-part �̃, can be rewritten respectively
as derivatives of the time-dependent density-matrix with respect to the total or
the external potential

�̃ji
lk

�

t, t0
�

=

�⇢ij (t)

�Ukl (t0)
, (3.42a)

�ji
lk

�

t, t0
�

=

�⇢ij (t)

��extkl (t0)
. (3.42b)

The derivation of the equation of motion for both � and �̃ is obtained by applying
the functional derivatives to the equation of motion for ⇢ (T )1:

d

dt

n �⇢ji (t)

��extkl (t0)

o

=

�

��extkl (t0)

n

�i [h
ext

(t) , ⇢ (t)]ji � Scoh

ji [⇢] (t)� Sdyn

ji [⇢] (t)
o

. (3.43)

1The time derivative operator and the functional derivative operator can be exchanged since we
are considering a variation in the functional dependence due to a change in the functions, but not in
the coordinates.

50



3.4 Carrier dynamics, transient absorption, and light emission in the
adiabatic regime

The first term on the right-hand side of Eq. (3.43) is

�

��extkl (t0)

n

[h
ext

(t) , ⇢ (t)]ji

o

= [�jk⇢li (t)� ⇢jk (t) �li] �
�

t� t0
�

+

⇥

h
ext

(t) , �̃
�

t, t0
�⇤

ji
lk
,

(3.44)

where we have used the compact form given by Eq. (C.4) to write the last term of
Eq. (3.44). The derivative of Scoh can be evaluated within the COHSEX approxi-
mation for ⌃s, Eq. (3.13),

�Scoh

ji (t)

��extkl (t0)
= i



�⌃s
(t)

��extkl (t0)
, ⇢(t)

�

ji

= i

⇥

Ks � �̃(t, t0), ⇢(t)
⇤

ij
kl

(3.45)

In order to evaluate the functional derivative acting on the Sdyn functions we use
the following chain rule:

�

��extkl (t0)
=

Z

dt
�⇢mn

�

t
�

��extkl (t0)

�

�⇢mn

�

t
� , (3.46)

so that

�

��extkl (t0)
Sdyn

ji [⇢] (t) =

Z

dt
h

Kdyn

�

t, t
�

� �̃
�

t, t0
�

i

ji
lk

. (3.47)

Thus, the final equation for the longitudinal two-times linear response function
becomes

d

dt
�̃
�

t, t0
�

+ i

⇥

h
ext

(t) , �̃
�

t, t0
�⇤

+ i

⇥

Ks � �(t, t0) + 1�
�

t� t0
�

, ⇢ (t)
⇤

=

�
Z

dt
h

Kdyn

�

t, t
�

� �̃
�

t, t0
�

i

. (3.48)

As explained in Sec. 3.5, the non-local time dependence of the left-hand side of
Eq. (3.48) can be simplified by using the adiabatic ansatz. The most complicated
term remains the dynamical kernel, Kdyn, that we will extensively discuss in Sec.
3.4.5. Indeed, Kdyn is a common ingredient of the equations describing both the
light absorption and emission.

3.4.4 Light emission

Thanks to the quantisation of the electromagnetic field, we can now derive a closed
expression for the light-emission spectrum. As it will be clear shortly the present
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formulation allows to introduce coherently the combined effects induced by the
e-e and e-p coupling. This represents an important step forward compared to the
state-of-the-art formulation and, more importantly, it allows an efficient “merging”
with DFT.

In order to derive the expression for the light emission spectrum in terms of the
density matrix and use Eq. (3.31) to create a link with the density-matrix equation
of motion, we use here the Poynting vector. In its Hermitian form this vector is
written as

ˆS(1) =
c

8⇡

h

ˆE†
(1)⇥ ˆB(1)� ˆB†

(1)⇥ ˆE(1)

i

=

c

8⇡

h

ˆE†
(1)⇥ ˆB(2)� ˆB†

(2)⇥ ˆE(1)

i

�

�

�

2=1

. (3.49)

The Poynting theorem relates the change in the energy of the energy density
of the electromagnetic field hû(1)i with the Poynting vector through its divergence

@ hû(1)i
@t

1

= �hˆJ(1) · ˆE(1)i � 1

c
r

1

· hˆS(1)i . (3.50)

The first term on the right-hand-side of Eq. (3.50) reflects the amount of energy
per time and per volume which is transferred to electrons through mechanical
work, while the second term the energy which escapes the system as radiation.
Thus, we can write the power spectrum of the system I(1), i.e., the energy per
time per volume which escapes the system due to the quantum correlations in the
material as the Fourier transform of the divergence of hˆS(1)i with respect to time

I(r
1

,!) = r · hˆS(r
1

,!)icorr . (3.51)

We now take the relations between the fields and the vector potential which,
in Coulomb’s gauge (r ·A = 0), are given by

ˆE(1) = �1

c

@ ˆA(1)

@t
1

, (3.52a)

ˆB(1) = r⇥ ˆA(1). (3.52b)

By using Eqs. (3.52a) and (3.52b), we can write explicitly the expression for the
lesser and greater transverse photon propagator as

D<
↵�(1, 2) =

1

4⇡i

h

h ˆA�(2)
ˆA↵(1)i � h ˆA↵(1)i h ˆA�(2)i

i

, (3.53a)

D>
↵�(1, 2) =

1

4⇡i

h

h ˆA↵(1)
ˆA�(2)i � h ˆA↵(1)i h ˆA�(2)i

i

. (3.53b)
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It is now possible to split the expectation value of the Poynting vector into two

parts: a classical part which contains the information of the macroscopic effects

h ˆS↵(1)i
class

=

1

2

3

X

�=1

� 6=↵

@ h ˆA�(1)i
@t

1

"

@ h ˆA↵(2)i
@r

2,�
�
@ h ˆA�(2)i
@r

2,↵

#

, (3.54)

and a contribution due solely to correlation effects

h ˆS↵(1)i
corr

=

1

2

3

X

�=1

� 6=↵

@

@t
1

⇢

@

@r
2,�

h

D>
�↵(1, 2) +D<

�↵(1, 2)
i

� @

@r
2,↵

h

D>
��(1, 2) +D<

��(1, 2)
i

�

�

�

�

�

2=1

. (3.55)

Equation (3.55) demonstrates that the evaluation of the light emission spectrum

is linked to the calculation of the lesser and greater transverse photon propaga-

tors that can be rewritten in terms of the advanced/retarded counterparts and the

transverse response function [11]

 !D ?
(1, 2) =

 !D r
(1, 3)

 !
P ?

(3, 4)
 !D a

(4, 2). (3.56)

The problem of calculating the advanced and retarded photon propagators is itself

a complicated issue. Here we assume to be interested in systems where the renor-

malisation of the photons can be neglected. This is the case of simple solids and

molecules where the electronic polarisation effects on the electromagnetic field can

be assumed to be negligible. We start, then, from an independent particle approx-

imation for Da/r:

Dr
↵�(r, t) = �

ic2

2

X

I

⌧ I↵�
⇥

¯⇠I(r)e
�i!

I

t �H.c.
⇤

✓(t), (3.57a)

Da
↵�(r, t) =

ic2

2

X

I

⌧ I↵�
⇥

¯⇠I(r)e
�i!

I

t �H.c.
⇤

✓(�t). (3.57b)

In Eqs. (3.57a) and (3.57a0) we have introduced the single free photon wave-

function, ¯⇠I(r) ⌘ 2⇡/ (⌦!q+G) eir·(q+G). We remind here the convention introduced

in Sec.3.1 to label the photon state as I ⌘ (q,G). By using Eqs. (3.57a) and (3.57b),
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we rewrite Eq. (3.55) only in terms of P?
↵�:

D>
↵�(1, 2) +D<

↵�(1, 2) =
c4

4

X

I,J
↵
1

↵
2

Z

d3d4

h

⇠I(r1 � r
3

)e�i!
I

(t
1

�t
3

) �H.c.
i

⌧ I↵↵
1

⇥
⇥

P>
↵
1

↵
2

(3, 4) + P<
↵
1

↵
2

(3, 4)
⇤

⌧J↵
2

�

h

⇠J(r4 � r
2

)e�i!
I

(t
4

�t
2

) �H.c.
i

✓(t
1

� t
3

)✓(t
2

� t
4

).

(3.58)

Equations (3.58) reduces the calculation of the light-emission spectrum, I (!), to
the evaluation of the equation of motion for P?

↵�(1, 2). It is evident, then, that we
can now follow a path quite similar to the longitudinal case by using a series of
chain rules to close the equation of motion in an algebraic form. Indeed, we start
by the P?

↵�(1, 2) definition:

P↵�(r1, t1; r2, t2) = �
4⇡

c

� hJ ind

↵ (r
1

, t
1

)i
� hA�(r2, t2)i

, (3.59)

and by rewriting the induced current as

J ind

↵ (r, t) = i⇧↵(r, r
0
)G(r, t; r, t0)

�

�

r0=r
t0=t+

= � ⇧↵(r, r
0
)⇢(r, r0; t)

�

�

r0=r
. (3.60)

Then, by using Eq. (2.9) and expanding the density-matrix in the single-particle
basis we can rewrite the induced current in terms of ⇢(t)

J ind

↵ (r, t) = �
X

ij

⇧ij,↵(r)⇢ji(t), (3.61)

where ⇧ij,↵(r) = ⇧↵(r, r0)�⇤i (r)�j(r
0
)|r0=r. We also expand the variations of hA↵(1)i

in a photon basis

� hA↵(r, t)i =
1

2

X

I

[⇠I(r)�AI,↵(t) + H.c.] . (3.62)

where ⇠I(r) =

⇣

8⇡c2

⌦!
I

⌘

1/2
eir·(q+G). By using Eqs. (3.62) and (3.61) we can rewrite

Eq. (3.59) as

�4⇡

c

X

ij

⇧ij,↵(r)�⇢ji(t) =
1

2

X

I

Z

dt0dr0 P↵�(r, t; r
0, t0) [⇠I(r)�AI,�(t) + H.c.] . (3.63)

We can now recast the functional derivative with respect to �A as

�4⇡

c

X

ij

⇧ij,↵(r)
�⇢ji(t)

�AI,�(t0)
=

1

2

Z

dr0P↵�(r, t; r
0, t0)⇠I(r

0
), (3.64)
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and its adjoint

�4⇡

c

X

ij

⇧ij,↵(r)
�⇢ji(t)

�A⇤
I,�(t0)

=

1

2



Z

dr0P↵�(r, t; r
0, t0)⇠I(r

0
)

�⇤
. (3.65)

At this point we can define the I-th component of the transverse linear response
function as

PI
ij(t, t

0
) =

�⇢ij(t)

�AI(t0)
. (3.66)

This means that we can use the same procedure as we did for the electronic polar-
isation function � [see, for example, Eq. (3.43)] and write

�

�AI(t0)
[h

ext

(t), ⇢(t)]ji = �(t� t0)
⇥

pI , ⇢(t)
⇤

ji
+



h
ext

(t),
�⇢(t)

�AI(t0)

�

ji

, (3.67)

with

pI
ij = �

i

c

Z

d r�⇤j (r)⇠I(r)r�j(r). (3.68)

In Eq. (3.67) we have used the compact notation defined by Eq. (C.4) in order
to simplify the notation. The terms involving the functional derivatives of the
COHSEX and dynamical kernels will follow the same procedure of the longitudinal
case. In the case of the COHSEX kernel contribution, indeed, we have that

�Scoh

ji (t)

�AI (t0)
=

Z

dt
�⇢mn

�

t
�

�AI (t0)

�Scoh

ji (t)

�⇢mn

�

t
�

=



Ks �
�⇢ (t)

�AI (t0)
, ⇢(r)

�

ji

, (3.69)

and for the dynamical kernel we will write

�Sdyn

ji (t)

�AI (t0)
=

Z

dt

 

Kdyn

(t, t) �
�⇢
�

t
�

�AI (t0)

!

ji

. (3.70)

We can now derive the final equation of motion for PI
ij(t, t

0
) in similarity with what

we did for �(t, t0)

d

dt
PI
�

t, t0
�

+ i

⇥

h
ext

(t) ,PI
�

t, t0
�⇤

+ i

⇥

Ks �PI
(t, t0) + �(t� t0)pI , ⇢(t)

⇤

=

�Kdyn

(t) �PI
�

t, t0
�

. (3.71)

Equation (3.71) represents another important result of this work. It derives a
closed equation for the transverse response function and, in turns, it provides a

55



3. THE TIME DEPENDENT BSE

sound scheme to calculate the photoluminescence spectrum. As this equation is

derived in a scheme where e-e and e-p are included this means that, physically, we

have all essential ingredients of the dynamics. The carriers excited by the primary

pump pulse will, then, relax, dissipate and participate in bound electron-hole pairs

before recombining and emitting light.

A final methodological remark is due. Equation (3.71) is for the response func-

tion defined in Eq. (3.64). An equivalent equation can be derived for its complex

conjugate, defined by Eq. (3.640). The only difference with Eq. (3.71) would be that

the matrix elements pI
ij must be replaced with qI

ij = � i

c

R

dr�⇤j (r)⇠
⇤
I (r)r�j(r).

3.4.5 The dynamical two-particle kernel

A common ingredient of Eq. (3.73) and Eq. (3.71) is the dynamical kernel K, de-

fined in Eq. (3.47) as �Sdyn

ji

[⇢](t)

�⇢
mn

(

t
)

. We have now all ingredients to analyse the physical

contents of Kdyn and interpret its properties.

The problem is now how to calculate this functional derivative and how to use

the LIA.

If we look back into Eq. (3.29) and Fig. 3.2, we see how to evaluate the func-

tional derivative of Eq. (3.47). The point is what happens if we apply the LIA.

Indeed we have two possibilities: to apply the LIA before taking the functional

derivative; or to apply it after the derivative.

As we will show shortly, this corresponds to neglect specific diagrams in the

equation for the two-particle Green’s function. In order to do so, let us follow a

diagrammatic path. If we start from Fig. 3.2 we see that the derivative �
�⇢

mn

(

t
)

can

be applied both on ⇢ and ⇢. Graphically this corresponds to open the diagram as

schematically shown in Fig. 3.4.

We clearly see that two kinds of interactions contribute to the dynamical ker-

nel: an electron-hole pair interaction [Fig. 3.4(a)], and a simple e-e [Fig. 3.4(b)]

or hole-hole [Fig. 3.4(c)] interaction mediated by a generic boson, shown in the

bottom right of Fig. 3.4. The electron-hole interaction is, in the equilibrium lan-

guage, the well-known dynamical part of the screened electron-hole interaction.

This has been studied in the framework of the BSE and showed to be connected

and compensated with the dynamical self-energy effects [66, 67].
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i k

n l

Ī
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Figure 3.4: Diagrammatic contributions to the dynamical kernel Kdyn resulting from
the application of the functional derivative to Sdyn, within the GW approximation.

Now, if we apply the LIA before taking the functional derivative we notice that

the Fig. 3.4(a) disappears as it comes from the internal density matrix that, in

Eq. (3.34) is approximated by its diagonal. Instead if we apply the LIA after the

functional derivative the two internal density matrices in Figs. 3.4(b) and 3.4(c)

are approximated by occupation factors.

If we take the path of applying the LIA before doing the functional derivative

we get a closed expression for Kdyn:

Kdyn

ji
lk

�

t, t
�

⇡ Kdyn

ji
lk

(t) �
�

t� t
�

= �
�

t� t
�

h

�il
⇣

�(�)

ilk (t) + �̃(�)

jlk (t)
⌘

+

�jk
⇣

(�(+)

lki (t) + �̃(+)

lki (t)
⌘i

, (3.72)

which allows us to simplify the equation of motion for the longitudinal two-times
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3. THE TIME DEPENDENT BSE

response function, turning Eq. (3.48) into

d

dt
�̃
�

t, t0
�

+ i

⇥

h
ext

(t) , �̃
�

t, t0
�⇤

+ i

⇥

Ks � �̃(t, t0) + 1�
�

t� t0
�

, ⇢ (t)
⇤

=

�Kdyn

(t) � �̃
�

t, t0
�

. (3.73)

Equation (3.73) allows a simple and immediate physical interpretation as the �

function simply representing a time-dependent relaxation of the polarisation that

appears as a time-dependent broadening of the corresponding absorption peaks.

3.5 The frequency representation of the transient ab-
sorption and luminescence spectra

In the equilibrium limit it is well known that the response function depends on

the time difference and therefore it can be easily transformed in frequency space

by applying a Fourier transform. This is a natural consequence of the time-

translational invariance of the theory and reflects the fact the the energy of the

system is conserved.

Out-ofequilibrium the energy of the electronic and nuclear sub-system is not

conserved anymore as it flows back and forth to the electromagnetic field. As a

consequence both � and P are complex two-times functions. The next step is to

use the adiabatic ansatz (see Sec. 3.4.1) to change Eqs. (3.48) and (3.71) in order

to have algebraic equations for � and P I,↵, as is in the state-of-the-art equilibrium

case.

In the adiabatic ansatz, ⇢(t) and AI,↵(t) will change slowly in time. For times

(t, t0) ⇡ ⌧ (with ⌧ the pump-probe time delay) the response functions can be taken

as a function of the relative time coordinate

�(t, t0) ⇡ �⌧
(t� t0), (3.74a)

PI
(t, t0) ⇡ PI,⌧

(t� t0). (3.74b)

Since in the adiabatic regime the density changes slowly in time, as long as the

conditions described in Sec. 3.4.1 (a more detailed description can be found in

Ref. [41]), the dynamic kernel of Eq. (3.48) can also be taken as a function of the
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3.5 The frequency representation of the transient absorption and
luminescence spectra

relative time coordinate. Thus, we can finally rewrite Eq. (3.48) into an algebraic
form for the frequency dependent response function

�i!�̃⌧
(!) + i [h

ext

(⌧), �̃⌧
(!)] + i [K⌧

s � �̃⌧
(!) + 1, ⇢(⌧)] = �Kdyn,⌧

(!) � �̃⌧
(!). (3.75)

The question now is how to bypass the calculation of the one-particle density ma-
trix ⇢(⌧) so that we can have an equation in which the only unknown quantity is
the response function. In the equilibrium limit, we can always rotate the Hamilto-
nian h

ext

and the density into a basis where both would be diagonal, but this is not
possible in non-equilibrium processes. Therefore, by following Ref. [41], we con-
sider an orthogonal matrix O(⌧) which rotates the Hamiltonian to the equilibrium
basis and brings h

ext

(⌧) to its diagonal form
h

O†
(⌧)h

ext

(⌧)O(⌧)
i

ij
= �ij✏i(⌧). (3.76)

In this new basis, the Eq. (3.75) reads as
h

! ��✏(⌧) + iKdyn,⌧
(!)
i

� �⌧
(!) = [K⌧

s � �(!) + 1, ⇢(⌧)] . (3.77)

Here we have defined the energy tensor �✏(⌧)ij
pq

= [✏i(⌧)� ✏j(⌧)] 1ij
pq

. Following this
definition we can write the NEQ response function �⌧

0

as

�⌧
0

(!) = �
h

! ��✏(⌧) + iKdyn,⌧
(!)
i�1

� [⇢(⌧), 1]. (3.78)

If we now use the property

[⇢(⌧),K⌧
s � �̃⌧

(!)] = [⇢(⌧), 1] �K⌧
s � �⌧

(!), (3.79)

we can finally obtain a Dyson-type equation for �̃⌧
(!)

�⌧
(!) = �̃⌧

0

(!) + �⌧
0

(!) �K⌧
s � �⌧

(!). (3.80)

If we apply the same process to the transverse response function, we see that its
differential equation, Eq. (3.71), becomes

� i!PI,⌧
(!) + i

⇥

h
ext

(⌧),PI,⌧
(!)
⇤

+ i

⇥

K⌧
s �PI,⌧

(!) + pI,⌧ , ⇢(⌧)
⇤

= �Kdyn,⌧
(!) �PI,⌧

(!) (3.81)
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3. THE TIME DEPENDENT BSE

and after reverting to the basis where h
ext

(⌧) is diagonal and following the same
procedure we used to arrive at Eq. (3.80), we obtain the desired Dyson-type equa-
tion for PI,⌧

(!)

PI,⌧
(!) = PI,⌧

0

(!) + �̃⌧
0

(!) �K⌧
s �PI,⌧

(!) (3.82)

with the NEQ PI,⌧
0

(!) being

PI,⌧
0

(!) = �
h

! ��✏(⌧) + iKdyn,⌧
(!)
i�1

� [⇢(⌧),pI,⌧
]. (3.83)

Equation (3.83) represents another crucial result of this work. It provides, indeed,
the basis for a fully ab-initio implementation of the transient photoluminescence
spectrum. This will allow to extend what has been already done previously [68] in
the transient absorption case. Unfortunately, however, PI,⌧

(!) is an intrinsically
retarded function, and as we see from Eq. (3.55) we need the equations for the
lesser and greater counterparts. In the next chapters we show how to circumvent
this problem and obtain the expression for the power spectrum.
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Chapter 4

The structure of the vectorial
BSE

“How do you know I’m mad?”
said Alice.
“You must be,” said the Cat, “or
you wouldn’t have come here.”

Lewis Carroll, Alice in
Wonderland

In Subsec. 3.4.4 we have shown how to obtain an equation of motion for the re-

tarded NEQ vectorial linear response function. However, we need the information

about the lesser and greater photon polarisation functions, especially the contri-

butions coming from electronic transitions of out-of-equilibrium electrons. We can

obtain this information by looking into the pole structure of a vectorial BSE equa-

tion for the electromagnetic vertex.

4.1 The vectorial BSE for the electromagnetic vertex

In the electronic case the linear response function is closely connected with the

two-particle correlation function, L, which is defined as

L(1, 2; 3, 4) =
�G(1, 2)

�U(4, 3)
, (4.1)
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4. THE STRUCTURE OF THE VECTORIAL BSE

where U is the total electronic potential defined in Eq. (2.40). This function’s equa-
tion of motion is called the Bethe-Salpeter equation

L(1, 2; 3, 4) = L
0

(1, 2; 3, 4) + L
0

(1, 5; 3, 6)⌅(6, 7; 5, 8)L(8, 2; 7, 4), (4.2)

where the BSE kernel is written as

⌅(6, 7; 5, 8) =
�⌃(6, 5)

�G(8, 7)
⇡ i [W (6, 5)�(6, 8)�(5, 7)� v(6, 8)�(5, 6)�(7, 8)] , (4.3)

and the non-interacting correlation function L
0

is given by

L
0

(1, 2; 3, 4) = G(1, 3)G(4, 2). (4.4)

In Eq. (4.3) we are following the approximation of ignoring the contributions from
the term �W (1,2)

�G(3,4) [55], thus avoiding contributions from higher-order vertex correc-
tions.

The linear-response function � used in Sections 3.4 and 3.5 [see Eqs. (3.42a)
and (3.42b)] is connected with the two-particle correction function through the
relation �(t, t0) = L(t, t+; t0, t0+). In those Sections we saw that when dealing with
electromagnetic fields we needed to define a vectorial response function [Eq. (3.66)]
which is connected to the transverse polarisation [Eq. (2.61)]. This suggests that
we should introduce a general three-point photon polarisation function

P↵�(1, 2; 3) = �
4⇡i

c
⇧↵(1, 2)

�G(1, 2)

�A�(3)
, (4.5)

which then by itself introduces a pair-photon correlation function L, which we
define as

L(1, 2; 3) =
�G(1, 2)

�A(3)

. (4.6)

We can show that L follows a Bethe-Salpeter equation similar to that of L. We
start by using again Eq.(2.43)

L(1, 2; 3) = �G(1, 4)
�G�1

(4, 5)

�A(3)

G(5, 2)

=

⇥

⇧(4, 40)G(1, 4)G(5, 2)
⇤

�(4, 3)�(4, 5)|
4

0
=4

+G(1, 4)
⌃(4, 5)

�G(6, 7)

�G(6, 7)

�A(3)

G(5, 2)

= L
0

(1, 2; 3) + L
0

(1, 5; 2, 4)⌅(4, 7; 5, 6)L(6, 7; 3), (4.7)
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4.1 The vectorial BSE for the electromagnetic vertex

which introduces the zeroth-order pair-photon correlation function L
0

L
0

(1, 2; 3) =
⇥

⇧(3, 30)G(1, 3)G(3

0, 2)
⇤

|
3

0
=3

, (4.8)

for which we can use the non-interacting picture as the starting point. A diagram-
matic representation of this equation can be seen in Fig. 4.1.

L = + ⌅ L

Figure 4.1: Diagrammatic representation of the BSE for the transverse vertex. As
before the bullet represents a ⇧ differential operator.

4.1.1 The basis expansion for the photon vertex

Before we can proceed we need to study the expansion form of L(1, 2; 3) as we did
in Subsec. 3.4.4 for the expansion of the transverse polarisation. Using a basis
expansion for G(1, 2) and A(3) [see Eq.(3.2) and Eq.(3.62)] we arrive at

L(1, 2; 3) =
X

i,j

X

I

�i(r1)�
⇤
j (r2)⇠

⇤
I (r3)

�Gij(t1, t2)

�AI(t3)

=

X

i,j

X

I

�i(r1)�
⇤
j (r2)⇠

⇤
I (r3)Lij,I(t1, t2; t3). (4.9)

With this expansion we can obtain a relation between the time-dependent coeffi-
cients of L

0

, which we write as L0

ij,I(t1, t2; t3), and the time-dependent coefficients
of L0

ij
kl

(t
1

, t
2

; t
3

, t
4

). We obtain that

L
0

(1, 2; 3) =
⇥

⇧(3, 30)G(1, 3)G(3

0, 2)
⇤

|
3

0
=3

=

X

ij
kl

�i(r1)
⇥

⇧(3, 30)�k(r
0
3

)�⇤j (r3)
⇤

|
3

0
=3

�l(r2)Gij(t1, t3)Gkl(t3, t2)

=

X

uv

X

I

�u(r1)�
⇤
v(r2)⇠

⇤
I (r3)L0

uv,I(t1, t2; t3))

) L0

ij,I(t1, t2; t3) =
X

kl

L0

ik
lj
(t

1

, t
2

; t
3

, t
4

)⇧kj,I , (4.10)

63



4. THE STRUCTURE OF THE VECTORIAL BSE

where we have

⇧kj,I =

Z

dr ⇠I(r)
⇥

⇧(r, r0)�k(r
0
)�⇤j (r)

⇤

|r0=r. (4.11)

This is a useful step as the L
0

and L functions have already been extensively stud-
ied within various approximations, so Eq. (4.10) allows us to reuse those results.

4.1.2 The matrix form for the BSE

To continue with the derivation of a matrix expression for the pair-photon BSE we
recall the definition of ⌅ in Eq. (4.3), with which we write

L(1, 2; 3) = L
0

(1, 2; 3) + i [L
0

(1.5; 2, 4)W (4, 5)L(4, 5; 3)�

L
0

(1, 4; 2, 4)w(4, 6)L(6, 6; 3)] . (4.12)

Herein we focus only on the electronic dynamics when evaluating the contributions
to the transverse vertex.

The COHSEX approximation is a good starting point for the screened interac-
tion W , which can be expanded together with the Coulomb interaction w as

W (1, 2) =
�(t

1

� t
2

)

⌦N

X

q

X

GG0

WGG0
(q)ei[(q+G)·r

1

�(q+G0
)·r

2

], (4.13)

w(1, 2) =
�(t

1

� t
2

)

⌦N

X

q

X

G

4⇡

|q+G|2 e
i(q+G)·(r

1

�r
2

). (4.14)

Together with Eqs. (4.10) and (4.12) we arrive at the diagrammatic contributions
for the matrix elements L n

1

k
1

n
2

k
1

�q,I
(t

1

, t
2

; t
3

), which are shown in Fig. 4.2.

We can now evaluate each contribution individually. The first term coming
Fig. 4.2 [subfigure a)] is simply the non-interacting L

0

expressed in Eq. (4.10).
The second term [subfigure b)] arises from the contribution of the static screened
interaction W , and is expressed by

1

⌦N

X

n
4

n
5

X

G
4

G
5

X

q0

X

I

Z

d4d5�n
1

k
1

(r
1

)�⇤n
1

k
1

(r
4

)�n
2

k
1

�q(r5)�
⇤
n
2

k
1

�q(r2)�n
4

k
1

�q(r4)

⇥ �⇤n
5

k
1

�q�q0(r
5

)Gn
1

k
1

(t
1

, t
2

)Gn
2

k
2

�q(t5, t2)WG
4

G
5

(q)ei[(q+G)·r
4

�(q+G0
)·r

5

]

⇥ ⇠I(r3)L n
4

k
1

�q0

n
5

k
1
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). (4.15)

64



4.1 The vectorial BSE for the electromagnetic vertex
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Figure 4.2: Diagrammatic contributions for L. Diagram a) corresponds to the non-
interacting part L0, where the bullet represents a ⇧ differential operator. Diagrams
b) and c) are, respectively, the contributions from the static screened interaction W

and the Coulomb potential w defined in Eq. (4.13) and (4.14).
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We can rewrite Eq. (4.15) in a more compact expression, obtaining
X

n
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), (4.16)

where we defined the matrix element of W as

Wn
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n
4
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(k
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with

⇢n
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4 . (4.18)

The same procedure can be used for the contributions which arise from the Coulomb
potential, which are represented in diagram c) of Fig. 4.2.

In full, like in Eq. (4.15), the contribution from the Coulomb interaction is
written as
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which we can then bring into compact from by writing
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Here the matrix elements of the Coulomb interaction are given by
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By inserting the matrix elements of W and w into Eq. (4.12) we arrive at the
finite momentum BSE for the matrix elements of L
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4.2 The BSE for the lesser and greater vectorial vertex

Similarly to what is done in literature for the density-density correlation func-
tion L (see, for instance, Ref. [15]), we take the optical limit by doing q ! 0, thus
arriving at the zero momentum BSE
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Here the factor 2 before the contributions from the Coulomb potential accounts for
the spin. We can rewrite Eq. (4.23) into a compact form by defining the matrix
elements of the kernel as
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and thus bring Eq. (4.23) into a more familiar form
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Due to the definition of the transverse polarisation in Eq. (2.61) we need to
take the limit where t

2

! t+
1

of Eq. (4.25) [check Eqs. (3.59) and (3.60)]. Here we
assume that the adiabatic approximation defined in Sec. 3.4.1 is valid, so that we
can take the Fourier transform with respect to t

1

� t
3

and obtain

L⌧
K,I(!) = L0,⌧

K,I(!) + L0,⌧
K (!)

X

K0

⌅K,K0L⌧
K0,I(!), (4.26)

where we introduce a notation in which K = {n
1

n
2

k
1

} and K 0
= {n

4

n
5

k
4

}.

4.2 The BSE for the lesser and greater vectorial vertex

The equations in the previous section are only valid for retarded functions. Since
we are interested in the lesser and greater functions we must go back into the
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4. THE STRUCTURE OF THE VECTORIAL BSE

contour defined transverse polarisation
 !
P which we can write as
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We define ⌧i 2 C as the time variable over the Keldysh contour in Fig. 2.1. Due
to the nature of the COHSEX approximation, W (1, 2) and w(1, 2) are static [see
Eqs. (4.13) and (4.14)] and so we can write for L1
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Then, using the analytic continuation rules from Langreth theorem [11]2 yields
the equation of motion for L7
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as well as the equation of motion for Lr/a
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Finally we assume the same approximations which led to Eq. (4.26) and take
the Fourier transform, thus arriving at the frequency dependent equations for L7,⌧

L7,⌧
(!) = L7,⌧

0

(!) + Lr,⌧
0

(!)⌅L7,⌧
(!) + L7,⌧

0

(!)⌅La,⌧
(!), (4.31)

and Lr/a,⌧

Lr/a,⌧
(!) = Lr/a,⌧

0

(!) + Lr/a,⌧
0

(!)⌅Lr/a,⌧
(!). (4.32)

We can use Eq. (4.32) to invert Eq. (4.31) in order to separate the two equations.
We start from

h

�KK0 � L0r,⌧
K (!)⌅KK0

i

L7,⌧
K0,I(!) = L07,⌧

K (!)
h

⇧K,I + ⌅KK0La,⌧
K,I(!)

i

, (4.33)

and then take advantage of the fact that (here we use Einstein’s summation con-
vention)

⌅K0K00La,⌧
K00,I(!) =

⇥

1� ⌅L0a,⌧
(!)
⇤�1

K0K00 ⌅K00K000L0a,⌧
K000,I(!). (4.34)

1Here we are ignoring the K labels in the matrix elements in order to no overburden the nota-
tion. We re-introduce them back at the end.

2See Tab. A.1.
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selected transitions

Since we can always write
⇥
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(!)
⇤�1
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+1
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work Eq. (4.34) and replace it in Eq. (4.33) to arrive at
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4.3 The pole structure of the vectorial vertex and the
nature of the selected transitions

To analyse the pole structure of L in Eq. (4.35) we start from the non-interacting

picture for the electron correlation functions. With this, we can rewrite the matrix

elements in Eq. (4.35) as
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and as
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where we have that R⌧
K = f ⌧

n
1

k � f ⌧
n
2

k and that ⌦⌧
K = ✏n

1

k(⌧) � ✏n
2

k(⌧). We have

also defined the retarded and advanced matrices M r,⌧ and Ma,⌧ as

M r,⌧
KK0(!) = �KK0

(! � ⌦⌧
K + i⌘)�R⌧

K⌅KK0 (4.38a)

Ma,⌧
KK0(!) = �KK0

(! � ⌦⌧
K � i⌘)� ⌅KK0R⌧

K0 . (4.38b)

If we look closely to the necessary algebraic steps that we can change Eq. (4.35)

into

L7,⌧
K (!) = [M r,⌧

(!)]�1

KK0 (!�⌦⌧
K0+i⌘)L07,⌧

K0 (!)(!�⌦⌧
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(4.39)
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By taking the L07,⌧
K0 (!) in the non-interacting picture we arrive at a simpler equa-

tion for L7,⌧
(!)1

L7,⌧
K,I(!) = �

2i⌘

⇡
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(!)]�1

KK0 R
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where we defined

R<,⌧
K = f ⌧

n
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n
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k), (4.41a)

R>,⌧
K = f ⌧

n
2

k(1� f ⌧
n
1

k). (4.41b)

As we can see from (4.35) we need to evaluate the inverse matrices of M r/a,⌧
(!).

This is usually dealt with by defining an auxiliar excitonic Hamiltonian

Hr,⌧
KK0 = ⌦

⌧
K�KK0

+R⌧
K⌅KK0 (4.42a)

Ha,⌧
KK0 = ⌦

⌧
K�KK0

+ ⌅KK0R⌧
K0 , (4.42b)

and so we can deal with the problem of evaluating their inverse matrices using
diagonalisation or inversion methods. We discuss some of these methods in Ap-
pendix D.

We are now able to study the position of the peaks in the spectrum within
different levels of approximation for the interaction between the carriers.

4.3.1 System of non-interacting particles

Let’s begin with the case of non-interacting particles by taking ⌅ = 0 in Eqs. (4.38a)
and (4.38b). This changes (4.40) into

L7,⌧
K,I(!) = �2iR

7,⌧
K ⇧K,I� (! � ⌦K) , (4.43)

which means that the poles of the spectrum lies on top of the energy differences
between two electronic levels.

In Fig. 4.3 we separate between a situation where the system is at equilibrium
[subfigure a)] and another where there is a population of carriers [subfigure b)].

1We used the representation of the Dirac delta function in which

�(x) = lim
⌘!0

+

1
⇡

⌘

x

2 + ⌘

2

.
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For the former case, if we recall the definitions of ⌦⌧
K and R7,⌧

K0 we can arrive at

the following conclusion: L<,⌧ only has contributions in which fn
1

k(⌧) = 1 and

fn
2

k(⌧) = 0, which then means that ⌦K = ✏n
1

k � ✏n
2

k < 0. So, for a system at

equilibrium, L<,⌧ only has contributions for negative !. Applying the same analy-

sis to L>,⌧ , we arrive at the conclusion that the only contributions to this function

are from terms which have fn
1

k(⌧) = 0 and fn
2

k(⌧) = 1. This however means that

⌦K = ✏n
1

k � ✏n
2

k > 0, and thus L>,⌧ only has contributions for positive !.

(2)

(1)

(3)

Figure 4.3: Schematic representation of the possible electronic transitions in a sys-
tem at equilibrium, a), and out-of-equilibrium, b). The white bullet represents the
hole created by an electron when absorbing or emitting a photon and the black bullet
the final state of the electron.

For the out-of-equilibrium case the situation is slightly more complex. The ex-

istence of an electronic population in the conduction bands introduces two more

possible transitions, labeled (2) and (3) in Fig. 4.3. The transitions labeled as (1)

and (2) are of the same kind as the the one for a system at equilibrium, which we

have already discussed in the previous paragraph. Their contributions to L<,⌧ are

only for ! < 0, while for L>,⌧ they contribute only when ! > 0. For the transition

labeled as (3) the situation is different. For the function L<,⌧ , the occupation func-

tions demand that ⌦K = ✏n
1

k � ✏n
2

k > 0. So these transitions only contribute for

the elements of L<,⌧ for which ! is positive. In a similar fashion these transitions
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4. THE STRUCTURE OF THE VECTORIAL BSE

contribute to L>,⌧ only when ! is negative.
In summary, the analysis of the polar structure of the non-interacting L7,⌧

functions allowed us to reach the following conclusion: for negative !, L<,⌧ con-
tains information on electronic transitions in which the electron absorbs a photon
and moves to a state of higher energy while L>,⌧ contains information on transi-
tions where the electron emits a photon and decays to a state with lower energy;
for positive !, L<,⌧ contains information on transitions where there is the emis-
sion of a photon and L>,⌧ has the information on transitions where a photon is
absorbed.

4.3.2 The Tamm-Dancoff approximation and beyond

While the non-interacting particle picture is useful, we can also study what hap-
pens when we stay within the framework of the BSE. Usually we are interested in
computing the set of eigenvalues and eigenvectors of the excitonic Hamiltonian of
Eq. (4.42a), {E�, AK

� }, in order to obtain the absorption spectrum, which involves
the retarded function Lr

Lr
K,K0(!) =

X

�,�0

AK
� S�1

�,�0AK0
�0

! � E� + i⌘
Rr

K0 , (4.44)

where Rr
K0 = fn

3

k0 � fn
4

k01 controls the eigenvalues E� which can have a non-
zero contribution for the absorption spectrum. If the system is at equilibrium, the
only possible contributions are pairs whose quantum numbers follow (n

3

, n
4

) 2
{(c, v), (v, c)}, where c/v stands for a conduction/valence band, respectively. Phys-
ically this reflects the fact that only electron-hole pairs can contribute to the ab-
sorption spectrum. The excitonic Hamiltonian is then divided in four blocks

Hexc
=

0

@

Hres
(v,c,k),(v0,c0,k) Hcoupling

(v,c,k),(c0,v0,k)

�
⇣

Hcoupling
(v,c,k),(c0,v0,k)

⌘⇤
�
⇣

Hres
(v,c,k),(v0,c0,k)

⌘⇤

1

A (4.45)

where we have the resonant and the coupling parts of the Hamiltonian, respec-
tively

Hres
(v,c,k),(v0,c0,k) = (✏ck � ✏vk)�c,c0�v,v0 + ⌅

(v,c,k),(v0,c0,k), (4.46)

1Here we take K

0 = {n
3

, n

4

,k0}.
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and

Hcoupling
(v,c,k),(v0,c0,k) = ⌅(v,c,k),(c0,v0,k) (4.47)

Due to the signs in Eq. (4.45) and to the fact that Hres is Hermitian while
Hcoupling is symmetric, Eq. (4.45) is not necessarily Hermitian. The bottom right
block of Eq. (4.45) is called the anti-resonant Hamiltonian since, as the resonant
part contains transitions from a valence to a conduction band, the transitions from
a conduction to a valence band contribute to the anti-resonant part. This goes to
the point made in the previous section, i.e., a resonant transition in absorption is
an anti-resonant transition in emission, and vice-versa.

If we ignore the coupling blocks, i.e., the interaction between excitations and
de-excitations, we get what is called the Tamm-Dancoff approximation (TDA) [54].
Within this approximation the resonant and anti-resonant parts of Hexc are com-
pletely decoupled and the absorption and emission peaks are at the symmetric
positions in the energy spectrum. The eigenvalues E� are then selected, in the
case of PL, by the occupation factors R7,⌧

K and their strength altered by the ⇧K,I

matrix elements, while for absorption they are selected by the R⌧
K factors and the

strength of the peaks is altered the dipolar matrix elements.
The validity of the TDA is controlled by the strength of the coupling blocks, in

which the dominant contribution is the Hartree term in Eq. (4.24). The strength of
the Hartree contribution depends on the inhomogeneity of the electronic density
(and thus on the strength of the local fields). As such, for systems which are highly
inhomogeneous the TDA eventually fails [69]. The TDA is also known for failing
to take into account plasmonic excitations [70], since oscillations of the charge
density involve both excitations and de-excitations.

In this work we stay within the TDA. Since in this approximation Eq. (4.45) is
hermitian a simple relation between M r,⌧

(!) and Ma,⌧
(!) holds (see Appendix D).

When coming to applications, we must check its validity by comparing the results
for absorption within TDA and the full excitonic Hamiltonian.

At this stage we know which non-equilibrium quantities have the information
we want to study. The last remaining step is to derive a connection between the
L7 functions and the macroscopic observable, which we have defined in Eq. (3.51)
as the divergence of the Poynting vector.
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Chapter 5

Connection to observables

“-so long as I get
SOMEWHERE.” Alice added
as an explanation.
“Oh, you’re sure to do that,”
said the Cat “if only you walk
long enough.”

Lewis Carroll, Alice in
Wonderland

5.1 Revisiting the Poynting vector

The information on the analytic properties of the L7 functions plays a crucial role

in this chapter, as we derive a connection between the macroscopic observable and

the microscopic dynamics. However, we must first perform some transformations

to the correlation part of the Poynting vector, hˆS(1)icorr [as defined in Eq. (3.55)].

These transformations allow us to choose which of the L7 functions to keep and

finally arrive at the expression for the power spectrum.

We start by noticing that we can rewrite Eq. (3.55) in a tensorial form

h ˆS↵(1)icorr =
1

2

3

X

�=1

� 6=↵

[S��↵(1, 2)� S↵��(1, 2)] |2=1

, (5.1)

allowing us to focus on the simplification of the third-order tensor S↵��(1, 2), which,
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if we take into account Eq. (3.58) is given by
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We now re-write the independent particle-photon propagators of Eqs. (3.57a)
and (3.57b) into
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which brings Eq. (5.2) in a more compact form
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Here we should point out quickly that, since s, s0 = ±1, then s2 = s02 = 1. The
function F absorbs most of the parcels in Eq. (5.4) that are not dependent on r
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and we use it to separate the integrals which are not important for the compu-
tation of the divergence of the Poynting vector. We can take the 2!1 limit and
evaluate the spatial derivative of Eq. (5.2)
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which we are going to use to evaluate the macroscopic average. But before doing
so, we must eliminate some spurious terms in Eq. (5.6). These were introduced
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5.1 Revisiting the Poynting vector

between Eq. (5.1) and Eq. (5.4),when we wrote the Fourier expansion of h ˆS(1)icorr

as the limit of the expansion of the tensor S↵��(1, 2). We can see that if we compare
the expansion of a single-coordinate function, which we call A(r), as a limit when
r0 = r of the expansion of a two-coordinate function, which we call A(r, r0)1, we
arrive at
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This means that, in order for the two expressions to match, we must have the
following relation between the two coefficients
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= 2⌦�s,�s0�q,q0�G,G0As(q+G). (5.8)

As such, in Eq. (5.6) we must exclude all terms which would be eliminated by the
Kronecker deltas and correct the volume and numerical factors. Doing so leads to
the result
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If we now combine Eq. (5.9) with Eq. (5.1) we arrive at
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By observation we see that we can include the term with � = ↵ in the equation
above, as it is equivalent to adding zero. This allows us to further simplify the
expression for r · hˆS(1)icorr, since
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1We are excluding the time coordinates here, but the conclusions remain valid nonetheless.
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Equations (5.11) and (5.12) further simplify Eq. (5.10) into
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As we wrote in Subsection 3.4.4 we can equate Eq. (5.13) to the power spec-

trum. In practice however, we need to average over the unit cell, as it is done

when evaluating the absorption spectrum [55]. This leads to the elimination of all

contributions with G=0, and as such we obtain
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which is already in a Fourier expansion form. From Eq. (5.15) we can extract the

amplitudes It1(q,!q)
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of which we only need the imaginary part, as it can be seen through inspection of

Eq. (5.15). We can now further simplify Eq. (5.16) by dealing with the time and

space integrals which were absorbed in Eq. (5.14).
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5.2 Selected transitions and light emission

We start by assuming that the conditions which validate the adiabatic approxi-
mation still hold (see Subsection 3.4.1), and use them to write for the transverse
polarisation functions
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This allows us to use the time-Fourier transform and eliminate the time-integrals,
by writing them in a compact form
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If we use Eqs. (5.19a) and (5.19b) and recall that we can always write that

1

z ± i⌘
=

1

z
⌥ i⇡�(z = 0), (5.20)

we can obtain the expression
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The term on the right-hand-side of Eq. (5.21) with the product of two delta func-
tions has no contributions to the sum, as it implies that !q = �!q ) !q = 0, and
this is canceled out by the !q factor in Eq. (5.15). Therefore the only terms which
survive in Eq. (5.21) are
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79



5. CONNECTION TO OBSERVABLES

To proceed further we must look into the properties of the transverse polarisa-
tion function and its Fourier transform. Since P7 is a real function, if we rewrite
its Fourier transform ˜P7 as1
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(!), (5.23)

where P7
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are also real, then these two functions must obey the following
properties regarding their parity
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An immediate consequence of the parity of ˜P7
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and ˜P7
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is that we can reduce the
last two terms in Eq. (5.22) to
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The relations in Eq. (5.24) are also extremely useful, as they reduce the integral
in Eq. (5.22) to a Kramers-Kronig relation between ˜P7
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This means that the only surviving contributions arising from the time-integrals
can be written as
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and we can use this result to connect the power spectrum with the BSE equations.
1Here we are only interested in the analytic properties of P̃ , so for now we ignore its dependen-

cies on other coordinates.
2In order to use the Kramers-Kronig relations, P̃ must be analytical either in the upper or the

lower-half of the complex plane. This is indeed the case since we can obtain P̃ from L by using
Eq. (4.5) and through what we have seen in Section 4.3 we can separate L into two components, one
which is analytical in the upper-half and another which is analytical in the lower-half.
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5.3 The power spectrum

We are now ready to use the information obtained in Section 4.3 to select which of
the lesser and greater transverse polarisation functions we keep in order to study
the emission spectrum. As we saw there, for positive frequencies it is the L<

function which has the contributions coming from light emission due to electronic
transitions, while L> has the contributions coming from light absorption. Since
we are interested in studying the signal coming from photoluminescence, we can
disregard the terms involving P> and study only the ones with P<. We begin by
rewriting Eq. (5.14) as
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where we have used the fact that
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By inserting Eq. (5.28) into Eq. (5.16) we obtain the final expression for the Fourier
amplitudes of I⌧ (q,!q)
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At this stage we must bear in mind that we are only interested in the imaginary
parts of the Fourier amplitudes and we have to take the limit q ! 0. This last
step is in line with what is done when evaluating absorption, since the photon’s
momentum is much smaller than that of the electrons. In order to eliminate po-
tential divergences, we redefine the ⇧ij,q matrix elements [which are present in
both Eq. (5.30) and in the definition of L in Eq. (4.40)] by writting

⇧

q
ij,↵ =

Z

dr ⇠q(r)⇧ij,↵(r, r
0
)|r=r0 !

✓

8⇡c2

⌦!q

◆

1

2

⇧

q
ij,↵, (5.31)

81



5. CONNECTION TO OBSERVABLES

where now
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This means that we can write the power spectrum as a function of q and !q as
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where =[z] stands for the imaginary part of z. All terms in Eq. (5.33) are now
regular in q, except ⌧q↵

1

,↵
2

which is ill-defined for when q !0. We can circumvent
this divergence by assuming that the contribution of a Fourier amplitude I⌧ (q,!q)

of a given q vector is in fact an integral in a close vicinity of the end point of this
vector. We are going to consider this region as a small sphere of radius Rq centred
at the end point of q. If we ignore the dependencies of all terms besides the ⌧q

matrix inside this sphere, we obtain that the contribution of a q point is given by
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At long last, we have reached one of the main goals of this work: to obtain an
expression from which we can evaluate the photoluminescence signal of a given
material. We take the limit q! 0 and treat !q as an independent variable1 which
we will now call simply !. With this we can write the power spectrum as
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3
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X
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h
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ij,↵(!)

i

. (5.35)

This is the expression which was implemented in YAMBO. In the next chap-
ter we will look into the results which were obtained in the test calculations we
performed on monolayer systems of hBN and of WS

2

. We should point out that,
besides the approximations we have made with respect to the momentum of the
photon, this expression if valid for whichever level of theory one would like to use
to compute L<,⌧

ij,↵(!): a system of non-interacting particles; within the excitonic de-
scription coming from the BSE; or any other approximation used to describe the
two-particle interactions in the material.

1Do recall that, while q can be very small with respect to the electron’s momentum, the energy
of the associated photon can be quite large, as it is multiplied by the speed of light, c.
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5.4 Computational prescription to evaluate the TR-PL
spectrum

The technical details of the implementation into YAMBO are presented in Ap-

pendix D.

In the following chapter we present the results from the application of these

equations to 2D systems. A schematic representation of the steps involved in the

computation of a PL spectrum is given in Fig. 5.1. The first step is the computation

of the ground state with DFT for a given exchange-correlation potential Vxc. This

yields the Kohn-Sham eigenstates and eigenvalues, �KS
i and ✏KS

i , respectively.

The electron-phonon coupling constants, usually named gkk0p, and the phonon

modes are computed within DFPT, using both the Vxc and the ✏KS
i . These are used

later in the time-dependent propagation to include the dissipation of energy from

the carriers’ scattering with the lattice.

Two more objects have to be computed before the time-dependent calculation

can be run. The first one is the quasi-particle G
0

W
0

corrections to the energy

levels. This allows us to perform the time-run with reasonable values for the band

gap, which are usually underestimated within DFT.

The second object is obtained in the run named “Collisions” in Fig. 5.1. Here we

evaluate the static components of the self-energy and store them for later usage.

This is possible within the COHSEX approximation as it was shown in Sec. 3.1,

and as it has been already shown in Ref. [15]. These matrix elements do not change

during the time-propagation and as such can be safely stored to quickly update the

self-energy.

In parallel to the G
0

W
0

quasi-particle corrections we also evaluate the cor-

rections to the energy levels coming from the COHSEX approximation at t = 0,

�✏X(t = 0). These are used later in the computation of the PL spectrum.

The databases with the “Collisions”, gkk0p coupling constants, G
0

W
0

quasi-

particle corrections, and the DFT quantities all enter in the time-propagation

calculation. Here we specify the characteristics of the laser field1, such as the

1Or of the two laser fields, if we wish to simulate a pump-and-probe experiment.
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intensity, energy of excitation, damping, and starting time. During the computa-
tion, YAMBO will output at previously specified instants the carrier occupations at
that time, fi(T ).

It is these time-dependent occupations which allow us to evaluate the COH-
SEX corrections to the energy levels at the same instant, �✏X(t = T ). From the
latter, together with the �✏X(t = 0) and the �✏GW

i we can evaluate correctly the
renormalisation of the band gap at each instant when computing the PL spectrum.

With all of these components ready, we can finally proceed to the actual cal-
culation of the PL spectrum, given by Eq. (5.35). The fi(T ) provide the electronic
configuration of the system at a specific instant, while the three databases with
the corrections to the energy levels update correctly the electronic energies at the
same instant. Again, together with the DFT quantities, we compute the BSE ker-
nel1, invert it, and obtain the spectrum for that specific instant. By repeating this
procedure for other instants, we can simulate a time-dependent PL experiment.

1Here we can re-use the electronic screening computed during the COHSEX run with the time-
dependent occupations.
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DFT
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Figure 5.1: Computational diagram representing the necessary steps for a full TR-PL
simulation with YAMBO. The starting point (DFT calculation) generates the Kohn-
Sham eigenvalues, ✏KS

i , and eigenstates, �KS
i , for a given exchange-correlation po-

tential, Vxc. These are used to compute the quasi-particle G0W0 and COHSEX (at
t=0) corrections, �✏GW

i and �✏X(t = 0), the electron-phonon coupling constants, gkk0p,
and the static components of the self-energy. The latter together with the gkk0p and
the DFT results are used in the time propagation of the BKE, which generates the
time-dependent occupations, fi(T ). These are used to recompute the energy levels
renormalisation at a time T , �✏X(t = T ), and entre together with the fi(T ), �✏GW

i ,
�✏X(t = 0), and the DFT output in the computation of the PL spectrum at a given
instant, T .
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Chapter 6

Application to 2D systems

“And out of all the sweat and
swearing and mathematics
had come this... thing,
dropping words across the
world as softly as starlight.”

Sir Terence David John “Terry”
Pratchett,“Going Postal”

In this chapter we present and analyse numerical results for the PL spectrum

obtained with the open source code YAMBO when computing the PL spectrum. We

performed tests on two monolayer systems: hBN and WS2.

6.1 hBN tests

Here we analyse the results for a simple controlled test in which the system is pre-

pared as a laser by inverting manually the population at the band gap minimum.

We expect that the laser emits at the gap energy. This was a qualitative test used

to check the results against the physical intuition we have of the phenomena.

The ground state of the hBN monolayer was computed using the open source

code QUANTUM ESPRESSO [71]. This is a plane wave code, i.e., the KS eigen-

states are expanded in a plane wave basis. Details on the parameters used to com-

pute the ground state as well as PL related quantities can be found in Appendix E.

We obtained a direct gap of 4.74 eV at K, far away from the experimental value of
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⇠6 eV found in literature [72]. However, as we were more interested in obtaining
consistent results rather than comparing with experiments, no quasi-particle (QP)
corrections to the KS bandstructure was applied. Once the ground state was ob-
tained, we used YAMBO to create an artificial excited state, by moving an electron
from the 4th to the 5th band at the K-point1. We then used YAMBO to compute the
PL signal and the transient absorption within both the non-interacting particle
approximation and the BSE, and compared the results with the equilibrium ab-
sorption. Again, we recall that our results are limited to the TDA, as explained in
section 4.3. The computed results for hBN were obtained using the diagonalisation
solver for the BSE matrix (see Appendix D).

Figure 6.1: PL (solid black line) and transient absorption (solid grey line) for the ar-
tificial excited state created in a monolayer of hBN by pumping an electron from the
4th to the 5th band at the K-point and computed within the non-interacting particle
approximation. The vertical line indicates the PL peak and the matching negative
transient absorption peak at 4.74 eV. The dotted blue line is the equilibrium absorp-
tion spectrum computed within the non-interacting particle approximation.

In Figs. 6.1 and 6.2 we plot the calculated spectra for the non-interacting par-
ticle calculations and the BSE, respectively.

1Note that this procedure is much simpler than the one described in Sec. 5.4 and illustrated in
Fig. 5.1, as it is used to create an artificial excited state, and not to do a realistic TR-PL simulation.
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6.1 hBN tests

The obtained transient absorption spectrum at the independent particle level

in Fig 6.1 (solid grey line) matches the equilibrium results (dotted blue line) except

for the 4.74 eV peak. Here the transient spectrum shows a negative peak. This

feature is a characteristic signature of population inversion, in which all electrons

were moved from a valence state to a conduction one1. An experimental setup

with this configuration would measure a gain in the electric field, which means

that the system is emitting light. This is precisely what we obtain with the PL

spectrum (solid black line) in Fig. 6.1. There is a single emission peak at the energy

corresponding to the population inversion in the transient absorption spectrum.

Moreover, the peak is precisely at the position of the direct band gap. This is to

expect really, at least at IP level since we are inverting the population at the direct

gap.

Figure 6.2: PL (solid black line) and transient absorption (solid grey line) for the
artificial excited state created in a monolayer of hBN by pumping an electron from
the 4th to the 5th band at the K-point and computed using the BSE. The vertical line
indicates the PL peak and the matching negative transient absorption peak at 5.41
eV. The dotted blue line is the equilibrium absorption spectrum computed with the
BSE.

1In other words, it is similar to a laser system
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In Fig. 6.2 the computed spectra at the BSE level show a blue shift between
the equilibrium and the transient absorption spectra. The change in the peaks
is expected, as we are changing the occupations which enter in the BSE matrix
(see Section 4.3), but not renormalising the gap (see Subsection 6.2.3). In spite of
those differences in the absorption, for the PL we obtain results similar to those
in Fig. 6.1, i.e., there is a single emission peak detected in the PL spectrum corre-
sponding to a negative peak in the transient absorption, but now at 5.41 eV.

Next we compare the results given by the inversion and diagonalisation solvers
(see Appendix D). For the non-interacting particle approximation (not shown) no
differences were found between the two spectra. Instead, in Fig. 6.3 there are some
slight differences in the strength of the single peak, as well as in the tail coming
from the negative frequencies. Since the inversion solver is the easiest to analyse
we decided, after checking its validity, to use it for the calculations on WS2.

Figure 6.3: BSE PL results obtained via the inversion (solid black line) and diago-
nalisation (solid red line) solvers for the hBN monolayer with the same excited state
as in Fig. 6.1 and Fig. 6.2. The inset plot is a close in on the top of the peak.

One aspect which we have not mentioned yet is the non-zero PL spectral inten-
sity at 0 eV in Figs. 6.1, 6.2, and 6.3 are a numerical artefact. We plot in Fig. 6.4
the spectra for both positive and negative energies. In the inset the figure shows
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the signal contamination from the much higher peaks from negative energies (for
instance, the strongest peak is almost on hundred times higher than the peaks at
positive energies).

Figure 6.4: IP (solid red line) and BSE (solid black line) PL results for the hBN
monolayer with the same excited state as in Fig. 6.1 and Fig. 6.2. The spectra for
negative frequencies is also plotted. The inset plot is a close in on the Lorentzian tails
close to 0 eV.

In conclusion, the laser system we set up emits at the energies where popula-
tion inversion was created, which checks against the expected behaviour.

6.2 Preliminary results on WS2

In recent years there has been an extraordinary increase in studies of optical
and electronic properties of 2D materials, especially group-VI transition metal
dichalcogenides (TMDs). In these compounds at the band edge are controlled by
two non-equivalent energy valleys occurring at the +K and -K points. Together
with spin-orbit coupling effects, this symmetry breaking allows one to control the
population of carriers at each valley, thus creating a way to store binary informa-
tion [73] and use TMDs in semiconducting devices [74].
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�

+K

�K

M

Figure 6.5: WS2 monolayer and lateral view (taken from Ref. [73]) and Brillouin
zone. Blue spheres depict W atoms, while golden spheres depict S atoms.

A common way to research TMDs is by photoluminescence. Some remarkable

results regarding valley polarisation [75, 76] have shown that high-fidelity val-

ley initialisation is possible with optical injection (i.e., creation of different valley

populations through circularly polarised light). Other highly interesting results

obtained from PL spectroscopy have shown that, contrary to what is usually ex-

pected, an increase in temperature can in fact magnify the PL signal of WSe2 [77].

Two important aspects should pointed out: first, since everything is still at

an experimental stage, the results which are presented are not at convergence;

second, of the three possible scattering channels, e-p, e-�, and e-e we are only

considering e-p in the time-propagation calculations. The e-e channel can be de-

activated since the number of electrons promoted to the conduction bands is not

high enough for the interactions between them to be relevant. In the e-� case, the

code is still experimental, so it was turned off to reduce further instabilities in the

results. Without the e-� channel we should expect the strength of our signals to

saturate after a certain time, as electrons cannot move down from the conduction

bands into the valence states.

The aim of the study is then twofold: firstly to check if the code works as ex-

pected, for instance, if we can reproduce the physical picture of the phenomenon

and possibly compare our results against experimental data; secondly to start the
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6.2 Preliminary results on WS2

computational study PL in TMDs, in order to provide some understanding of ex-
perimental results.

Here we used again the code QUANTUM ESPRESSO to compute the ground
state of the WS2 monolayer. We obtained an LDA gap of 1.50 eV which was cor-
rected with a scissor operator of 1.05 eV obtained from a G

0

W
0

quasiparticle cal-
culation, thus yielding a total band gap of 2.55 eV. Again, details on the numerical
parameters which were used in the calculations can be found in Appendix E.

In order to check the validity of the TDA, we first computed the equilibrium
absorption spectrum. The results are presented in Fig. 6.6, where the peaks’ posi-
tions do not change between the TDA (solid red line) to the full BSE (solid black
line). The relative change in the intensity shown in the inset does not go beyond
10%. As such, we decided to proceed with the calculations within the TDA.

Figure 6.6: Absorption spectrum evaluated within the TDA (solid red line) and the
full BSE Hamiltonian (solid black line) for the WS2 monolayer. Inset - change in the
intensity of the full BSE results relative to the TDA ones.

6.2.1 Time-dependent runs

We want to see how the PL signal changes with the characteristic of the laser
(central frequency and pulse duration) and with the temperature.
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The profile of the laser pulse used in the simulations was that of a plane wave

modulated by a gaussian function,

E(t) = E
0

sin [!
0

(t� T
0

)] e
� (t�T

0

)

2

2�

2

t , (6.1)

where !
0

is the central frequency of the laser pulse, T
0

the starting time, �t the

damping, and E
0

the magnitude of the electric field. The starting time for each

laser pulse is chosen in YAMBO according to
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where Nint(x) represents the closest integer to x. The magnitude of the electric

field is related with the intensity of the laser pulse, I
0

, by

I
0

=

c

8⇡
E2

0

. (6.3)

In Tab. 6.1 we summarise the different conditions we explored in our simulations.

The strategy for the computation of the PL spectrum is the one already explained

Table 6.1: Simulation conditions used for the time-dependent runs on WS2. The
exponent at each damping value represents the assigned test name in this work.

Central Temperature Intensity Damping Fluence
frequency [eV] [K] [kW/m2] [fs] [nJ/cm2]

100.0A 8861.79
1.826 4.0 105 50.00B 4431.00

25.00C 2215.52

1.826 100.0 105 100.0D 8861.79
300.0E

2.200 4.0 105 100.0F 8861.79

in Sec. 5.4 and depicted in Fig. 5.1. Note that PL calculations were performed with

the electron system at 0 K, in order to isolate effects of broadening in the energy

bands.
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6.2 Preliminary results on WS2

6.2.1.1 Effects of the pulse duration

In Fig. 6.8 we have the evolution of the carriers in the band structure at given
instants for the test labeled as A in Tab. 6.1. The corresponding spectra at each
instant are plotted in Fig. 6.9 for the IP case and in Fig. 6.10 for the BSE. Carrier
populations are created in a region nearby the K point and that they decay to
the edges of the bands at K. Both the PL spectra in Figs. 6.9 and 6.10 reflect
the characteristics of the carriers’ evolution in time. The long laser pulse creates
a narrow excitation region in the band structure1 which is characterised by the
strong main peaks in both the IP and BSE cases.

In both approximations emission is negligible up to 200 fs. For IP we observe
that after 400 fs the system emits a photon at 2.32 eV. As time evolves, the peak
is red-shifted and its intensity increases. Regarding the BSE results in Fig. 6.10,
there is a strong peak at 1.82 eV which position remains constant for the duration
of the time-dependent run. We argue that the shoulder at approximately 2 eV
is a numerical artefact which should disappear when converging the results with
respect to the k-point grid.

Just to reinforce a previous point, in Fig. 6.7 we plotted the PL spectrum for
the case A at 1200 fs. The intensity of the spectrum is about sixty times stronger
for negative energies than for positive ones. This high intensity creates a tail
which contaminates the signal for positive frequencies, as depicted in the inset. To
remove this tail we fitted a Lorentzian distribution to the region of the spectrum
close to 0 eV and then removed it from the signal.

We compare now the results obtained for the test case A with those from test
cases B and C. In Tab. 6.1 they differ only in the values for the damping of the
laser field and thus in the fluence. From Figs. 6.11 and 6.14 we see that there are
no striking differences in the regions where the carrier populations are created.
The fact that there is already light emission at 200 fs in Figs. 6.12 and 6.13 and
Figs. 6.15 and 6.16 is due to Eq. (6.2). Since �t is shorter, YAMBO choses earlier
starting times for the laser pulses of cases B and C.

In Figs. 6.12 and 6.13 and Figs. 6.15 and 6.16 the broadening of the peaks
increases with the decrease in the laser damping. This is expected, since a shorter

1For a gaussian curve the uncertainty principle yields �

t

�

E

= 1

2

, where �

E

and �

t

are the
uncertainties in energy and time, respectively.
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Figure 6.7: Full BSE photoluminescence spectra for case A in Tab. 6.1 at 1200 fs.
Inset - region of positive frequencies only.

uncertainty in time, �t, is translated into a larger uncertainty in energy, �E . Hence
the broadening of the peaks in Figs. 6.12 and 6.13 where the damping is 50 fs will
be larger than the ones in Figs. 6.9 and 6.10, and the broadening of peaks in
Figs. 6.15 and 6.16 will be the largest of the three cases.

To better illustrate the changes in the energy the highest peak (EHP) and its
intensity (IHP), their evolution in time is plotted in Fig. 6.17 for both the IP and
BSE results. The data in Figs. 6.17a, 6.17c, and 6.17e show that there is a signif-
icant reduction in the intensity of the PL signal with the fluence of the laser. This
result is expected, since the higher the fluence, the higher the number of electrons
which are excited to the conduction bands, and so the higher the PL signal.

Regarding the EHP, subfigures b), d), and f) of Fig. 6.17 show that the change
in the EHP for the IP case is more pronounced for the case A of Tab. 6.1 (about 0.20
eV) than for cases B (about 0.18 eV) and C (about 0.05 eV). This is again related
to the changes in fluence between each laser pulse. The pulses which transfer
more energy to the system create higher densities of carriers. This then leads to a
higher renormalisation of the energy levels, and thus a higher renormalisation of
the band gap.
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6.2 Preliminary results on WS2

(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.8: Evolution in time of the carrier occupations on the band structure for case
A in Tab. 6.1. Blue columns represent holes, while electrons are represented by red
columns. The green line represents the laser profile and the purple on the evolution
in time of the fluence.
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Figure 6.9: Non-interacting photoluminescence spectra for case A in Tab. 6.1. Results
are plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not appear
because there is no signal at those instants.

Figure 6.10: BSE photoluminescence spectra for case A in Tab. 6.1. Results are
plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not appear
because there is no signal at those instants.
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(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.11: Evolution in time of the carrier occupations on the band structure for
case B in Tab. 6.1. Blue columns represent holes, while electrons are represented
by red columns. The green line represents the laser profile and the purple on the
evolution in time of the fluence.
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Figure 6.12: Non-interacting photoluminescence spectra for case B in Tab. 6.1. Re-
sults are plotted from 0 to 1200 fs in intervals of 200 fs.

Figure 6.13: BSE photoluminescence spectra for case B in Tab. 6.1. Results are
plotted from 0 to 1200 fs in intervals of 200 fs.
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(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.14: Evolution in time of the carrier occupations on the band structure for
case C in Tab. 6.1. Blue columns represent holes, while electrons are represented
by red columns. The green line represents the laser profile and the purple on the
evolution in time of the fluence.
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Figure 6.15: Non-interacting photoluminescence spectra for case C in Tab. 6.1. Re-
sults are plotted from 0 to 1200 fs in intervals of 200 fs.

Figure 6.16: BSE photoluminescence spectra for case C in Tab. 6.1. Results are
plotted from 0 to 1200 fs in intervals of 200 fs.
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(a) IHP over time for test A (b) EHP over time for test A

(c) IHP over time for test B (d) EHP over time for test B

(e) IHP over time for test C (f) EHP over time for test C

Figure 6.17: Evolution in time of the intensity of the maximum peak (IHP) and
energy of the maximum peak (EHP) for the tests A, B, C of Table 6.1 within the non-
interacting approximation (IP) (solid red line) and BSE (solid black line).

For the BSE, the change in the EHP is almost imperceptible from subfigures

b), d), and f) of Fig. 6.17. In fact, within the precision of the code, the EHP changes
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about 0.01 eV for cases A and B, and we register no change for case C. The changes
relative to the equilibrium values, 1.84 eV for the optical gap and 2.55 eV for the
quasi-particle band gap are shown in Tab. 6.2 and again show that the higher the
fluence, the higher the renormalisation.

Table 6.2: Change energy of the highest peak (EHP) for the calculated IP and BSE
spectra at 1200 fs for the cases A, B, and C of Tab. 6.1.

Test case IP [eV] BSE [eV]

A 2.10 1.82
B 2.30 1.83
C 2.43 1.84

6.2.1.2 Effect of the temperature

We then moved on to test cases D and E, in which the laser frequency and pulse
duration are the same as in test case A, but the system’s temperature during the
time-propagation is 100.0 K and 300.0 K, respectively. Snapshots of the carrier
dynamics can be seen in Figs. 6.18 and 6.21 for the cases D and E, and the PL
signals are presented in Figs. 6.19 and 6.20 for test D, and Figs. 6.22 and 6.23 for
test D. The evolution of the IHP and EHP is shown in Fig. 6.24.

Regarding the overall shape of the PL spectrum, there are some differences
between the signals for cases A (4.0 K), D (100.0 K), and E (300.0 K). As it is shown
in Fig. 6.24a, while the initial growth rate of the signal appears to be similar for
A and D, for both the IP and BSE results the signal approaches saturation much
faster than in case A, where the time-dependent simulation was performed at 4.0
K. The faster saturation of the signal for IP can be understood since with higher
temperature the e-p transition matrix elements are larger, thus the probability
of emitting a phonon is higher and more scattering terms are allowed than at low
temperature. The reduction in the intensity of the maximum peak is also expected,
as it is known that an increase in temperature will, in general, bleach the emission
peaks. Regarding the change in the position of the peaks, the behaviour is almost
identical to the one observed in test A (Fig. 6.17b). The IP peaks change from 2.33
eV to 2.20 eV, while the BSE peaks go from 1.83 eV to 1.82 eV.

104



6.2 Preliminary results on WS2

(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.18: Evolution in time of the carrier occupations on the band structure for
case D in Tab. 6.1. Blue columns represent holes, while electrons are represented
by red columns. The green line represents the laser profile and the purple on the
evolution in time of the fluence.
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Figure 6.19: Non-interacting photoluminescence spectra for case D in Tab. 6.1. Re-
sults are plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not
appear because there is no signal at those instants.

Figure 6.20: BSE photoluminescence spectra for case D in Tab. 6.1. Results are
plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not appear
because there is no signal at those instants.
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(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.21: Evolution in time of the carrier occupations on the band structure for
case E in Tab. 6.1. Blue columns represent holes, while electrons are represented
by red columns. The green line represents the laser profile and the purple on the
evolution in time of the fluence.
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Figure 6.22: Non-interacting photoluminescence spectra for case E in Tab. 6.1. Re-
sults are plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not
appear because there is no signal at those instants.

Figure 6.23: Non-interacting and BSE photoluminescence spectra for case E in
Tab. 6.1. Results are plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200
fs lines do not appear because there is no signal at those instants.
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The results for case E in Figs. 6.22 and 6.23 are more striking. The increase

in temperature leads not only to a comparative reduction of the signal’s intensity

at 400 fs, but also to a sharp decay in intensity of the main peak with time. As

shown in Fig. 6.21, at 300.0 K the electrons in the conduction bands can absorb

phonons and move to other valleys, thus decreasing the contributions to the ex-

citon. This explain both the decrease in overall intensity and the decrease of the

signal with time. Note that this happens in both the IP and BSE results. The

emission energies for the IP and BSE results remain practically constant during

the time-propagation at 2.42 eV and 1.83 eV, respectively.

Although less visible, in Figs 6.18e and 6.18f there is also a small reduction

on the amount of electrons in the conduction states at K and a slight increase

in the occupations of the states in the nearby conduction valley. The difference

between the evolution in Fig. 6.18 and Fig. 6.21 are naturally due to the diferences

in temperature, since in systems at low temperature the absorption of a phonon is

much less likely than in systems at higher temperatures.

Table 6.3: Change energy of the highest peak (EHP) for the calculated IP and BSE
spectra at 1200 fs for cases A to E of Tab. 6.1.

Test case IP [eV] BSE [eV]

A 2.10 1.82
B 2.30 1.83
C 2.43 1.84
D 2.20 1.82
E 2.42 1.83

Table 6.3 shows a comparison between the long-term peak positions coming

from the IP and BSE results for cases A to E. The effects of increasing the tem-

perature of the system appear to be similar to those of reducing the fluence of the

laser. We can understand it by observing the evolution of the carriers in Fig. 6.21.

The difference between tests D and E is likely related to the dispersion of the

electrons in the conduction states. At 300 K they are much more dispersed than

at 100 K, while the holes stay at the edges near K and �. The interaction between
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the holes and a much less denser cloud of excited electrons should be much weaker

and should reduce the renormalisation of the gap.

(a) IHP over time for test D (b) EHP over time for test D

(c) IHP over time for test E (d) EHP over time for test E

Figure 6.24: Evolution in time of the intensity of the maximum peak (IHP) and
energy of the maximum peak (EHP) for the tests D and E of Table 6.1 within the
non-interacting approximation (IP) (solid red line) and BSE (solid black line).

6.2.1.3 Effect of the central frequency

In test case F the central frequency of the laser field is changed from 1.826 eV

to 2.2 eV, thus being closer to the energy of the B exciton of WS2. The damping,

fluence, and intensity of the laser field are the same as in case A. The change in the

laser frequency causes an immediate alteration in the time-evolution of the carrier

density, as shown in Fig. 6.25. Not only are the carriers much more dispersed at

the beginning, but also their density is smaller.
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(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.25: Evolution in time of the carrier occupations on the band structure for
case F in Tab. 6.1. Blue columns represent holes, while electrons are represented
by red columns. The green line represents the laser profile and the purple on the
evolution in time of the fluence.
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Figure 6.26: Non-interacting photoluminescence spectra for case F in Tab. 6.1. Re-
sults are plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not
appear because there is no signal at those instants.

Figure 6.27: BSE photoluminescence spectra for case F in Tab. 6.1. Results are
plotted from 0 to 1200 fs in intervals of 200 fs. The 0 an 200 fs lines do not appear
because there is no signal at those instants.
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In Fig. 6.25, where the system is excited at 2.2 eV, there is at first (between

200 fs and 400 fs) a population of excited carriers is created at much higher ener-

gies (around 2.9 eV for IP and 2.40 eV for the BSE). Over time the carriers move

towards the band edges (Fig. 6.25d) and the signal changes dramatically. In par-

ticular, looking at the BSE, after 600 fs the peaks at 2.2 eV are almost negligible

and small peaks appear close to the region of the A exciton. At later times those

peaks grow in intensity and after 1200 fs only a peak at 1.81 eV is visible (but for

the shoulder) for the BSE results, while for IP a peak at 2.41 eV surges. This is

consistent with the carrier distribution in Fig 6.25.

An immediate result is that saturation of the signal happens at much later

times than what we had observed for the cases in which the system was excited at

1.826 eV. Since electrons are excited at higher energies, it is expected that it would

take longer for them to reach the edges of the bands.

(a) IHP over time for test F (b) EHP over time for test F

Figure 6.28: Evolution in time of the intensity of the maximum peak (IHP) and en-
ergy of the maximum peak (EHP) for the test F of Table 6.1 within the non-interacting
approximation (IP) (solid red line) and BSE (solid black line).

In Fig. 6.28a the evolution in time of the IHP reflects the behaviour of the emis-

sion spectra shown in Figs. 6.26 and 6.27. The same happens with the changes

over time in the EHP in Fig. 6.28b. Our interpretation is as follows: initially, the

laser pulse creates a density of carriers at the B exciton of WS2. Radiative transi-

tions between the A and B excitons are forbidden, due to the spin selection rules.

However, it is still possible for electrons to transfer energy to the lattice by e-p
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interaction. Eventually the population of carriers responsible for the B exciton de-
cays and moves down towards the band edges. It is then that the A exciton begins
to be populated and the system starts to emit at this energy.

In Tab. 6.4 the positions of the peaks for the IP and BSE results for tests A and
F are compared. The BSE results do not change significantly, while the IP value
is closer in fact to that of case C in Tab. 6.2. The fluence is the same for cases A
and F, so the difference should be we are exciting close to the B exciton.

If the transitions which populate the B exciton are much less probable than the
transitions which populate the A exciton, the end result will be that fewer carriers
will receive energy from the laser field, regardless of the value of the fluence. So
the resulting signal and the effects from gap renormalisation and change in the
screening should be weaker.

Table 6.4: Change energy of the highest peak (EHP) for the calculated IP and BSE
spectra at 1200 fs for cases A, and F of Tab. 6.1.

Test case IP [eV] BSE [eV]

A 2.10 1.82
F 2.41 1.81

6.2.2 Comparison with experimental data

The comparison with experimental data is difficult because of the plethora of ex-
perimental results with slight different conditions and results. In literature ex-
perimental PL peaks ranging, for instance, from about 2.02589 eV [78] to 1.93725
eV [79]. Thus, the results which we have obtained are underestimated by 0.1 to
0.2 eV with respect to experiments. In any case the results which were presented
here are not yet fully converged. Errors mays be originated, for instance, from the
G

0

W
0

at zero-field and have no connection with the description of PL.
One of the main experimental features which is observed in emission experi-

ments is a Stokes-shift between the absorption and emission peaks [80]1. However
there is some debate regarding the occurence of these shifts in transition metal

1Blue-shifts in emission regarding absorption are called anti-Stokes shift, in which the electrons
decay into a state with lower energy than the one from which they were before excitation.
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dichalcogenides, namely WS2
1, with reports of no Stokes shift observed [78, 79, 83]

and of large Stokes shifts close to 0.1 eV [81]. The occurrence of these shifts has
been linked to the doping of the sample and the presence of impurities and in fact
has been seen to depend on the quality of the sample and the level of doping [78].

In our simulations we have found very small red-shifts in the PL peaks in com-
parison to the equilibrium absorption threshold, with a maximum shift of 0.03 eV.
These small shifts can be understood by looking into the changes we are introduc-
ing in the system in each case (e.g. density of carriers, changes in temperature)
and are smaller than what has been attributed to the presence of dopants or struc-
tural defects in the samples used in experiments.

In order to compare with experimental data, we decided to carry out another
simulation with a laser field with the same damping and intensity as case A, but
with central frequency of 2.54 eV, the same excitation energy of the pump used
in Ref. [84]. The obtained spectrum is presented in Figs. 6.30 and 6.31, and in
Fig 6.29 the evolution of the density of carriers is depicted. In Fig. 6.32a we present
the evolution of the IHP and in Fig. 6.32b the changes in time of the EHP.

Before commenting on the results for the excitation at 2.54 eV we should point
out that, at difference with the other spectra, here we had to choose a smaller
damping for the Lorentzian curves used to computationally emulate the Dirac-
delta functions2. This was needed since the emission signal was much weaker.
In fact the signal from the negative frequencies was harder to extract without
corrupting the output from YAMBO.

The evolution of the carriers in Fig. 6.29 shows that we have two effects acting
simultaneously: the increase of the central frequency, which allows more electrons
over wider regions of the Brillouin zone to be promoted to the conduction bands;
and the occupation of states in other conduction valleys besides the one at K, due
to the increase in temperature. Carriers then move towards the band edges, but
a small population of electrons remains trapped in the valley between K and �.
However, the number of electrons which remain in the band edge at K is larger
than what was observed in case F, where the temperature was also at 300 K, so
the gap renormalisation and change in the screening should be larger.

1Similar reports exist for MoS2 as well [81, 82].
2Recall that a Dirac-delta function can be written as the following limit �(x) = lim

⌘!0

+
1

⇡

⌘

x

2
+⌘

2 .
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(a) T = 0 fs (b) T = 200 fs

(c) T = 400 fs (d) T = 600 fs

(e) T = 800 fs (f) T = 1000 fs

Figure 6.29: Evolution in time of the carrier occupations on the band structurefor
the laser with intensity of 105 kW/m2, 100 fs damping, and energy at 2.54 eV, at a
temperature of 300.0K. Blue columns represent holes, while electrons are represented
by red columns. The green line represents the laser profile and the purple on the
evolution in time of the fluence.
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Figure 6.30: Non-interacting photoluminescence spectra for the laser with intensity
of 105 kW/m2, 100 fs damping, and energy at 2.54 eV, at a temperature of 300.0K. The
results are plotted from 0 fs to 1000 fs in intervals of 200 fs.

Figure 6.31: BSE photoluminescence spectra for the laser with intensity of 105

kW/m2, 100 fs damping, and energy at 2.54 eV, at a temperature of 300.0K. The re-
sults are plotted from 0 fs to 1000 fs in intervals of 200 fs.
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(a) IHP over time for test E (b) EHP over time for test E

Figure 6.32: Evolution in time of the intensity of the maximum peak (IHP) and
energy of the maximum peak (EHP) for the tests C and D of Table 6.1 within the
non-interacting approximation (IP) (solid red line) and BSE (solid black line).

Coming to the result, the evolution in time of the spectra is similar to the one

observed in Figs. 6.26 and 6.27. The laser creates at the beginning a small popu-

lation of carriers (hence the weakness of the emission signal) which then decays

into the minimum of the conduction band. For the BSE results there is still the

existence of the shoulder peak above the A exciton energy, but far below the energy

of the B exciton. In Fig. 6.32a the signal for the BSE results takes much longer

to saturate than in case A, but behaves closely to case F, as a result from the fact

that electrons have been moved higher in the band structure. The energy of the

highest peak for the BSE results converges towards the 1.80 eV, while for the IP

results it approaches the 2.66 eV. Although it appears that this is inconsistent

with what was discussed before (a stronger gap renormalisation was expected),

we should point out that up to 1000 fs the main peak in the IP is not the peak

with the lowest energy. A longer time propagation would probably see a flip in

the relative intensity of the peaks at 2.45 eV and 2.66 eV, and the energy of the

strongest would then be close to the former. This would be consistent with what

has been discussed so far in this work.

In Ref. [84] the energies experimentally obtained for the A and B excitons were

1.95 eV and 2.236 eV, respectively, while the direct band gap obtained was 2.05 eV.

As such, we are not able to continue comparing our results with theirs.
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6.2.3 Effects from the BSE kernel, screening, and energy levels’
renormalisation

Here we analyse how the different contributions from the band gap renormalisa-

tion and the time-dependent occupations affect the emission spectrum. In Figs 6.33

and 6.34 we plotted how the spectrum at 1200 fs for case A changes if we update

the BSE kernel (K), the residues (R), the electronic screening (S) which are affected

by the time-dependent occupations and the electronic levels’ energies (E)1.

Figure 6.33: Non-interacting photoluminescence spectra for case A in Tab. 6.1. The
plotted results are for the electronic configuration of the system at 1200 fs. The char-
acters R, K, S, and E represent which quantities were updated for the calculation. R
- residues; K - BSE kernel; S - screening; E - energies. The vertical black line marks
the IP absorption thresholds.

As it can be seen for the IP case in Fig. 6.33, updating the kernel and the

residues, but not the electronic screening (solid black line) does not change the re-

sulting spectrum when compared with updating all the three quantities (red dots).

This is in fact an expected result since in the IP approximation for L< in Eq. (4.43)

1Note that, at this stage in YAMBO, R and K must always be updated together or the run will
halt and output an error.
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the positions of the peaks are given just by the energy levels for unscreened elec-

trons. As such, only the update of the energy levels’ renormalisation should affect

the spectrum, which is what we see in the solid red line in Fig. 6.33.

For the BSE results in Fig. 6.34, when only the kernel and the residues were

updated (solid black line) with the time-dependent occupations we obtain a signif-

icantly weaker emission peak with a blue-shift with respect to that of the equi-

librium absorption threshold (marked by the vertical black line). Physically this

means that the electron would decay into a state with lower energy than the one

from which it was excited, or that it gained energy. Since we are exciting electrons

close to the energy of the A exciton of WS2 at the K point, we do not expect to see

a significant blue-shift in the energy (or even, for that matter, a red shift).

Figure 6.34: BSE photoluminescence spectra for case A in Tab. 6.1. The plotted
results are for the electronic configuration of the system at 1200 fs. The characters R,
K, S, and E represent which quantities were updated for the calculation. R - residues;
K - BSE kernel; S - screening; E - energies. The vertical black line marks the BSE
absorption threshold.

If the occupations in the screening are updated, but the energies used are those

from equilibrium (solid red line) the results worsen. Not only the blue-shift is

larger than in the previous case, but also we observe the presence of a second
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peak at higher energies with higher intensity, which is a highly unphysical result.

However, if all quantities are updated, all the blue shifts are cancelled and the

highest emission peak is almost on top of the absorption one, only about 0.01 eV

red-shifted. Again, we attribute the shoulder structure due to poor convergence

with the k-point grid.

Next we compare in Fig. 6.35 the effects of updating different quantities for

the case D (temperature at 100.0 K) and in Fig. 6.36 the results for case F (central

frequency of 2.2 eV). Clearly in Fig. 6.35 the changes in the PL spectrum due

to the update in the screening are weaker than what we observed in Fig. 6.34.

However, the renormalisation of the electronic energy levels is also weaker and

the two effects appear to cancel out, and we recover for the same EHP for the BSE

result as in the case A. For the case E, where the pump energy was at 2.2 eV,

the cancelation effects between the screening and the energies renormalisation is

much weaker.

Figure 6.35: BSE photoluminescence spectra at 1200 fs for case D of Tab. 6.1. The
solid black line represents the results when only the BSE kernel (K) and the residues
(R) are updated, while in the solid blue line the screening (S) is also updated, and in
the solid blue line the kernel, residues, screening, and energies are all updated. The
vertical black line marks the BSE absorption threshold.
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Figure 6.36: BSE photoluminescence spectra at 1200 fs for case F of Tab. 6.1. The
solid black line represents the results when only the BSE kernel (K) and the residues
(R) are updated, while in the solid blue line the screening (S) is also updated, and in
the solid blue line the kernel, residues, screening, and energies are all updated. The
vertical black line marks the BSE absorption threshold.

6.3 Conclusions

Following the analysis of the results, we believe that, at the current stage the code
properly describes the dynamics of the system, when matched against our physical
intuition.

Regarding the IP and BSE results, we conclude that an accurate description of
the positions of the spectral peaks can be obtained only within the BSE. Neverthe-
less the IP results capture for most cases (in fact, all but the one in Fig. 6.32a) a
behaviour emission energies for the IP and BSE results remain practically to the
BSE data, but with different intensities for the peaks.

Finally we have shown the necessity of the computational scheme depicted in
Fig. 5.1. Without the update of the residues, BSE kernel, screening, and energies
the results would have been unphysical in some cases, or would exhibit small anti-
Stokes shifts.
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Chapter 7

Conclusions and further work

7.1 Main conclusions

We started this work with the intent of developing a coherent theoretical and

computational framework which could be used to compute the photoluminescence

spectrum of realistic systems and to simulate time-resolved photoluminescence

experiments.

To reach that goal, we began in Chapter 2 by including in the Hamiltonian

all the necessary interaction terms between electrons, phonons, and photons at a

second quantisation level. By writing the propagators on the Keldysh contour and

using the functional derivative technique, we were able to derive a set of equations

which extends the one of Hedin’s to the case in which all particles (not just the

electrons) are quantised.

We then proceeded on obtaining the equation of motion for the electronic prop-

agator in Chapter 3 by performing the analytic continuation from the complex

plane into the real axis. We have shown that all the interactions between electrons

and phonons, electrons and photons, and electrons and electrons can be written in

a GW like form. This meant that we could derive a complete general form for

the scattering elements which play an important role in the non-equilibrium dy-

namics controlled by the Baym-Kadanoff equation. We further simplified the func-

tional dependence of the scattering terms by using the generalised Baym-Kadanoff

ansatz and the Complete Collision approximation, thus making these terms func-

tionals of the density matrix only and removing their dependence on the memory
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of the interactions in the system.
By taking into consideration the typical experimental conditions in which TR-

PL experiments are performed, we introduced the Low-intensity approximation.
This approximation allowed us to recover a simple Boltzman-like equation, but
in which the lifetimes for each form of interaction which concerns electrons are
time-dependent. Following that, we have shown how to compute the transient
absorption spectrum and proved that we can, in fact, recover the Baym-Kadanoff
equation in frequency space.

The next step was to derive a connection between the two-particle correlation
function and the emission spectrum. We did so in Chapter 4 by, at first, studying
the Bethe-Salpeter equation for the electron-photon correlation function L7. We
have shown how to solve the BSE for this function with a static screening and
studied its pole structure within the non-interacting and Tamm-Dancoff approx-
imations, so as to determine which function has the information on the emission
spectrum of a given material. Following this study, in Chapter 5 we derived a con-
nection between the microscopic quantities in L7 and the macroscopic observable,
the divergence of the Poynting vector.

With the theoretical part settled, we then moved on the implementation in
YAMBO and testing of the developed routines. We first tested the code in a hBN
monolayer in Chapter 6, where a population of excited carriers was artificially
created by pumping electrons from the top of the valence band to the bottom of
the conduction band. We observed the inversion of population by computing the
transient absorption spectrum and obtaining a negative absorption peak. When
compared with the emission spectrum, we observed that the position of the PL
peak corresponded to the negative peak in the transient absorption. This proved
that YAMBO was outputting an emission spectrum in the correct region.

We then moved on with the testing of the code on a WS2 monolayer with a series
of different laser pumps and with the system at different temperatures during
the time-propagation. Here we followed the prescription depicted in Fig. 5.1. We
observed that YAMBO was reproducing expected behaviour of the PL with the pulse
duration of the laser pump, namely that the intensity of the emission spectrum
and that the renormalisation of the electronic energy levels would be smaller if
the generated density of carriers were also to be diminished.
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We have also analysed the change in the results with the increase in tem-
perature and with a laser frequency larger than the energy of the A exciton.
We observed that the increase in temperature would have the expected effect of
bleaching the intensity of the PL signal, this effect being much stronger at room
temperature than at 100.0 K. Regarding the increase in the excitation energy, we
observed that this would reduce the density of excited carriers and the effects of
the screening in the PL spectrum.

The diversity of existing experimental data on the PL spectrum of WS2 makes
it somewhat difficult to really compare our results with the ones in literature. Nev-
ertheless the position of the emission peak from our simulation underestimates by
0.1 - 0.2 eV the experimental measures. Regarding the presence of a Stokes-shift
between the equilibrium absorption and the PL emission, we observe a maximum
change of about 0.03 eV, an order of magnitude smaller than that attributed to
impurities and defects in the samples.

We therefore believe that we have achieved the proposed goals of this work. A
complete theoretical framework which properly describes photoluminescence was
obtained and the implemented computational routines give results which reason-
ably describe the expected changes in the spectrum due to the evolution in time of
the carrier dynamics, and the changes due to temperature, central frequency, and
fluence.

7.2 Future work

The next immediate step would be to complete the testing of the electron-photon
lifetimes which were implemented in YAMBO and to perform time-dependent sim-
ulations with these decay channels activated. At the current stage, with only the
electron-phonon decay channel we can only aim to describe the initial period of
a TR-PL experiment. For longer time-scales, the electron-photon interaction be-
comes dominant over the electron-phonon and thus is key to simulate the carrier
dynamics.

Another important step would be to converge our spectra with respect to the
k-point mesh. With the present choice of k-grid the emission peak position is con-
verged, but there are still artefacts due to artificial confinement of the excitonic
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wavefunction. Performing longer time-dependent simulations and evaluating the
PL spectrum at more instants can also provide better description of TR-PL ex-
periments. Special attention should be given to the cases in which the system is
excited above the energy of the A exciton. As we saw in Fig. 6.24c at the initial
stages there should be a temporary decrease in the PL signal, as the emission of
phonons destroys the B exciton and carriers move downwards in the band struc-
ture towards the A exciton. If such a result can be reproduced experimentally it
would be a strong validation of our results.

We should also turn our attention to other transition metal dichalcogenides.
Interesting results have been obtained for WSe2, where the increase in tempera-
ture actually enhances the photoluminescence signal, instead of bleaching it [77].
This effect has been attributed to the valley dynamics which is characteristic of
WSe2 and it is a potentially interesting effect to reproduce.

Another step for a later stage would be to introduce the electron-phonon inter-
action in the BSE kernel. This would allow for phonon assisted photoluminescence
and the detection of satellite peaks, besides the main emission peak.
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Appendix A

The Many Body problem

A.1 The Many-body problem at equilibrium

Consider a system of N electrons and M nuclei in condensed matter or molecu-

lar physics. For all the practical purposes nuclei can be considered as point like

charges and the electrostatic interaction between electrons and nuclei can be de-

scribed using the usual Coulomb potential, in a full non-relativistic scheme. The

full Hamiltonian of the system, in the real space representation, is [85] (in atomic

units)1
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N
X
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i

2
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X
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(A.1)

where mA is the relative mass of the nucleus with respect to the electron, ZA is the

atomic number of the nucleus, RA represents the nuclear space-coordinates and ri

represents the space coordinates of each electron.

The usual approach is to introduce the Born-Oppenheimer approximation [85]

in order to solve the time-independent Schrödinger equation. One writes the wave

function  (ri,RA) as

 (ri,RA) =  (ri;RA)�(RA) (A.2)

1Atomic units ~ = m

e

= e = 4⇡✏
0

= 1 will be used almost in the entire thesis, except in some
specific parts where the reader will be warned.



A. THE MANY BODY PROBLEM

where  (ri;RA) is a function of the set of coordinates ri and depends parametri-
cally on RA and �(RA) is an explicit function of RA.

As the nucleus’ mass is greater than that of the electrons (a proton’s mass is
about 1830 times the mass of an electron) the time it takes for the electrons to
readjust their position in response to the nuclear motion can be neglected. This
means that we consider that the electrons move adiabatically with the nuclei.
Also, due to their much larger mass, the nuclei wave function will be extremely
more localized, almost like the classical description of point charges. So there
must be a region in space where

|rA�(RA)|� |rA (ri;RA)| (A.3)

Therefore, when applying the operator of the nuclei kinetic energy to the wave
function, we can ignore the variation of the electronic part in comparison with the
nuclear one. This will lead to the following equation

h

ˆTe +
ˆVee(ri) + ˆVeN (ri,RA)

i

 (ri;RA)

 (ri;RA)
+

h

ˆTN +

ˆVNN (RA)

i

�(RA)

�(RA)
= E (A.4)

where we can identify the following operators as, respectively, the electron kinetic
energy
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2

, (A.5)

the electron-nuclei potential

ˆVeN (ri,RA) = �
N,M
X

i,A=1

ZA

|RA � ri|
, (A.6)

the electron-electron potential

ˆVee(ri) =
1

2
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X
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, (A.7)

the nuclei-nuclei potential

ˆVNN (RA) =
1

2

M
X
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, (A.8)
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and the nuclei kinetic energy

ˆTN = �
M
X

A=1

r2

A

2mA
. (A.9)

By defining a parametric function

✏(RA) = E �

h

ˆTN +

ˆVNN (RA)

i

�(RA)

�(RA)
(A.10)

equation (A.3) can be decoupled in one equation for the nuclei and one equation
for the electrons, respectively

h

ˆTN +

ˆVNN (RA) + ✏(RA)

i

�(RA) = E�(RA) (A.11a)
h

ˆTe +
ˆVee(ri) + ˆVeN (ri,RA)

i

 (ri;RA) = ✏(RA) (ri;RA) (A.11b)

Although a quantum mechanical treatment for the nuclei is possible under such
approximation, they are most often considered as classical particles described by
Newtonian Mechanics. So now, we only have to find solutions for the Eq. (A.11b),
which can be re-written more simply by omitting the parametric dependence on
RA

ˆHe n(ri) =
h

ˆTe +
ˆVee(ri) + ˆVeN (ri)

i

 n(ri) = ✏n n(ri) (A.12)

Although it looks simple, Eq. (A.12) is only solvable, either numerically or arith-
metically, for simple models or cases with few electrons. In order to circumvent
this problem, physicists and quantum chemists developed approximation meth-
ods. Below I give a short introduction to the main points of two of the most used
full ab-initio theories in solid state Physics: DFT and MBPT.

A.1.1 Density functional Theory

The purpose of Density Functional Theory is to replace the need of the full wave-
function of the system by the ground state density. This is possible thanks to the
Hohenberg-Kohn (HK) theorems [86]. The first HK theorem states

First HK theorem. In a finite system with N interacting electrons the external
potential v(r), and therefore the ground state energy E

0

are unique functionals of
the ground state density n

0

(r).

129



A. THE MANY BODY PROBLEM

This proves that there is an one-to-one correspondence between the ground
state energy and the external potential, so that we can express all quantities as a
functional of the ground state density. The second theorem states that

Second HK theorem. The ground state energy E
0

can be obtained variationally
and to the exact ground state density n

0

corresponds to the exact ground state en-
ergy.

As a consequence, if we are able to express the energy of the system as a func-
tional of the density, we can obtain the ground state energy just by plugging in the
ground state density. Now all that is needed is a method through which n

0

can be
evaluated.

This need arises from the fact that, although the Hohenberg-Kohn theorems
allow us to write a variational equation to solve the problem using the ground
state density, this is a complicate task and to avoid this we actually uses the aux-
iliary Kohn-Sham (KS) system, where the interacting system is replaced by a non-
interacting one where the particles obey N -independent Schrödinger equations



�r
2

2

+ vs(r)

�

�i(r) = ✏i�i(r), (A.13)

and the electronic density is written as

ns(r) =
N
X

i=1

✓i|�i(r)|2, (A.14)

with ✓i being the occupation function for the state with index i. A fundamen-
tal point of the KS auxiliary system is that the ground state density given by
Eq. (A.14) is in fact equal to that of the real system, n(r). The potential in the
equation is the Kohn-Sham potential and is defined as

vs[n](r) = v[n](r) +

Z

d3r0
n(r0)

|r� r0| + vxc[n](r), (A.15)

with vxc being the exchange-correlation potential. This quantity is defined by the
expression

vxc[n](r) =
�Exc[n]

�n(r)
(A.16)
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where the exchange-correlation functional Exc, which is given by

Exc[n] = T [n]� Ts[n] +W [n]� EH [n], (A.17)

is introduced. This functional is the central piece for the approximations to the
many-body interactions in the theory. Basically, it expresses the difference be-
tween what is unknown (the kinetic and potential energy of the real system) and
what can be known (the kinetic and potential energy of the auxilliary system). The
kinetic energy of the KS-system is an explicit functional of the orbitals

Ts[n] = �
1

2

N
X

i=1

Z

d3r�†i [n](r)r
2�i[n](r), (A.18)

but due to the HK theorems, it will also be an implicit functional of the ground
state density. EH [n] is the classical Coulomb energy or the Hartree energy

EH [n] =
1

2

ZZ

d3rd3r0
n(r)n(r0)

|r� r0| . (A.19)

The exchange-correlation energy is subject to approximations since it contains the
many-body interactions. One of the simplest approximations corresponds to the
Local-density approximation (LDA), proposed in 1965 by Kohn and Sham. The
idea is to approximate the xc energy of the inhomogeneous electron cloud to the
exchange-correlation energy of the homogeneous electron liquid, eHEG

xc [87]

ELDA
x [n] =

Z

d

3r eHEG
xc (n)|n=n(r). (A.20)

The exchange part has an explicit formula while the correlation part is usually ob-
tained via parametrizations of Monte-Carlo simulations. Usual parametrizations
are present in the PZ81 [88] and PW92 [89] functionals. Another order of func-
tionals uses the density’s gradient uses the generalised gradient approximation
(GGA)[90], where

EGGA
xc [n] =

Z

d3rexc(n(r),rn(r)). (A.21)

Expansions in this case are built by introducing terms which satisfy some known
exact properties and, as there is no recipe for it, sometimes one uses a set of em-
pirical parameters. Commonly used functionals are PW91 [91, 92] and PBE [93].
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The next step on the ladder has the Meta-GGAs functionals, in which one includes
more terms

EMGGA
xc [n] =

Z

d3reMGGA
xc (n,rn,r2n, ⌧) (A.22)

with ⌧ =

1

2

N
P

i=1

✓i|r�i(r)|2. However, as we have already stated, the fact that DFT

is a ground state theory makes it unsuitable to describe excitonic effects. For that
we need to use an excited state approach, such as MBPT, which is the choice of
this thesis.

A.1.2 Green’s function and Hedin’s equations at equilibrium

A different approach to the Many-body problem involves the use of the single par-
ticle Green’s function. It is based on the second quantisation method, with which
we can write the electronic Hamiltonian in Eq. (A.12) as

ˆHe =
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1

2

Z

drdr0 ˆ †
(r) ˆ †

(r0)v(r, r0) ˆ (r0) ˆ (r), (A.23)

in which h(r) contains the single-particle terms and v(r, r0) the two-particle terms.
Here we introduced also the electron creation operator ˆ †

(r) and the electron an-
nihilation operator ˆ (r). Fundamental to this theory is an auxiliary external po-
tential U(r, t) which allows us to use a time-dependent external Hamiltonian ˆH 0

(t)

ˆH 0
(t) =

Z
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(r)U(r, t) ˆ (r), (A.24)

and which we can set to zero at the end. With a time-dependent perturbation we
can use the interaction picture1 with which we can describe the time-dependence
of the field operators
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o

ˆ (r
1

) exp

n

�i ˆHI(t1)
o

, (A.25)

where we use the notation in which i = ri, ti and the subscript I means that the
operator ˆH 0 is written in the interaction picture. These elements allow us to define
the single-particle Green’s function, G(1,2)

G(1, 2) = �i
hN |T

h

ˆS ˆ I(1)
ˆ †
I(2)

i

|Ni

hN |T[ ˆS]|Ni
, (A.26)

1See Appendix C for information on time-evolution pictures and the first and second quantisa-
tion.
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A.1 The Many-body problem at equilibrium

where |Ni is the N -electron unperturbed ground state and T is the time-ordering

operator [54]. We also have the electron creation and annihilation operators, ˆ †
I

and ˆ I , in the interaction picture and the time-evolution operator

ˆS = exp

⇢

�i
Z

+1

�1
dt0 ˆH 0

I(t
0
)

�

. (A.27)

All these definitions allow us to derive the equation of motion for G



i
@

@t
1

� h(1)� U(1)

�

G(1, 2) = �(1, 2) +

Z

d3⌃(1, 3)G(3, 2). (A.28)

The self-energy ⌃ in the equation above is given by

⌃(1, 2) = i

Z

d3d4G(1, 4)W (1

+, 3)�(4, 2; 3), (A.29)

where 1

+

= (r
1

, t
1

+ 0

+

) and we have introduced the screened interaction W

W (1, 2) = w
0

(1, 2) +

Z

d(34)W (1, 3)pe(3, 4)w0

(4, 2), (A.30)

the irreducible vertex

�(1, 2; 3) = �(1, 2)�(1, 3) +

Z

d(4567)

�⌃(1, 2)

�G(4, 5)
G(4, 6)G(7, 5)�(6, 7; 3), (A.31)

and the irreducible polarisability P which is expressed by

pe(1, 2) = �i
Z

d(34)G(1, 3)G(4, 1+)�(3, 4; 2). (A.32)

If we rewrite Eq. (A.28) into

G(1, 2) = G
0

(1, 2) +

Z

d(34)G
0

(1, 3)⌃(3, 4)G(4, 2), (A.33)

by taking G
0

(1, 2) = [i@t
1

� h(1)� U(1)]

�1 �(1, 2) we arrive at the set of five integro-

differential equations called Hedin’s equations, which can be solved self-consistently

and which can be schematically represented in Fig. A.1 A usual approximation to

the Hedin’s equations is to disregard the contributions from the second term in the

irreducible vertex in Eq. (A.31), in what is known as the GW approximation. This

reduces the number of equations to four and has been extensively studied [14].
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A. THE MANY BODY PROBLEM

G

⌃

�pe

W

Figure A.1: Schematic representation of formulations of Hedin’s equations. The
dashed lines correspond to the GW approximation in which the contributions from
the vertex are ignored.

A.2 The Many-body problem in out-of-equilibrium sys-
tems

One of the fundamental differences between the description of a system at equilib-

rium and another which is out-of-equilibrium is the assumption that, given enough

time, the configuration of the system will go back to being that of the ground state.

In fact, in most out-of-equilibrium cases it does not. The starting point for extend-

ing both DFT and MBPT to out-of-equilibrium systems is the same: we begin by

dividing our Hamiltonian into two pieces

ˆH =

ˆHe +
ˆH 0
(t) (A.34)

where ˆHe is the electronic Hamiltonian in Eq. (A.12) and the new term, ˆH 0
(t) is a

time-dependent Hamiltonian, which is assumed to vanish at any instant t < t
0

1.

This term can represent any out-of-equilibrium driving perturbation, such as an

electric field, a light excitation pulse, etc. This is the starting point to extend both

DFT and MBPT to out-of-equilibrium systems.

A.2.1 Time-dependent Density functional theory

DFT can be extended to the time-dependent regime, where the Hamiltonian con-

tains an explicitly time-dependent scalar potential v(r, t). The evolution of the

1At difference with the fictitious perturbation introduced in Eq. (A.24) this is not a fictitious
term which we set to zero at the end, but the responsible for driving the system out-of-equilibrium.
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A.2 The Many-body problem in out-of-equilibrium systems

system is now governed by the time-dependent Schödinger equation

ˆH | i = i
@

@t
| i , (A.35)

which is used to propagate an initial state | 
0

i from an instant t
0

to t
1

. It is usually
convenient to consider that for t < t

0

the system was in the ground state under
the effect of a static potential v

0

(r) and that at t
0

a time-dependent component is
switched on. Analytically, this is expressed as

v(r, t) = v
0

(r) + ✓(t� t
0

)v
1

(r, t). (A.36)

As in DFT, the key idea is to establish the density of the system (now time-
dependent), n(r, t), as the key ingredient from which all observables can be eval-
uated once they are written as a functional of the density. In 1984 [94], Runge
and Gross proved that, under certain conditions, the mapping between the time-
dependent potential and density could be inverted and stated what is known as
the Runge-Gross theorem [94]

Runge-Gross theorem. Two densities n(r, t) and n0
(r, t), evolving from a common

initial many-body state  
0

under the influence of two different potentials v(r, t) and
v0(r, t) 6= v(r, t) + c(t) (both assumed to be Taylor-expandable around t

0

), will start
to become different infinitesimally later than t

0

. Therefore, there is a one-to-one
correspondence between densities and potentials, for any fixed initial many-body
state.

Another important result is the van Leeuwen theorem [95] which is stated as
follows

van Leeuwen theorem. For a time-dependent density n(r, t) associated with a
many-body system with a given particle-particle interaction, external potential and
initial state, there is a different many-body system with another particle-particle
interaction and time-dependent external potential (up to a c(t) function) which re-
produces the same time-dependent density. The initial state of the system  

0

must
be chosen such that it correctly gives the same density and its time-derivative at the
initial time t

0

This theorem gives the theoretical justification for the use of the Kohn-Sham
auxiliary system, in which the particle-particle interaction is null. Time-dependent
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A. THE MANY BODY PROBLEM

KS simulations usually start with a ground state calculation using Eq. (A.13) with
the ground state density given by Eq. (A.14) and the ground state KS potential
by Eq. (A.15). Right after the instant t

0

, the time-dependent part of the potential
begins to act. The KS eigenvectors follow the time-dependent KS equation



�r
2

2

+ vs[n](r, t)

�

'i(r, t) = i
@

@t
'i(r, t), (A.37)

given that 'i(r, t0) = �i(r). The time-dependent density is given by

n(r, t) =
N
X

i=1

✓i|'i(r, t)|2 (A.38)

and the effective KS potential in (A.37) is given by

vs[n](r, t) = v(r, t) +

Z

d3r
n(r0, t)

|r� r0| + vxc[n](r, t). (A.39)

It is important to say that the exchange-correlation potential used for the ground
state calculation and the time-dependent exchange-correlation potential used for
the time propagation must match at the initial time in order to guarantee that the
density remains static if no time-dependent potential is applied to the system at
t > t

0

or to any sudden change at t = t
0

.
It should also be stated that starting from the ground state is not actually

necessary [96]. The equations will still hold if one starts from another energy
configuration as long as the many-body wave function is still a Slater determinant.
The only difference is that in this case the potential will be a functional of the
initial state.

A.2.2 Time evolution picture and the Green function

One of the most important points in the construction of the MBPT in A.1.2 is the
possibility of building the ˆS operator in Eq. (A.27). This operator allows us to
build an interaction picture with which we can propagate in time the electronic
operators. However, it rests upon the assumption that at a sufficiently large time
the system will go back to its ground state, which is not valid anymore. This
is a critical point, since it is the fact that we can create such a time-evolution
operator that, together with the time-ordering operator, allow us to derive Hedin’s
equations of Fig. A.1.
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A.2 The Many-body problem in out-of-equilibrium systems

This problem can be solved, however, with the introduction of the Keldysh con-
tour [97]. We will not show in this chapter how to use this concept and how to
derive the equivalent equations to the ones in Hedin’s set, since in the next chap-
ter we use all of the necessary concepts to arrive at a full description of a non-
equilibrium process which treats quantistically electrons. photons and the effects
from the nuclei (phonons). For now, it suffices to say that such procedure1 will lead
to a set of equations which look almost the same as the Eq. (A.29) to Eq. (A.33),
the only difference being that the time-arguments are now complex

⌃(1, 2) = i

Z

d3d4G(1, 4)W (1

+, 3)�(4, 2; 3), (A.40)

W (1, 2) = w
0

(1, 2) +

Z

d(34)W (1, 3)pe(3, 4)w0

(4, 2), (A.41)

�(1, 2; 3) = �(1, 2)�(1, 3) +

Z

d(4567)

�⌃(1, 2)

�G(4, 5)
G(4, 6)G(7, 5)�(6, 7; 3), (A.42)

pe(1, 2) = �i
Z

d(34)G(1, 3)G(4, 1+)�(3, 4; 2), (A.43)

G(1, 2) = G
0

(1, 2) +

Z

d(34)G
0

(1, 3)⌃(3, 4)G(4, 2), (A.44)

and so we use the notation in which i = ri, ⌧i, with ⌧i lying on the complex contour.
In order to transpose from the equations defined on the contour to the ones in

which the time-arguments are real, which is called analytic continuation, we must
employ the set of rules known as the Langreth theorem [11], which we summarise
in Table A.1.

1Here I am referring only to the effects coming from the electron-electron interaction.
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A. THE MANY BODY PROBLEM

Table A.1: Langreth theorem and rules for analytic continuation [11].

Contour Real axis

C =

R

C AB C7
=

R

t[A
rB7

+A7Ba
]

Cr/a
=

R

tA
r/aBr/a

D =

R

C ABC D7
=

R

t[A
rBrC7

+ArB7Ca
+A7BaCa

]

Dr/a
=

R

tA
r/aBr/aCr/a

C(⌧, ⌧ 0) = A(⌧, ⌧ 0)B(⌧, ⌧ 0) C7
(t, t0) = A7

(t, t0)B7
(t, t0)

Cr/a
(t, t0) = A<

(t, t0)Br/a
(t, t0) +Ar/a

(t, t0)B<
(t, t0)

+Ar/a
(t, t0)Br/a

(t, t0)

D(⌧, ⌧ 0) = A(⌧, ⌧ 0)B(⌧ 0, ⌧) D7
(t, t0) = A7

(t, t0)B?
(t0, t)

Dr
(t, t0) = A<

(t, t0)Ba/r
(t0, t) +Ar/a

(t, t0)B<
(t0, t)
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Appendix B

The merging with
Density–Functional Theory

In order to merge the BKE in the general DFT scheme we follow the same strategy
used in the standard MBPT approach [14]. This is based on the use of the Kohn–
Sham (KS) Hamiltonian, hKS as the reference single particle Hamiltonian. This
means, in practice, that in Eq. (2.1a) the h operator is replaced by

hKS�i(r) =



�r
2

2

+ v
ext

(r) + vH [⇢] (r) + vxc [⇢] (r)

�

�i(r) = ✏KS
i �i(r), (B.1)

with vH and vxc the Hartree and the exchange–correlation potentials which, in
DFT, are functional of the electronic density ⇢ (r). Then, �i represents the basis of
wave functions used in Eqs. (3.1) and (3.2).

DFT is a mean-field theory, where the electronic system is described by a group
of pseudo non–interacting particles which move under the influence of the vxc po-
tential that already contains some of the e–e correlation effects. This initial corre-
lation already present in the KS Hamiltonian has several important consequences
in the electronic [27] and also in the phononic dynamics [30].

As far as the electronic dynamics is concerned, vxc can lead to subtle double–
counting problems that are safely removed by defining, in Eq. (2.34),

h
ext

= hKS � vxc. (B.2)

Another important ingredient of the present approach are the phonon modes.
These, within the DFT scheme, are obtained by considering the total Hamilto-
nian H as a functional of the atomic positions {R}. The problem of finding the



B. THE MERGING WITH DENSITY–FUNCTIONAL THEORY

phonon modes reduces to the self–consistent calculation of derivatives of H. In-
deed, if DFT is a self–consistent theory, DFPT [24, 25] is its extension to take into
account, self–consistently, the effect of static perturbations (like nuclear displace-
ments). In this case, DFPT provides an exact description of phonons within the
limits of a static and adiabatic approach.

Thus DFT and DFPT provide all ingredients of the present theory and allow a
full ab–initio implementation. Indeed, as discussed in chapter 3, we have that for
each element of the theory we can define a DFT/DFPT counterpart:

(a) As far as the single–particle electronic basis is concerned the KS wave–
functions �i represent a natural definition. In this basis all standard MBPT ma-
chinery can be used to calculate the ingredients of standard Hedin’s equations [14];

(b) In the e–p case phonons and e–p interaction matrix elements can be easily
calculated within DFTP. Indeed, in this case, the ionic potential Vn appearing in
Eq. (3.16) is

Vn (r)) Vscf (R, r) = vH (r) + vxc (r)�
X

R

ZR

|r�R| , (B.3)

and the phonon frequencies can be safely calculated within DFPT.
These simple connections demonstrate that, by simply implementing the NEGF

framework in a KS basis, we can extend the predictive power of the many–body
technique beyond the standard and well–known equilibrium limit.
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Appendix C

Conventions for linear algebra
operations

In the derivation of the equations of the Sec. 3.5 we introduced the following ad–
hoc notation for the generic products of matrices

(M � V )pq ⌘M pq
mn

Vnm, (C.1)

(T �M � V ) ⌘ TpqM qp
mn

Vnm, (C.2)

(M �N)

mn
rs
⌘Mmn

pq
Nqp

rs
, (C.3)

[N,V ]

mn
pq

= �[V,N ]

mn
pq
⌘ Nmi

pq
Vin � VmiNin

pq
. (C.4)

[N,V ]mn = �[V,N ]mn ⌘ NmiVin � VmiNin. (C.5)



C. CONVENTIONS FOR LINEAR ALGEBRA OPERATIONS
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Appendix D

Inversion methods for the BSE
matrix and the PL spectrum

Despite de relative simplicity of the final form of our equations, they must still
be readied to be implemented in the subroutines of YAMBO. Here we follow Dr.
Andrea Marini’s notes on how this was done.

D.1 Symmetrisation of L<

We have, from Eq. (5.35) the connection between the power spectrum I⌧ (!) and
the electron-photon correlation function L<

I⌧ (!) = �16⇡3c
3

X

↵=1

X

i,j

I↵=
h

⇧

↵
ijL

<,⌧
ij,↵(!)

i

, (D.1)

and from Eq. (4.35) we now how to evaluate L< by using

L7,⌧
K (!) =

⇥

1� L0r,⌧
(!)⌅

⇤�1

KK0 L
07
K0(!)

⇥

1� ⌅L0a,⌧
(!)
⇤�1

K0K00 ⇧K00,I , (D.2)

with

L0,r/a
K (!) =

iRK

! � ⌦K ± i⌘
. (D.3)

However, in YAMBO we use a symmetric form for the correlation functions and the
associated quantities which follows1

LKK0
=

p

RK
˜LKK0

p

RK0 , (D.4)
1From here on we are interested in algebraic transformations to the matrices and vectors in-

volved in the computation of L<, so we will ignore their dependence in ! so as to not overburden
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SPECTRUM

which, as we can see, preserves the BSE equation for ˜Lr/a

p

RK
˜LKK0

p

RK0
=

p

RK
˜L0

KK0

p

RK0�KK0

+

p

RK
˜L0

K

p

RK⌅KK0
p

RK0 ˜LK0K00
p

RK00

) ˜LKK0
=

˜L0

K +

˜L0

K
˜

⌅KK0 ˜LK0K00 . (D.5)

With these symmetric functions we must change the matrices which are to be
inverted in Eq. (D.2) into

h

1� ˜L0r
˜

⌅

i

KK0
=

˜L0r
K



⇣

˜L0r
⌘�1

K
�KK0 � ˜

⌅KK0

�

=

˜L0r
K

˜M r
KK0 (D.6a)

h

1� ˜

⌅

˜L0a
i

KK0
=



⇣

˜L0a
⌘�1

K
�KK0 � ˜

⌅KK0

�

˜L0a
K0 = ˜Ma

KK0 ˜L0a
K0 , (D.6b)

which then symmetrises Eq. (D.2)

L<
K,I = (M r

)

�1

KK
1

�

L0r
K1

��1

L0<
K

1

�

L0a
K

1

��1

�

M0a
��1

K
1

K
2

⇧K
2

,I

=

p

RK

⇣

˜M r
⌘�1

KK
1

⇣

˜L0r
K1

⌘�1 L0<
K

1

RK
1

⇣

˜L0a
K

1

⌘�1

⇣

˜M0a
⌘�1

K
1

K
2

p

RK
2

⇧K
2

,I (D.7)

where

L07
K (!) = ±2iR7

K<
h

˜L0r
K (!)

i

= ±2iR7
KAK(!) (D.8)

and where we have defined the spectral function AK(!), which for a system of
independent particles is given by AK(!) = ⇡�(! � ⌦K). In this form, the power
spectrum is given by

I⌧ (!) = �32⇡3c
3

X

↵=1

X

K

I↵<
h

⇧

↵
KL<,⌧

K,↵(!)
i

. (D.9)

D.2 Diagonalisation of the BSE kernel

Diagonalisation algorithms are based on the fact that we can always write ˜M r/a
KK0(!)

using an excitonic basis, as described in Section 4.3.2. If the matrices are hermi-
tian (which holds up to and including the TDA), we have that

h

˜M r/a
(!)
i�1

KK0
= i

X

�

hK|�i h�|Ki
! � E� ± i⌘

, (D.10)

the notation. We will recover it when appropriate. Also, unless otherwise stated, we use Einstein’s
summation convention.
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which brings Eq. (D.1) into

I(!) = �32⇡3c
3

X

↵=1

I↵
X

K,K0,K00

X

�
1

,�
2

p

RK

p

RK0

⇥ ⌘

⇡
<


⇧

⇤
K,↵

hK|�
1

i h�
1

|Ki
! � E�

1

+ i⌘

R<
K0

RK0

hK|�
2

i h�
2

|Ki
! � E�

2

� i⌘
⇧K00,↵

�

, (D.11)

with ⌘ ! 0. Here we assume that the dominant contributions are those for which
�
1

= �
2

and that the remaining part, which we will call �I⌧ (!), is negligible. This
transforms Eq. (D.11) into

I(!) = �32⇡3c
3

X

↵=1

I↵
X

K,K0,K00

X

�

p

RK

p

RK0

⇥<


⇧

⇤
K,↵ hK|�i h�|Ki

R<
K0

RK0
hK|�i h�|Ki⇧K00,↵

�

�(! � E�) +�I(!)

=

X

�

⇥��(! � E�) +�I(!) (D.12)

which means that the spectrum peaks will lie on top of the exciton energies and
that their strength is given by ⇥�. On a short note, it is easy to see what would be
the shape of the power spectrum for the non-interacting particle case just by doing
|�i ! |Ki, which yields

I⌧IP(!) = �32⇡3c
3

X

↵=1

I↵
X

K

X

�

<


⇧

⇤
K,↵R

<
K⇧K,↵

⌘

⇡

1

(! � EK)

2

+ ⌘2

�

= �32⇡3c
3

X

↵=1

I↵
X

K

|⇧K,↵|2R<
K�(! � EK) (D.13)

Besides neglecting the coupling in ⌅, and we recall that

i⌅ =

✓

R C
C⇤ R⇤

◆

, (D.14)

we can in YAMBO decide if we wish to keep the anti-resonant part as well. In
YAMBO the anti-resonant part can be included in L0r/a by writing

L0r/a
K (!) = ifK



1

! � ⌦K + i⌘
� 1

! +

¯

⌦K � i⌘

�

, (D.15)

thus meaning that the spectral function will be

AK(!) = �(! � ⌦K) + �(! + ⌦K). (D.16)
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Here we point out that YAMBO will use the resonant ⌦K for the resonant and
anti-resonant components. Finally, using this decomposition we get that

⇥�|res = ⇥�|anti-res. (D.17)

D.3 Inversion of the BSE kernel

The inversion method does not rely on an excitonic decomposition of the M r/a

matrices, as it directly computes their inverse and uses them in

I⌧ (!) = �32⇡3c
3

X

↵=1

X

KK
1

K
2

I↵<
h

⇧

⇤
K,↵ (M

r
(!))�1

KK
1

�

L0r
K1

(!)
��1

R<
K

1

AK
1

(!)

⇥
�

L0a
K

1

(!)
��1

(Ma
(!))�1

K
1

K
2

⇧K
2

,↵

i

(D.18)

to compute the power spectrum. However, we may run into potential numerical
problems if we keep the following product

�

L0r
K (!)

��1

AK(!)
�

L0a
K (!)

��1 (D.19)

in its unsimplified form. This can be avoided by redefining AK and L0r/a
K as

AK(!) = � 1

⇡
<
⇥

A0

K(!)
⇤

=

1

⇡
=
⇥

¯A0r
K (!)

⇤

(D.20a)

L0r/a
K (!) = i

¯L0r/a
K (!) (D.20b)

where ¯A0r
K and ¯L0r/a

K are the quantities which are actually evaluated by YAMBO.
Equation (D.20b) also means that

L0a
K (!) = �

⇥

L0r
K (!)

⇤⇤ ) L0a
K (!) = i

⇥

¯L0r
K (!)

⇤

. (D.21)

So, if we define the following product

lK(!) =
�

L0r
K (!)

��1

R<
KAK(!)

�

L0a
K (!)

��1

, (D.22)

we easily obtain that

lK(!) = �
R<

KAK(!)

|¯L0r
K (!)|2

= �⌘
⇡

fck(1� fvk)

(fck � fvk)2
, (D.23)
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where we took K = {c, v,k}. This brings Eq. (D.18) into a shortened form where
we can easily apply a perturbative expansion for the inverses of each matrix, as
we can see in the following
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where Sr/a
K are the residues for the zeroth order.

The number of operations can be further reduced if we recall that up to, and
including, the TDA, ⌅ is hermitian. Thus ⌅⇤

KK0 = ⌅K0K and we obtain Ma from
M r simply by doing
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where ¯M r is the YAMBO quantity given by
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Finally, the matrices for the anti-resonant part are simply given by
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Appendix E

Parameters used in the
calculations

E.1 DFT calculations

Table E.1: Atomic and pseudo-potential data for the ground-state of hBN.

Atom Atomic mass Functional type Coordinates

B 10.811 PBE GGA (scalar-relativistic) (0.0,0.0,0.5)
N 14.0067 PBE GGA (scalar-relativistic) (1/3,2/3,0.5)

Table E.2: Cell and numerical parameters for the convergence of the ground-state of
hBN.

Parameter Value

k points 9 by 9
Cell type Hexagonal
Cell’s dimensions [bohr] 4.7

2.5531
Wave function cutoff [Ry] 60
Convergence threshold 10-10



E. PARAMETERS USED IN THE CALCULATIONS

Table E.3: Parameters for the expansion of the ground-state of hBN on a finer mesh.

Parameter Value

k points 12 by 12
Number of bands 60
Convergence threshold 10-8

Table E.4: Atomic and pseudo-potential data for the ground-state of WS2.

Atom Atomic mass Functional type Coordinates

W 183.84 Perdew-Zunger LDA (full relativistic) (1/3,2/3,0.0)
S 32.065 Perdew-Zunger LDA (full relativistic) (2/3,1/3,0.0742)

(2/3,1/3,-0.0742)

Table E.5: Cell and numerical parameters for the convergence of the ground-state of
WS2.

Parameter Value

k points 15 by 15
Cell type Hexagonal
Cell’s dimensions [bohr] 6.12192

6.53389
Wave function cutoff [Ry] 110
Convergence threshold 10-10

Table E.6: Parameters for the expansion of the ground-state of WS2 on a finer mesh.

Parameter Value

k points 24 by 24
Number of bands 150
Convergence threshold 10-8
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E.2 G
0

W
0

quasi-particle corrections

Here and in Sections E.2, E.3, E.4, and E.5 the parameters are those defined and

used in version 4.1.2 of YAMBO.

Table E.7: Numerical parameters for the G0W0 quasi-particle corrections on WS2.

Parameter Variable Value

Random q-points in the BZ RandQpts 1000000
Cutoff Geometry CUTGeo box z
Coulomb cutoff CUTBox 38
Plane-waves FFTGvecs 15 Ha
Response block size NGsBlkXd 2500 mHa
GW bands range GbndRnge 70
Polarisation function bands BndsRnXd 70

E.3 COHSEX corrections

Table E.8: Common numerical parameters for the G0W0 quasi-particle corrections on
WS2 for both t = 0 and t = T .

Parameter Variable Value

Random q-points in the BZ RandQpts 1000000
Coulomb interaction RS components RandGvec 1
Cutoff Geometry CUTGeo box z
Coulomb cutoff CUTBox 38 au
Plane-waves FFTGvecs 10 Ha
Response block size NGsBlkXs 1000 mHa
Screened interaction block size EXXRLvcs 10 Ha
Polarisation function bands BndsRnXs 70
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E.4 BSE spectra

Table E.9: Numerical parameters for the BSE spectrum on hBN.

Parameter Variable Value

Plane-waves FFTGvecs 10 Ha
BSE kernel mode BSEmod causal
BSE inversion BSSmod d
Exchange components BSENGexx 10 Ha
Screened interaction block size BSENGBlk 1 RL
BSE spectrum energy range BEnRange 0 to 10 eV
BSE bands range BSEBands 4 to 5
Polarization function bands BndsRnXs 50
Response block size NGsBlkXs 1 RL

Table E.10: Common numerical parameters for the BSE spectrum on WS2 for both
t = 0 and t = T .

Parameter Variable Value

Plane-waves FFTGvecs 10 Ha
Exchange components BSENGexx 10 Ha
Screened interaction block size BSENGBlk 1000 mHa
Cutoff Geometry CUTGeo box z
Coulomb cutoff CUTBox 38 au
Response block size NGsBlkXs 1000 mHa
Polarisation function bands BndsRnXs 60
BSE bands range BSEBands 25 to 28
BSE kernel type BSEmod causal
BSE inversion solver BSSmod i
BSE inversion solver mode BSSInvMode f
BSE absorption threshold BSEPSInvTrs 0.01
BSE PL threshold BSPLInvTrs 0.01
BSE spectrum energy range BEnRange -4.0 to 4.0 eV
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E.5 Real-time propagation

E.5 Real-time propagation

The set up of the field central frequency and damping is done with the variables
Field1 Freq and Field1 Damp, respectively. The temperature of the phonon bath
is set up via the BoseTemp variable.

Table E.11: Common numerical parameters for the real-time propagation on WS2 for
both t = 0 and t = T .

Parameter Variable Value

Plane-waves FFTGvecs 10 Ha
Screened interaction block size EXXRLvcs 1000 mHa
Exchange components HARRLvcs 10 Ha
Correlation RL components CORRLvcs 1000 mHa
BSE kernel bands COLLBands 25 to 28
Response block size NGsBlkXs 1000 mHa
Polarisation function bands BndsRnXs 60
Random q-points in the BZ RandQpts 1000000
Cutoff Geometry CUTGeo box z
Coulomb cutoff CUTBox 38
E-p modes included ElPhModes 1 to 9
Time step RTstep 10 as
Simulation time NETime 1.4 ps
Laser intensity Field1 Int 105 kW cm-2

Electric field direction Field1 Dir (0.0, 1.0, 0.0)
Laser polarisation Field1 pol linear
Laser profile Field1 kind QSSIN
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laser field.

h ˆS↵(1)i
corr

Microscopic component of the Poyting vector, .

�ji
lk
(t, t0) Matrix elements of the linear density-density reducible

response function.

�(1, 2, 3) Reducible longitudinal vertex.

�?(1, 2) Transverse Dirac-delta function.

"�1

RPA

[⇢] (r, r) Inverse static dielectric function, computed within RPA.

⌦ Volume of the lattice.

!q,!Q Energy of a photon of momentum q or Q.

⌦s Volume of the unit cell.

✓(t� t0) Heaviside step function.

ˆ�0(1) Scalar potential operator associated to the electronic
charge density operator, ⇢̂(1).
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List of Symbols, Acronyms, and Mathematical conventions

ˆ�(r) Scalar potential associated with the total charge den-
sity operator, n̂(r).

ˆ (r), ˆ †
(r) Electron annihilation and creation field operators, re-

spectively.

⇢̂(r) Electron density operator.

ˆd Dipole operator

ˆdq�, ˆd†q� Photon annihilation and creation operators, respectively.

ˆHext(t) Time-dependent external Hamiltonian used in the func-
tional derivative technique.

n̂(r) = ⇢̂(r) + ˆN(r) Total charge density operator.

ˆN(R) Nuclear density operator.

ˆS (t↵, t�) Contour defined time-evolution operator.

û(1) Electromagnetic energy density operator.

ˆVn(r) Potential associated to the nuclear density.

ˆA(r) Magnetic vector potential.

ˆB(1) The photon magnetic field operator.

ˆE(1) The photon electric field operator.

ˆJ(r) Electron current-density operator.

ˆS(1) The Poyting vector operator.

ˆH Full Hamiltonian of the system.

ˆh(ri) Electron single-particle Hamiltonian.

ˆH
0

Non-interacting Hamiltonian.

ˆHe-e Electron-electron interaction Hamiltonian.
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List of Symbols, Acronyms, and Mathematical conventions

ˆHe-n Electron-nuclei interaction Hamiltonian.

ˆHn-n Nuclei-nuclei interaction Hamiltonian.

ˆH� Free photon Hamiltonian.

ˆHe�� Electron-photon interaction Hamiltonian.

ˆTe Electron kinetic energy operator.

ˆTn Nuclear kinetic energy operator.

� (1, 2, 3) Reducible transverse vertex.

Aext(1), Jext(1) External time-dependent magnetic vector potential and
associated external time-dependent current density.

J
ind

(1) Induced current-density.

S⌧
(!) Absorption coefficient.

TC Contour time ordering operator.

 !D (1, 2) Photon propagator.

 !D
0

(1, 2) Free photon propagator.

 !
P (3, 4) Reducible transverse polarisation.

@q�Vn (r) = eq� ·rVn (r) Derivative of the nuclear potential along the direction
of the phonon mode with momentum q and branch �.

�ext(1), ⇢ext(1) External time-dependent potential and associated ex-
ternal time-dependent charge density

R Position of a nucleus.

⌃(1, 2) Full self-energy.

⌃

<
(1, 2) Lesser self-energy.

⌃

>
(1, 2) Greater self-energy.
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List of Symbols, Acronyms, and Mathematical conventions

⌃

a
(1, 2) Advanced self-energy.

⌃

r
(1, 2) Retarded self-energy.

⌃H(1, 2) Hartree component of the self-energy.

⌃xc(1, 2) Exchange-correlation component of the self-energy.

⌧carr Time interval after which the laser induced oscillations
in the occupations have disappeared.

⌧pol Time interval after which the laser induced polarisation
has decayed.

�̃ji
lk
(t, t0) Matrix elements of the linear density-density irreducible

response function.

�̃(1, 2, 3) Irreducible longitudinal vertex.

p̃
e

(1, 2) Irreducible longitudinal polarisation.

˜� (1, 2, 3) Irreducible transverse vertex.

 ̃!
P (3, 4) Irreducible transverse polarisation.

⌅(1, 2; 3, 4) The Bethe-Salpeter equation kernel.

D(1, 2) Nuclear density-density correlation function.

d(T ) Time-dependent expectation value of the dipole opera-
tor.

E�, AK
� Excitonic eigenvalues and eigenvectors of the retarded

excitonic Hamiltonian, Hr,⌧
KK0 .

G(1↵, 2�) Electron Green’s function defined on the Keldysh con-
tour.

G<
(1, 2) Electronic lesser Green’s function.

G>
(1, 2) Electronic greater Green’s function.
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List of Symbols, Acronyms, and Mathematical conventions

Gc(1, 2) Electronic time-ordered Green’s function.

Gc̃(1, 2) Electronic anti-time-ordered Green’s function.

Hcoupling
(v,c,k),(v0,c0,k) Coupling part of the excitonic Hamiltonian.

Hres
(v,c,k),(v0,c0,k) Resonant part of the excitonic Hamiltonian.

Hr/a,⌧
KK0 Retarded/advanced excitonic Hamiltonian.

I⌧ (!) Time-dependent photoluminescence spectrum.

K = {n
1

n
2

k
1

} Electron-hole pair indices.

Kdyn Dynamical kernel of the time-dependent Bethe-Salpeter
equation.

kB Boltzman constant.

Ks Static kernel of the time-dependent Bethe-Salpeter equa-
tion.

L(1, 2; 3, 4) The electron two-particle correlation function.

L
0

(1, 2; 3, 4) The zeroth-order two-particle correlation function.

MR Mass of a nucleus at R.

Next(R, t) Fictitious external density which affects only to the nu-
clei.

NI(�) Bose-Einstein distribution, with � = 1/kBTlt.

RI
ij Interaction coupling constants.

Sdyn Dynamical part of the non-equilibrium integral.

S [{G}, {⌃}] Non-equilibrium collision integral.

Scoh Coherent part of the non-equilibrium collision integral.

Sdyn

e�� Electron-photon scattering channel component of the
dynamical non-equilibrium collision integral.
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List of Symbols, Acronyms, and Mathematical conventions

Sdyn

e�e Electron-electron scattering channel component of the
dynamical non-equilibrium collision integral.

Sdyn

e�p Electron-phonon scattering channel component of the
dynamical non-equilibrium collision integral.

Tlt Lattice temperature.

U(1) = �
ext

(1) + hˆ� (1)iC The total longitudinal potential.

v(r� r0) Coulomb potential (spatial part only).

W (1, 2) Screened interaction.

We(1, 2) Electronic component of the screening.

Wph(1, 2) Nuclear component of the screening.

WGG0
(q) Matrix elements of the static screened interaction, W (1, 2).

ZR Nuclear charge.

BKE Baym-Kadanoff equations.

CCA Completed collision approximation.

COHSEX Coulomb Hole and Screened Exchange approximation
for the self-energy.

DFPT Density functional perturbation theory.

DFT Density Functional Theory.

GBKA Generalised Baym-Kadanoff ansatz.

GBKA The Generalised Baym-Kadanoff ansatz.

LIA The Low Intensity Approximation.

MBPT Many-body perturbation theory

NEGF Non-equilibrium Green’s function.
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NEQ Non-equilibrium.

PL Photoluminescence.

RPA Random phase approximation.

SR-PL Spatial-resolved photoluminescence.

TR-PL Time-resolved photoluminescence.

TSR-PL Time-spatial-resolved photoluminescence.
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HANS CHRISTIAN SCHNEIDER. Optical absorption spectra of fi-
nite systems from a conserving Bethe-Salpeter equation approach.
The European Physical Journal B, 79(3):327–334, oct 2011.

[12] G STEFANUCCI AND ROBERT VAN LEEUWEN. Nonequilibrium Many-Body
Theory of Quantum Systems. Cambridge University Press, 2013.

[13] M BONITZ. Quantum Kinetic Theory. B.G.Teubner Stuttgart. Leipzig, 1998.

[14] GIOVANNI ONIDA, LUCIA REINING, AND ANGEL RUBIO. Electronic ex-
citations: density-functional versus many-body Green’s-function ap-
proaches. Reviews of Modern Physics, 74(2):601–659, jun 2002.
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[30] ANDREA MARINI, S PONCÉ, AND X GONZE. Many-body perturbation
theory approach to the electron-phonon interaction with density-
functional theory as a starting point. Physical Review B, 91(22):224310,
jun 2015.
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