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EXPLORING THE CONSEQUENCES OF
IMPRECISE INFORMATION IN CHOICE
PROBLEMS USING ELECTRE

Luis C. Dias and João N. Cĺımaco
INESC and Faculty of Economics, University of Coimbra,
Av. Dias da Silva 165, 3004-512, Coimbra, Portugal.

Abstract ELECTRE I, IS and its variants are well-known methods to help Deci-
sion Makers (DMs) choose one action (alternative) from a discrete set.
Here, we consider the case where the DMs have difficulties in fixing pre-
cise values for all the parameters required by ELECTRE, such as the
importance of the criteria, the veto thresholds or the performances of
the actions. We indicate how to obtain robust conclusions when the
DMs specify a set of multiple acceptable combinations of values for the
parameters. We argue that robust conclusions should be studied at the
outranking relation level, and then suggest some approaches to enrich
such conclusions (introducing a tolerance) and to exploit them.

1. INTRODUCTION

We owe Bernard Roy and his colleagues for the ELECTRE methodol-
ogy (see Roy, 1991; Roy and Bouyssou, 1993) and the concept of robust-
ness analysis in multicriteria decision aid (Roy, 1998; Roy and Bouyssou,
1993). This paper addresses robustness analysis in the context of ELEC-
TRE methods (ELECTRE I and its variants) for choosing one action
from a discrete set considering multiple evaluation criteria.
Using ELECTRE requires setting the value of its input parameters

(we use this word in a broad sense), such as the performance of the
actions (alternatives), the importance and veto power of the criteria, etc.
Providing precise figures for all the parameters is often hard for Decision
Makers (DMs): some data may be missing, uncertain, contradictory or
imprecise, some modeling options are subject to arbitrariness, and some
parameters reflect the values of the DMs, which they may find difficult
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to express and that may change over time (see also Roy, 1989; French,
1995).
To deal with these difficulties, we consider a setting where multi-

ple combination of values for the parameters are accepted, instead of a
precise one. This type of information is often named “imprecise” (e.g.
Miettinen and Salminen, 1999), “partial” (e.g. Charnetski and Soland,
1978) or “poor” (e.g. Bana e Costa and Vincke, 1995). The multiple
combinations of parameter values can be either enumerated or defined by
mathematical constraints (provided by the DMs or inferred from holistic
comparisons as in Mousseau, 1993).
Robustness analysis concerns the study of the results that are valid

for the multiple combinations of input values. We deem that this type
of analysis is useful from the very beginning of the decision process.
Firstly, it produces information (which conclusions are robust? which
results are more affected by the imprecision?) that may guide the DMs
in revising the information they provide, progressively narrowing the
range of acceptable values for the parameters. Secondly, it allows the
DMs to avoid the questions they consider difficult, or at least to postpone
these questions until they feel more familiar with the problem and more
confident about the answers. In group decisions, accepting multiple
combinations of parameter values may foster cooperation among the
DMs, as they may accept multiple opinions and may reach consensus
on the conclusions that are robust (see Dias and Clímaco, 2000b, in the
context of sorting problems). This type of analysis may also be used
in the context of an interactive aggregation/ disaggregation approach to
decision aid (see Dias et al., 2000, in the context of sorting problems).
This paper discusses how to choose the most preferred action consid-

ering imprecise information, within the general context of ELECTRE
methods. Previous research concerning choice problems has focused on
the multiattribute value function model (for a recent review see Dias and
Clímaco, 2000a), with few exceptions. For instance, Roy and Bouyssou
(1993) present a real-world study using ELECTRE IS where a robust-
ness analysis was conducted considering a discrete set of combinations
of input values; Miettinen and Salminen (1999) present an approach to
find the criteria weights (if any exist) that make each certain action the
best in terms of the min procedure (Pirlot, 1995).
In the next section we overview ELECTRE’s way of constructing and

exploiting an outranking relation. In Section 3 we discuss our method-
ology of finding robust conclusions concerning the outranking relation
using optimization. The optimization problems range from very simple
ones (ELECTRE I) to the more complicated ones that may appear if
credibility indices are to be computed. If few robust conclusions are
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found, then we suggest in Section 4 how to obtain richer (though more
fragile) results by introducing a tolerance. Section 5 addresses the ex-
ploitation of robust conclusions. We provide an example in Section 6
and we end with a concluding section.

2. CHOOSING WITH ELECTRE: BRIEF
REMINDER

Consider a set ofm actions A = {a1, ..., am} described by their perfor-
mances at n criteria. Let gj(ai) denote the performance of ai at the j-th
criterion. The first phase of ELECTRE consists in building an outrank-
ing relation defined over A. For each ordered pair of actions (ax, ay), the
method finds whether ax outranks ay (i.e. ax is at least as good as ay)
or not. We will use the following notation for the parameters:

∆j represents the advantage of ax over ay at the j-th criterion:

∆j =

½
gj (ax)− gj (ay) , if the jth criterion is to be maximized;
gj (ay)− gj (ax) , if the jth criterion is to be minimized;

kj ≥ 0 denotes the importance coefficient (weight) of the j-th
criterion, such that

Pn
j=1 kj = 1;

s denotes the concordance threshold; and

vj denotes the veto threshold of the j-th criterion.

The conditions for stating that ax outranks ay (denoted axSay) de-
pend on the method:

ELECTRE I (Roy, 1968; Roy and Bouyssou, 1993):
axSay ⇔ c(ax, ay) =

P
j:∆j≥0

kj ≥ s ∧ ∀j,∆j ≥ −vj .

ELECTRE IS (Roy and Skalka, 1984; Roy and Bouyssou, 1993):
Besides the previous parameters, let qj and pj denote the indifference

and preference thresholds, respectively, of the j-th criterion. Then,
axSay ⇔
c(ax, ay) =

P
j
kjcj(ax, ay) ≥ s ∧ ∀j,∆j ≥ −vj + qjwj (ax, ay),

where

cj (ax, ay) =

⎧⎨⎩ 0, if ∆j < −pj ;
(pj +∆j) / (pj − qj) , if − pj ≤ ∆j < −qj;
1, if ∆j ≥ −qj ;

and wj(ax, ay) =
1−c(ax,ay)−kj

1−s−kj
or wj(ax, ay) =

1−c(ax,ay)
1−s (original version).



4

A third option is to use the credibility index as defined for the ELEC-
TRE III method:
axSay ⇔ σ (ax, ay) ≥ s (see Roy and Bouyssou, 1993, for details).

Note that we may generalize and write
axSay ⇔ r (ax, ay) ≥ 0 , (1)

where
r (ax, ay) = min{c(ax, ay)− s,∆j + vj(j = 1, ..., n)} (ELECTRE I),
r (ax, ay) = min{c(ax, ay)− s,∆j + vj − qjwj(ax, ay)(j = 1, ..., n)}

(ELECTRE IS), or
r (ax, ay) = σ (ax, ay)− s (ELECTRE based on credibility indices).

The following relations can be obtained from the outranking relation:
axPay ( ax is preferred to ay ) ⇐⇒ axSay ∧ ¬ (aySax);
axIay ( ax is indifferent to ay ) ⇐⇒ axSay ∧ aySax;
axRay ( ax is incomparable to ay ) ⇐⇒ ¬ (axSay) ∧ ¬ (aySax).

The exploitation of the outranking relation finds a subset of actions, as
small as possible, yet containing the most preferred one. This “kernel”
K ⊆ A is such that actions outside of K are outranked by at least
one action in K (hence justifying its exclusion) and no action in K is
outranked by another action in K that could exclude the former. If the
graph representing the outranking relation contains cycles, it is necessary
to regard each cycle as a single action (or a class of indifferent actions)
to guarantee the existence of a kernel K satisfying those two conditions
(for details see Roy and Bouyssou, 1993).

3. ROBUST CONCLUSIONS CONCERNING
THE OUTRANKING RELATION

Roy (1998) presented a framework defining the concept of robust
conclusion as a formalized premise that is true for all the acceptable
combinations of parameter values. He also introduced the notions of
approximately robust conclusion (if it is true “almost everywhere”) and
pseudo-robust solution (if not perfectly formalized). In a different frame-
work, Vincke (1999) defines the concepts of robust solutions and robust
methods. For Vincke, a robust solution is one that is “close” (in some
formalized manner) to all the solutions that correspond to admissible
combinations of parameter values.
Robustness analysis contrasts with sensitivity analysis, conducted af-

ter obtaining a result, which determines how much may each parameter
vary (often changing only one at a time) without leading to a different
result. Although useful, these sensitivity analyses require an initial value
for each parameter and focus on the result found initially, hence ignor-
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ing other interesting conclusions that might have been found with other
initial values. This is different from global sensitivity analysis, which
ascertains how may the variability in a model’s output be partitioned
into model input’s variability (see Saltelli et al., 1999).
Let T denote the set of all acceptable combinations of values for the

parameters (performances, importance coefficients, veto thresholds,...).
We will use Roy’s definition of a robust conclusion, although there is a
further distinction (introduced in Dias and Clímaco, 1999) that we deem
useful when using decision aid methods:
- An absolute robust conclusion is a premise intrinsic to one of the

actions, which is valid for every combination in T (e.g. “the value of
action ax is greater than 0.7” in an additive aggregation model).
- A (relative) binary robust conclusion is a premise concerning a pair

of actions, which is valid for every combination in T (e.g. “ ax outranks
ay” in ELECTRE).
- A (relative) unary robust conclusion is a premise concerning one

action but relative to others, which is valid for every combination in T
(e.g. “ ax belongs to the kernel” in ELECTRE).
We will illustrate the methodology we advocate through the following

fictitious example:

Example 1. Four actions are being compared according to five cri-
teria (to be maximized) using ELECTRE I. Table 1.1 displays their
performances, as well as the veto thresholds chosen for the criteria.

g1 g2 g3 g4 g5
a1 40 20 20 30 30
a2 30 30 30 20 10
a3 20 40 20 40 20
a4 20 10 40 10 40
vj 40 25 15 40 40

Table 1.1 Performances and veto thresholds for Example 1

Consider that the importance of the last two criteria has been fixed
(k4 = 0.1 and k5 = 0.2), hence there is imprecise information concerning
only the remaining three criteria. Suppose that this information leads
to the following constraints defining T :

k1 ∈ [0.1, 0.4], k2 ∈ [0.1, 0.4], k3 ∈ [0.1, 0.2], k1+ k2 + k3 = 0.7. (2)

Roy has suggested testing the robustness of a conclusion in a finite
number of sample combinations Ts from T (Roy and Bouyssou, 1993;
Roy, 1998): a few values are chosen for each parameter (e.g. maxi-
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Figure 1.1 Outranking relations (arrows denote outranking) and kernels for the com-
binations in Ts

mum, central and minimum); then, the sample consists of the admissible
combinations of such parameter values. However, when the constraints
defining T inter-relate the parameter values, the set of admissible com-
binations taken as a sample may not be representative enough. An
alternative sample could consist of the extreme points of T (assuming
it is a polytope), together with one or more points in its interior, e.g.
Ts = {(.1, .4, .2), (.4, .1, .2), (.2, .4, .1), (.4, .2, .1), (.275, .275, .15)}. If we
choose the latter sample Ts and compute ELECTRE I’s results for each
point we will find the outranking relations and kernels in Figure 1.1 for
a concordance level s = 0.55.
Now, considering the final results of the method (i.e. the kernel K),

there are only two (unary robust) conclusions that hold for all the com-
binations in Ts: “ a4 ∈ K ” and “ a2 /∈ K ”. However, if we look for
binary robust conclusions concerning the outranking relation, we will
find that a2 always outranks a4, whereas a4 never outranks a2! This
paradox, resulting from the intransitivity of the outranking relation and
the rules for forming the kernel, forced us to ponder which kind of robust
conclusion should the analysis focus on. This example should not be dis-
missed on the grounds that it deals with a discrete set of combinations.
Indeed, a discrete T may correspond to a set of future scenarios or to a
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group of DMs that decides to form T as the union of the combinations
of values that each of them deems worth considering. (NOTE: if we
considered T instead of Ts, “ a4 ∈ K ” and “ a2 /∈ K ” would hold for
every combination exept (.15, .35, .2), which lays on the boundary of T ,
whereas “a2Sa4” and “not a4Sa2” would always hold).
To our opinion, searching for binary robust conclusions concerning

the outranking relation fits well into the ELECTRE’s philosophy of con-
fronting actions in pairs. Moreover, this has the advantage of being
more transparent to the DMs to the extent that the concept of outrank-
ing is easier to understand than the concept of kernel. It also avoids
the embarrassment of electing a winner (a4 in the previous example) in
a situation where there is another action (a2) that is preferable to it
(outranks it without being outranked) according to all the combinations
of values for the parameters.
Given an ordered pair of actions (ax, ay), from (1), considering r (ax, ay)

as a function of a combination of parameter values, we may test the ro-
bustness of conclusions concerning the outranking relation as follows:

“ axSay ” is robust (denoted axSRay ) ⇔
min {r (ax, ay, t) : t ∈ T} ≥ 0; (3)

“not axSay ” is robust (denoted axNRay ) ⇔
max {r (ax, ay, t) : t ∈ T} < 0. (4)

Therefore, we can uncover robust conclusions by maximizing and min-
imizing r (ax, ay, t) (i.e. finding its range) in the domain T , for the mul-
tiple ordered pairs of actions (note that the range of r (ax, ay, t) bears
no information concerning the range of r (ay, ax, t)).
Maximizing and minimizing r(.) is often straightforward, even if this

function corresponds to credibility indices, provided that the criteria
weights can be varied independently of the thresholds and all constraints
are linear. This is a reasonable assumption given the different nature of
the parameters, but if it is violated the optimization does not become
impossible: it becomes only harder to perform. The difficulty of the
problems to be solved ranges from linear programming (ELECTRE I
and original version of ELECTRE IS) to the optimization of non-linear
quasiconcave functions (more recent version of ELECTRE IS and cred-
ibility indices). For details concerning the latter see Dias and Clímaco
(1999).
Back to Example 1, since only the importance coefficients are variable,

we would maximize and minimize the concordance indices c(.), subject
to (2). The range for the concordance indices concerning the pairs where
the outranking is not vetoed is presented in Table 1.2.
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a1 a2 a3 a4
a1 - [0.4, 0.7] [0.5, 0.8] veto
a2 [0.3, 0.6] - [0.3, 0.6] [0.6, 0.7]
a3 [0.4, 0.7] [0.4, 0.7] - veto
a4 [0.3, 0.4] [0.3, 0.4] veto -

Table 1.2 Concordance ranges for Example 1

Thus, the following conclusions concerning S are robust, in that they
hold for every combination of weights satisfying the constraints, given
the fixed veto thresholds and s = 0.55:
- a1 and a3 do not outrank a4;
- a2 outranks a4;
- a4 does not outrank any other action.

The binary relations SR and NR, corresponding to the robust conclu-
sions, define an interval outranking relation, bounded from below by SR

and bounded from above by NR (the complement of NR), such that, if
we let St denote the outranking relation corresponding a combination t
of parameter values, ∀t ∈ T, SR ⊆ St ⊆ NR .

4. ENRICHING THE ROBUST
CONCLUSIONS

This section addresses the problem (that may arise frequently) of deal-
ing with relations SR and NR that are too poor (i.e. they hold for few
ordered pairs). The ideal way of enriching these relations (and thereby
increasing the number of robust conclusions) is to reduce the impreci-
sion concerning the inputs by asking the DMs for more information. This
elicitation should proceed in an interactive manner, so that the results
of the analysis at a given iteration may prompt the discussion concern-
ing the following one. For instance, DMs may deem that SR (or NR)
should apply to a given pair (ax, ay), based on their capacity to judge
the actions holistically. They may also wish to know the combination of
parameter values leading to a given minimum or maximum r(.). Then,
if they consider the values unacceptable, they could insert a constraint
to make that combination become unfeasible.
Richer conclusions may also be obtained if the conditions (3) and (4)

are somehow relaxed. Of course, in this case the conclusions will be more
fragile and the argument for accepting them becomes less compelling.
Next, we next propose two different types of relaxation.
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Type 1: Ignoring a small fraction of the volume of T
The DMs may regard as robust a conclusion that holds for almost all

of the combinations in T . Assuming that T is a compact set with non-
empty interior we may formalize this affirmation as stating that DMs
could accept as robust a conclusion that holds for a large proportion
of the volume of T . Such a conclusion might be called “approximately
robust”, according to the definition of Roy (1998).
Let V ol(t ∈ T : r (ax, ay, t) ≥ 0) denote the volume of T where axSay,

whereas V ol(T ) denotes the volume of T . Let ² denote a tolerance
as regards the relative volumes where each conclusion holds, such that
0 < ² < 0.5. Then, we may define the following relations to generalize
(3) and (4) (When T is a discrete set, these relations can be defined by
counting the proportion of the elements in T that yield axSay):

ax S
V (²) ay ⇔ V ol(t ∈ T : r (ax, ay, t) ≥ 0)/V ol(T ) ≥ 1− ²;

ax N
V (²) ay ⇔ V ol(t ∈ T : r (ax, ay, t) ≥ 0)/V ol(T ) ≤ ².

These relations are more general and flexible than SR and NR: they
coincide with SR and NR when ² = 0 and become richer (i.e. hold for a
larger number of pairs of actions) as ² increases.
Table 1.3 presents the relative volumes of T where each outranking oc-

curs concerning Example 1. If the DMs regard as robust any conclusion
that holds for 95% of the acceptable combinations (setting ² = 0.05),
then the following conclusions would be added to the list presented in
the previous section:
- a2 does not outrank a1;
- a2 does not outrank a3.
The conclusion “a1 outranks a3” would also be accepted if the DMs

increased ² up to 0.2. Of course, DMs should be given an idea of the
combinations in the region they are neglecting, which might contain the
values that they consider the most adequate.

a1 a2 a3 a4
a1 - 60% 80% veto
a2 5% - 5% 100%
a3 40% 60% - veto
a4 0% 0% veto -

Table 1.3 Percentage of combinations for which outranking occurs (Example 1)
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The volume of T may be analytically computed in the case of a polyhe-
dral T (e.g. Lasserre, 1983; Büeler et al., 1998). An alternative approach
is to compute approximate volumes using Monte-Carlo simulation (e.g.
Charnetski and Soland, 1978).
A different idea to relax the conditions for robustness which has a

similar rationale consists in “contracting” the set T by replacing each
linear constraint of the form

αi1t1+ ...+αiktk ≥ βi (t1, ..., tk denotes the parameters; i indexes the
constraint)
by a constraint
αi1t1+ ...+αiktk ≥ βi+ ² ( ² represents the positive tolerance value).
This places more emphasis on the more central combinations of T ,

which is particularly indicated when the DMs reason in terms of strict
inequalities (e.g. k1 > k2, which the relaxation converts into k1 ≥ k2+²),
but requires the DMs to code all the constraints in a similar manner so
that they may attribute a meaning to the value of ².

Type 2: Introducing a tolerance when comparing r(.) with 0
The simplest relaxation of all is to consider a small non-negative tol-

erance ² when comparing r(.) with zero. This amounts to generalize (3)
and (4) by writing

ax S
Z(²) ay ⇔ min {r (ax, ay, t) : t ∈ T} ≥ −²;

ax N
Z(²) ay ⇔ max {r (ax, ay, t) : t ∈ T} < ².

This type of relaxation can be readily applied whether T is a discrete
set or not. The relations SZ(²) and NZ(²) coincide with SR and NR

when ² = 0 and become richer as ² increases. However, there is an
important difference to Type 1: the relations SZ(²) and NZ(²) are not
guaranteed to be mutually exclusive. In fact, there will appear pairs of
actions (ax, ay) such that ax SZ(²) ay and ax NZ(²) ay, as soon as ²
exceeds the threshold
²K = min(ax,ay)∈A2 {max {−mint∈T r(ax, ay, t),maxt∈T r(ax, ay, t)}}.
Therefore, this type of relaxation fits naturally into the four-valued

logic framework of Tsoukiàs and Vincke (1997). Considering an ordered
pair of actions (ax, ay), the statement that ax outranks ay, may be:

“true”, if ax SZ(²) ay ∧ ¬(ax NZ(²) ay);

“false”, if ¬(ax SZ(²) ay) ∧ ax NZ(²) ay;

“unknown”, if ¬(ax SZ(²) ay) ∧ ¬(ax NZ(²) ay);

“contradictory”, if ax SZ(²) ay ∧ ax NZ(²) ay.
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Concerning Example 1, if we consider ² = 0.055 (which is 10% of s and
lower than ²K = 0.15), we would accept an outranking if the minimum
concordance was not lower than s− ² = 0.495 and we would reject that
outranking if the maximum credibility was lower than s+ ² = 0.605 (or
if veto occurred). Hence, we would reach the same conclusions as when
we used a Type 1 relaxation with ² = 0.2.

We believe that both types of relaxation are adequate and provide a
compelling rationale (if ² is small) for accepting or rejecting an outrank-
ing. The second type of relaxation may even be combined with the first
type. This second type of relaxation is very easy to perform (after the
ranges r(.) have been computed) and places the emphasis on the output
rather than the inputs. It also allows contradiction, which enables a
richer analysis.
It is important to note that these relaxations are intended to be used

in an interactive manner, where the DMs may experiment with the differ-
ent types and with different values for ², with the objective of acquiring
insight and of being able to provide new information. Let us also note
that we have used the function r(.) to allow a more general presentation
of our approach. A possible drawback is that r(.) is the minimum be-
tween different aspects concerning concordance and discordance (veto)
when using ELECTREs I or IS, which can make the value of ² somewhat
difficult to interpret in the definitions of SZ(²) and NZ(²) (relaxation of
Type 2). However, this is not important, because:

SR, NR and their relaxations can be redefined to deal with con-
cordance and discordance separately;

the performances can be normalized to be comparable, as in the
original version of ELECTRE I;

the function r(.) may be defined to deal with discordance and/or
concordance in terms of relative deviation, e.g.

r (ax, ay) = min{c(ax, ay)− s, (∆j + vj)/vj(j = 1, ..., n)}.

5. EXPLOITING THE ROBUST
CONCLUSIONS

The most important goal of decision aid is perhaps the insight it gen-
erates. It may even happen that the best action becomes obvious once
the DMs have learned enough about the situation and their preferences.
In this perspective, finding robust conclusions (possibly relaxed ones)
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concerning the outranking relation S yields the most important bene-
fit. However, the DMs often need a structured approach (exploitation
procedure) to select an action.
The exploitation of the robust conclusions in the context of a choice

problem may be conducted by various means. A very important aspect is
that this exploitation should not be isolated from the construction of the
outranking relation. Instead, the exploitation of the robust conclusions
and the identification of the results exhibiting higher variability (i.e.
the pairs of actions for which the range of r(.) is wider) should prompt
the DMs to revise the information that defines T , possibly reducing
the amount of imprecision, which in turn leads to a new set of robust
conclusions and a new iteration of the exploitation process, and so forth.
The literature on outranking relations offers some ideas to address our

exploitation problem, as the following list demonstrates:

Exploiting the relations S and N
Let us first consider that a Type 2 relaxation has been chosen, mean-

ing that the robust conclusions allow to consider outrankings as “true”,
“false”, “unknown” or “contradictory”. Greco et al. (1997) propose the
use of a score-based net flow procedure. Each action ax ∈ A would get
the score

snf (ax) =
#
©
ay ∈ A : ¬

¡
axN

Z(²)ay
¢ª
−#

©
ay ∈ A : ¬

¡
ayN

Z(²)ax
¢ª
+

+#
©
ay ∈ A : ¬

¡
ayS

Z(²)ax
¢ª
−#

©
ay ∈ A : ¬

¡
axS

Z(²)ay
¢ª
.

Tsoukiàs and Vincke (1997) suggest that the “true” and “not false”
relations could be separately exploited by some procedure to produce
two rankings, which would be combined afterwards.
Considering now that a Type 1 relaxation is being used, or even no

relaxation at all, the robust conclusions allow to consider the outranking
of a given action over some other as “true” (if S is robust), “false” (if
N is robust), or “unknown” (remaining cases). In this case, we are
in presence of an interval outranking relation bounded by SR (or its
relaxation) and NR (or the complement of the relaxation of NR), with
SR ⊆ NR. This means that the exploitation procedure of ELECTRE
II (e.g. see Roy and Bouyssou, 1993: 409-415) can be used, considering
that SR is the strong outranking relation, whereas NR is the weak one.
The two procedures outlined above can also be used, since they do not
differentiate “unknown” from “contradictory” outrankings.
Notice that although we are interested in choice problems, all these

procedures provide a ranking of the actions.
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Exploiting valued outranking relations
It is straightforward to use a relaxation of Type 1 to define a valued

(fuzzy) outranking relation. Given an ordered pair (ax, ay) of actions, the
credibility of the statement “ax outranks ay” is equal to the proportion
of T ’s volume where such outranking occurs (this idea of associating
volumes with a valued relation is also present in Bana e Costa and
Vincke, 1995). The credibility is maximumwhen ax SR ay, it is minimum
when ax NR ay, and it has an intermediate value for the remaining cases.
There are many methods to exploit binary valued relations, namely the
net-flow procedure (Bouyssou, 1992), the min procedure (Pirlot, 1995),
and ELECTRE III’s distillation algorithms (Roy and Bouyssou, 1993).

Exploiting a single outranking relation
A different idea is to work with a single outranking relation SM and

then exploit it to find a kernel according to the ELECTRE I/IS methods.
This outranking relation could be SR or NR, if one of these relations is
rich enough to exploit. Otherwise, DMs could consider the relaxation of
SR or the complement of the relaxation of NR. If a relaxation of Type
1 is used then SR ⊆ SM ⊆ NR. However, note that the relation SM

might not correspond to a combination of parameter values in T .
Another possibility is to consider a “central” combination tc ∈ T

and to exploit the outranking relation SM that this combination yields
(SR ⊆ SM ⊆ NR). The central combination tc ∈ T may be computed
by following one of two approaches: tc may be chosen as a combination
(there may be several) maximizing the minimum slack among the in-
equality constraints defining T ; or tc may be chosen as the centroid of
T (Solymosi and Dombi, 1986), which is very easily computed when T
is defined by a ranking of the values for the parameters.

The main objective of using these exploitation techniques should be
to prompt the DMs to revise their inputs and provide more information.
Hence, experimenting with several of these techniques could enable a
richer analysis. The exploitation can also be used to put an end to the
analysis, particularly when SR is close to NR.

6. ILLUSTRATIVE EXAMPLE

As an illustration, let us consider the choice of a machine to sort
packages, a problem faced by the French postal service (presentation
based on Roy and Bouyssou, 1993: 501-541). In that study, ELECTRE
IS was used to compare 9 actions according to 12 criteria (Table 1.4).
The criteria weights used in the original example are depicted in the

kj row of Table 1.4. These weights were chosen to satisfy the following
system, which reflects the opinion of the DMs:
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12

a1 75 69 68 70 82 72 86 74 -15,23 83 76 29

a2 81 60 82 70 66 52 86 60 -15,7 83 76 71

a3 77 60 82 50 66 60 86 60 -15 83 82 71

a4 73 57 82 90 75 61 93 60 -15,55 83 71 29

a5 76 46 55 90 48 46 93 60 -36,68 83 50 14

a6 75 63 68 90 98 63 78 61 -22,9 100 68 57

a7 73 63 68 70 98 86 78 61 -19,58 100 74 57

a8 77 31 41 50 59 79 71 60 -15,47 67 76 86

a9 96 69 41 70 49 60 57 60 -13,99 83 50 86

qj 5 5 5 5 5 8 10 0 1 10 5 10

vj 50 50 40 100 40 25 100 50 5 100 30 50

kj
3
39

2
39

5
39

3
39

3
39

5
39

2
39

2
39

5
39

1
39

5
39

3
39

Table 1.4 Performances (to be maximized) and thresholds for the example by Roy
and Bouyssou (the preference thresholds pj coincide with qj)

(i) k10 < k2 = k7 = k8 < k1 = k4 = k5 < k3 = k6 = k9 = k11,
(ii) k10 ≤ k12 ≤ k11,
(iii) k1 = k2 + k10,
(iv) k11 = k1 + k2,
(v) kj ≥ 0 (j = 1, ..., 12).
The original study set s = 0.7, although it admitted that s ∈ [0.63, 0.73]

when performing a robustness analysis a posteriori. The outranking re-
lation from the original study is depicted in Figure 1.2. Based on this
relation, a5, a6, and a8 can obviously be excluded, while a1 justifies the
exclusion of a2, a3,and a4, which form an indifference class. Hence, the
kernel is K = {a1, a7, a9}.
In our example, we will proceed by considering the imprecise informa-

tion defined by the constraints above and see what conclusions may be
drawn. We will use the same values of the original study for the thresh-
olds associated with the criteria (rows qj and vj in Table 1.4). The set T
is defined by the constraints (i)-(v), the constraint

Pn
j=1 kj = 1 (which

is not restrictive), and the bounds s ∈ [0.63, 0.73].
Let us now define r(.) to account for discordance as a ratio to the veto

thresholds, in order to attribute some meaning to inter-criteria compar-
isons of discordance:

r (ax, ay) = min{c(ax, ay)− s,∆j+vj−qjwj(ax,ay)
vj

(j = 1, ..., n)}.
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a1

a2

a3a4

a7 a6

a8

a9

Figure 1.2 Outranking relation for the example by Roy and Bouyssou (a5 does not
appear since it is outranked by every other action).

a1 a2 a3 a4 a5
a1 - [-.08,.04] [-.12,.01] [.05,.18] [.18,.31]

a2 [-.28,.05] - [.13,.25] [-.03,.12] [.18,.31]

a3 [-.16,.01] [.18,.31] - [.1,.25] [.08,.31]

a4 [-.09,.09] [.01,.12] [-.03,.08] - [.27,.37]

a5 [-4.34,-3.82] [-3.95,-3.57] [-4.29,-3.82] [-4.18,-3.71] -

a6 [-1.21,-.8] [-1.10,-.75] [-1.14,-.83] [-.81,-.59] [.2,.33]

a7 [-.09,.08] [-.24,.01] [-.48,-.17] [-.26,0] [.13,.25]

a8 [-.23,-.07] [-.31,-.15] [-.38,-.19] [-.31,-.15] [-.09,.06]

a9 [-.67,-.15] [-.31,-.14] [-.44,-.23] [-.38,-.19] [-.02,.13]

a6 a7 a8 a9
a1 [-.05,.23] [-.09,.16] [-.23,-.14] [-.38,-.26]

a2 [-.12,.06] [-.69,-.45] [-.3,-.03] [-.11,.08]

a3 [.01,.15] [-.60,-.23] [.01,.23] [-.17,.01]

a4 [-.05,.16] [-.67,-.25] [-.33,-.22] [-.42,-.29]

a5 [-2.81,-2.32] [-3.47,-2.98] [-3.90,-3.56] [-4.10,-3.79]

a6 - [-.57,-.17] [-1.05,-.74] [-1.15,-.91]

a7 [.18,.31] - [.01,.18] [-.48,-.24]

a8 [-.2,-.1] [-.2,-.1] - [-.12,.06]

a9 [-.54,-.40] [-1.20,-.56] [-.42,-.03] -

Table 1.5 Ranges for r(.)

According to our approach, we have to find the maximum and mini-
mum r(ax, ay, t), subject to t ∈ T , for all ordered pairs (ax, ay) ∈ A×A
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(Table 1.5). There are many robust conclusions that may be drawn
from these results. Particularly, we may note that a5 never outranks
any other action and is always outranked by a1 to a7. The action a6
never outranks any other (except a5) and is always outranked by a3 and
a7. Obviously, a5 and a6 are not contenders for the best action and can
be deleted.
Figure 1.3 represents the relation SR through thick arrows and the

complement of NR as segmented arrows. Hence, a thick arrow may
be read as “always outranks”, a segmented arrow may be read as “may
outrank”, and the absence of an arrow indicates “never outranks”. These
relations could be exploited by any of the techniques from the previous
section. As an example, the exploitation of the relation SR according to
the rules of ELECTRE I/IS leads to the kernel K = {a1, a7, a9}, which
is equal to the original study’s.
To continue this example, let us suppose that the DMs were invited to

think about the doubtful outrankings and they would answer that they
were expecting that a1 would outrank a7. At this point, they could learn
that the combination yielding the minimum r(a1, a7) was k1 = k4 = k5 =
0.08, k2 = k7 = k8 = k10 = 0.04, k3 = k6 = k9 = k11 = k12 = 0.12,
and s = 0.73. Analyzing this information, suppose that the DMs would
state that k2 should not be less than k12, which corresponds to a new
constraint on T (in this case, if they would state that a1 S a7, then
it could also be coded as a linear constraint). The ranges for the r(.)
functions would become smaller, as shown in Table 1.6.
By now it is clear that a1 S a7, although the DMs did not require

it directly. Let us also suppose that the DMs would accept a Type 2
relaxation with a tolerance ² = 0.03. Figure 1.4 depicts the conclusions
corresponding to SZ(0.03) and NZ(0.03). The decision process could
then continue, either asking the DMs for more information (e.g. is a1

a1

a2

a3a4

 a7

a8

a9

Figure 1.3 Relations “always outranks” and “may outrank”.
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a1 a2 a3 a4 a7 a8 a9
a1 - [-.04,.04] [-.09,.01] [.05,.17] [.03,.16] [-.19,-.14] [-.34,-.26]

a2 [-.28,.02] - [.13,.24] [-.03,.10] [-.69,-.47] [-.17,-.03] [-.06,.08]

a3 [-.16,-.02] [.18,.30] - [.1,.24] [-.60,-.25] [.07,.23] [-.13,.01]

a4 [-.09,.07] [.06,.12] [.01,.08] - [-.58,-.25] [-.29,-.22] [-.39,-.29]

a7 [-.09,.06] [-.18,.01] [-.43,-.17] [-.26,-.02] - [.07,.18] [-.42,-.24]

a8 [-.23,-.10] [-.31,-.17] [-.38,-.20] [-.31,-.17] [-.20,-.11] - [-.12,.04]

a9 [-.67,-.20] [-.31,-.16] [-.44,-.25] [-.38,-.20] [-1.20,-.61] [-.42,-.06] -

Table 1.6 Ranges after additional constraint

a1

a2

a3a4

a7

a8

a9

Figure 1.4 Relations “always outranks” and “may outrank” after additional con-
straint and accounting for a tolerance of 0.03.

preferred to a4 or indifferent to it?), or exploiting the relations obtained.
Action a1 would have the highest net-flow score and would appear at the
top of ELECTRE II’s exploitation ranking. It would also belong to the
kernel if either SZ(0.03) or NZ(0.03) were exploited by the usual process
in ELECTRE I/IS.
This example illustrates how it is possible to work with imprecise in-

formation as a means to obtain robust conclusions. In this case, the ro-
bust conclusions or slight relaxations of these conclusions are rich enough
to advance towards their exploitation. The exploitation led to results
very similar to those of the original study, but easier to justify, since
we did not need to fix precise values for the parameters for which only
imprecise information was available. However, the use of these results
to elicit further information from the DMs (hence constraining T ) would
probably be yet more interesting.
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7. CONCLUDING REMARKS

Instead of bulldozing the difficulties and hesitation of the DMs, through
a quest for the right combination of values for the parameters, we deem
that imprecision should be accepted from the very beginning of the de-
cision aid process. This allows to alleviate the DMs’ cognitive burden at
the beginning, postponing the most difficult questions to a stage when
they are more familiar with the problem at hand and the decision aid
method.
The analysis proposed here explores the consequences of the impre-

cise information that the DMs are able (or willing) to provide. We focus
on exploration rather than aggregation, avoiding the computation of
averages, median values, and other usual aggregation means. The ex-
ploration allows to discover which conclusions are robust and allows to
identify which conclusions are more affected by the imprecision. This is
particularly important in what regards the questions that can be posed
to the DMs when more information is needed.
This paper does not propose a precise method. Rather, we feel that

the array of tools to be used will depend on the problem at hand. A
decision support system implementing several of these tools would hence
be quite helpful. Most of the approaches proposed here have the pos-
sible drawback of demanding some computational effort (optimization
or volume computation). However, the DMs will not perceive this for
two reasons. On the one hand, today’s low cost personal computers are
sufficiently powerful to solve these problems in acceptable time for the
problem dimensions usually found in practice. On the other hand, the
DMs need only understand the results, and not the algorithmic details
of their computation. The concept of a robust conclusion such as never
outranks or always outranks is, of course, easy to apprehend. We might
say that this is a case of using “hard” tools for a “softer” decision aid.
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