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Abstract:

The wall formula is not able to describe the increase of fragmen
tation of theé strength with the multipolarity, which is a manifestation
of Landau damping for small amplitude collective motion in finite nu-
clei. A modified wall formula has this property and may also account

for the monopole width.

1. Introduction
The Landau or collisionless damping (ID) has been introduced in
plasma physics to designate the direct energy transfer from the plasmon

to the electronsl)

. In this process the collective energy is picked up
by the particles which are moving in phase with the wave.

In the framework of a microscopic theory, the LD accounts for all
the width which appears in a ph approach, while the collision damping
corresponds to processes of coupling of the coherent ph excitation

with 2p~2h or higher order configurations (see Fig. 1) . In a semi-

classical analysis , the ID is related to the existence of com-
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Fig.1 LD cD

plex solutions of the linearized Vlasov equation, and the collision
damping is determined by the collision term of the complete kinetic
equation.

In both helium~3 and the electmn'gas at absolute zero there is
no ID at all of the O-sound or the plasmon, as long as the collective
mode is characterized by a wavenumber smaller than the critical value
ke = wy/ Vp - The onset of ID corresponds in a diagram @W- k to the
intersection of the collective branche with the continuum of single-
particle excitations (see Fig. 2 ) . The sudden broadening of the col-
lective peak and its consequent disappearance have been observed by
neutron and electron scattering in helium-3 and in metals , respecti-
vely . For helium3 the cut-off of the O-sound occurs at k = 1.5 kg,
(= 0.8 8 1) ? and for aluminium the cut-off of the plasmon is at
k= 0.7k, (k=1.75K :l)' 3

Fig.2
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In this work, we adress ourselves the question of the possible ma-
nifestation of LD in atomic nuclei. The answer is that, as in infinite
matter, there is no or only small LD surface vibrations with large wa-
velengths (i.e. for the low multipoles A=2 and 3 ) and there is ID for
small wave lengthsOn the other hand, the monopole decay seems to be do-
minated by ID.

The phenomenological study of nuclear damping distinguishes between
1-body friction ( wall formula 4) ) and 2-body friction (viscosity formu
la 5)) . Both formulae are subject to criticism. The wall formula is not
able to parametrize the implementation of ID for the high multipolari-
ties, while the description in terms of viscosity is relying on the con
cept of a short mean free path, which is erronecus for nuclei.

We propose here to account for the width of the giant resonances in
terms of a modified wall formula 6) , which incorporates self-consisten-
cy, plus a long mean free path 2-body formula . The approach seems to
shed some light into two of the most outstanding questions about nuclear
resonances 7 : i) The non observation of high-lying giant resonances
with A4  and ii) the non-observation of monopole strength or the
appearance of very fragmented monopole strength for nuclei lighter than
58Nj. . Both these negative results may be explained invoking the role of

1-body damping.

2. Nuclear LD for high multipoles

The condition for the occurrence:of 1D is the approximate equality
between the wave velocity and the velocity of the particle. The energy

of the surface vibrations A= 2 and 3 is very ‘well described by the
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express:.ons)

Ey=K[Z @D (- 0"E o x [Z @) (x- 1)] ffr

wh::.ch is justlfled by RPA-sum rulengor \ 2= 6 8) . The wavemmﬂaer
corresponding to a distortion of multipolarity )\ of the surface is
k—-)\/R The phase velocity of the surface wave is then

Vit [0 =[5 a2+1) (\- 1)]11/ PN
The values of this function are shown in Table I. One concludes that the
wave velocity is approaching gradually the Fermi velocity, increasing
the possibility for LD to take place.

Table I

Phase velocity of a nuclear surface wave

PN 2 3 4 5 6 7

Viy Ee/V 0.71 . 0.79 0.82 0.83 0.8 0.8

The gradually increasing role of ID with increasing >\ may also
be verified from the distribution of strength given by a typical RPA
calculation. For W= 2 and 3 there is concentration of strength , which
is due to the fact that these modes have energies situated in the mid-
dle of gaps of the single-particle excitation spectrum The large split-
ting of strength that appears thereafter is a clear manifestation of ID.
This splitting is due to the fact that the "bands" of single-particle
excitations are getting broader with increasing energy. It is diffi-
cult to assert a critical value for the appearance of LD but all RPA
calculations agree that at least forX=6 thsre are no more well-defined

collective oscillations.
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3. Phase space for one-body decay
The phase space available for 1-body decay is given by ,
Ti-in"gy > Fw-6p+6)=Tr Ty , {o (n-H)O(H,-psthu-H e

The semiclassical method is a conveniente tool to evaluate this quanti-

ty?) It consists essentially in the replacerents Te -§db% , H->H
9y . =S5 AR 0 (n-th) 0 (o) R+ B

The integrand only changes significantly near the Fermi level and the-

refore it is sufficient to calculate the following energy integral,
T, = S5 de,de, pEN -1 (521] 6 (Fo-g, 460,

with n(€)z1/[Rh[(E-0)TI+1} the Fermi distribution function.The

last integral may be carried out exactly, with the result

—I - Xw

th-th ™ 4 — op (- Rw/KsT)

In the quantal limit ,tw»lgT, the density of lp-lh states available

and the one-body width are proportional to the energy of the collecti-
Lo

ve excitation: P  Fw .

4, The wall formula as ID and its modification

The wall formula for the width of surface vibrations W2 is
r ;‘" =E\NZ .
Ro ;
The quocient between the width and the energy ‘gives *an estimate of
the number of periods the oscillacion undergoes before being damped out

T‘E> =[Z2ax+) (x—1)_‘] N

This quantity does not depend on the partlcular nucleus but only on the
multipolarity (see Table II) . The linear relation between width and

energy, which is characteristic of LD is therefore fulfilled in the
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le II RATIO BETWEEN WIDTH AND ENERGY OF THE GIANT RESONANCES, USING THE
WALL FORMULA, THE MODIFIED WALL FORMULA AND  THE VISCOSITY FORMULA
b 2 3 4 5 5 7
" -
& /E)\ 1.09 0.98 0.94 0.92  0.91 .0.90
my
. .26 0.51 0.8  1.37  1.95
PX E)‘ 0.07 0
VF
& /E% 0.17 0.28 0.39 0.50 - 0.61 -0.72
wall model.

Besides the fact that the dependence on N is rather weak, con
trary to what is expected to be the case for ID, an objection against
the wall formula consists on the nearly equality between width. and

W/

7/
energy. The smallest value of r)x E,\ occurs in the limit N0 (we

remind in this context that the wall formula has been claimed to be
valid in this limit, which may be considered for very large nuclei
RO'?OO,, with )\/?o =Constant )

o TXT_VE g7

X200 2
The condition r‘>\/\4 E}\ , which is necessary for well-defined mo-

.

des, is therefore not fulfilled by the wall friction . We must re-
sort to the conclusion that there are assumptions behind the wall
formula, which are unjustifiable in the collective processes under
discussion. In fact, it is hard to agree that the supposition of a

, 10)
wall external to the particles is here realistic. Yamnouleas and Grif

11)
fin and Dworzecka have recently discussed this issue.

© A medification of the wall formula has been proposed by Sierk et
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alsx)vith the scope of implementing self-consistency,i.e. of taking into
consideration the fact that the wall is made up by the particles and
is not exterior to them. The modified wall width is
AwWF 2 2 qwF

Px = (3-1) (‘%) Fx .
The modification lies on: i) the order of magnitude ( the parameter a
should be of the order of magnitude of the range of nuclear forces )
and ii) the dependence on the multipolarity . 'The Table II ‘displays

MwF

the values of f; /E)s for 208Pb » with a = 1.73 fm. There is a very
weak damping of the quadrupole (FQ_HWF/«ZEZ=O.O4, in agreement with the
vanishing 1 -body damping of the quadrupole obtained by Koonin and
Randrup Hra overdanping of the modes N\37 ( I‘,er/sz 0.98 ).
The situation is very similar to that found in helium=3 and in the e~
lectron gas, where the collective mode disappears due to LD at some
critical value of k.

It is well-known that the darping of O-sound in Fermi liquids is,
for small temperatures, proportional to the square of the frequence .
The viscosity formula, although being only relevant in a different regi-
me, shows up this ffature

P; F = AE P

The parameter A should be related to the viscosity coefficient but here

.

is to be understood merely as an adjustable parameter , since we are ai-
ming a description of collective motion when the particles have a long
mean free path. The value A = 0.014 MeV™", arising from fission data,
leads roughly to the width which camplements the modified wall formula in
order to reproduce the experimental quadrupole width of heavy nuclei.

The sum of 1- and 2-body contributions providesa description of the
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dependence on )\ of the width of giant modes in heavy nuclei. With the
given parameters, the octupole shows a large width P3 /E3 = 0.52. The
octupole  is in the fringe of being considered a well-defined mode! This
result agrees with recent experimental information about the multipole
strength obtained in Saclay by means of A-scattering with kinetic energies
340 and 480 Mev%zg:‘or A ;4, 1D dominates the total width, which is larger
than the energy, indicating that these modes are not expected to be obser—
ved. In fact, high-lying A =4 and 5 have not been clearly identified ,

although a very careful analysis of the background has been made 12) .

5. 1D for the monopole

FPermi liquid theory teaches us that the collision integral vanishes
in the monopole channel. Therefore all the monopole width should be of
1-body type. Microscopic calculations confirm that the width caming from
the coupling to 2p-2h is too small when campared with the experimental
value.15)

Let us give a very simple reason why LD should be relevant for the

breathing mode The energy of this mode is given by
17.
( ) = 1.98 Aw, ,
0 Ro

with K = 220 MeV the nuclear campressibility and ,i?w - a1 a3

Mev.

The predicted energy is in very good agreement with the experimental

value for heavy nuclei ( for 208y, 5 ngp = 13.7 MeV ), With k:W/RO\/E'
{see ref.M) for a discussion of the factor 1/ J’? )} , we Obtain for

the phase velocity w/ K = 0.27 ¢, which is precisely the Femmi velo-
city. Therefore particles may escape, taking energy away from the mode.
Identical conclusion can be drawn if we notice that the monopole energy

has nearly the same position as the ZA‘QJO single-particle excitation.
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The wall width for the monopole is not given by the expression
presented before, which is obtained dividing the wall friction by the
incompressible mass, but may be seen to be equal to the wall width
of the octupole
n o3kt o

/]
o
The rate ‘gf damping is then given by

1" pag 2.64 - 4 31,
Eo .38
a result which is unrealistic. On the other hand the modified wall for-

mula glves for the moniopole

rove (O)"f"" 0.06 x 1.31= 0 08,

Eo EO
which is too low when compared with the experimental result ((‘O/Eo: 0.19).

If one wants the monopole width to be accounted only by l-body processes,
one needs to modify the effective disténce between wall and particles
by a factor 3/2 , leading to a = 2.6 fm. ’

As the modified wall formula leads to a ﬁdm which ‘increases for
light nuclei, we would expect for 58Ni e.g. a monopole width which

208Pb. For

is (208/58)2/3 = 2.34 times the corresponding width of
lighter nuclei the width is still larger, which means that for thosé Sy S~

tens the monopole strength can only appear very spread.
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