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1. INTRODUCTION

Various methods are available to solve the many-body quantum problem. Wave-
function methods, such as Hartree-Fock, Configuration Interaction and Quantum
Monte-Carlo, aim at solving the Schrodinger equation obtaining, as accurately as
possible wavefuntions and energy eigenvalues. A less computational demanding alter-
native is the Kohn-Sham self-consistent method [1] of Density Functional Theory [2],
which allows to calculate the ground-state energy without knowing corresponding the
many-body wavefunction, the only approximation lying in the exchange-correlation
energy functional.

In the Local Spin Density Approximation (LSD) this exchange-correlation energy
functional has the form

EESP (jng, ny)) = / &1 n(r) 5P (g (), ny (1)), 1)

where the electron density is n = ny+n¢, withn) and n¢ respectively the up and down
spin densities. By construction, the function EZ5P is exact for the homogeneous
electron gas. For a spin unpolarized system (ny=n;=n/2 ), the total density n is the
only function to be considered in the Kohn-Sham equations. In that case LSD reduces
to the Local Density Aproximation (LDA). One of the most used parametrizations in




280 C. Fiolhais and L. M. Almeida

the LSD (and the LDA) correlation is the Perdew-Wang formula (PW92) [3], which
we adopt here.

For improving the exchange-correlation energy functional the Generalized Gradi-
ent Aproximation (GGA) has been developed. It includes explicitly density gradients
besides the densities themselves:

ESSA(Ing,n,)) = / &1 n(r) FECA(ny(r), ny (r), Vg, Viny). (2)

"This functional is semi-local, since it involves local density gradients. Perdew, Kurth
and Ernzerhof constructed a GGA functional (PBE), which obeys simple physical
constraints [4]. It became one of the most used in pratice. Other widely used GGA,
which by contrast relies on the parametrization of an emprirical set of atomic data, is
BLYP, due to Becke (exchange) [5] and Lee, Yang, and Parr (correlation) [6]. While
the PBE is preferred by physicists, BLYP is more favoured by quantum chemists.

Recently, Perdew, Kurth, Zupan and Blaha [7] have proposed a generalization
of GGA-PBE, the PKZB, which belongs to the more general class of Meta-GGA's.
The form of a MGGA is

E%GGA([nT,nLD = /dSr n(r) fa%GGA(nT(r)vn\L(r)’vnT’Vni’TT’Tlv% (3)

which has as input, besides the electronic densities and their gradients, the kinetic
energy density

occup
1

@) =5 3 [Var @), (@

[21

where ., are the Kohn-Sham orbitals. MGGA is more non-local than GGA since
it uses the orbitals, which are fully non-local functional of the densities. However,
MGGAs are easy to implement in GGA codes, since the kinetic energy densities are
available here.

Here we review our application of density functionals to jellium clusters and
planar surfaces. Moreover, we present new results for the surface of real metals and
for monoatomic voids.

2. JELLIUM MODEL CALCULATIONS

In the jellium model of metallic systems the ions are replaced by a continuous
positive background. In spite of giving a qualitative unserstanding of the physics
of simple metals, this model does not yield realistic results for the total energies
of clusters, surfaces and solids. A remedy to this defect is the stabilized jellium
model [8], in which the potential of the jellium model is replaced by a structureless
pseudopotential such that the total energy is stable against density variation.

Nevertheless, the jellium model is useful as a benchmark of many-body theories.

The quality of the above mentioned exchange-correlation approximations may be
. evaluated with the spherical jellium model. This admittedly simple model of metal
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Figure 1. Total energies per electron (in hartree) for clusters with density parameter
rs = 4.00 bohr in different DFT approximations and in DMC. The DMC shifted
points represent the DMC values (Ref. [10]) shifted by the fixed-node error found for
the uniform electron gas.

clusters [9] is defined by just two parameters: the density parameter r, and the total
number of valence electrons N. Calculations using Quantum Monte Carlo methods
are supposed to yield exact solutions to which the various DFT approximations should
be compared. Recent Diffusion Monte Carlo (DMC) calculations made by Sottile and
Ballone [10] are appropriate for this comparison.

We have solved the Kohn-Sham equations of DFT for a large range of jellium
clusters and reported average deviations of total energies per electron for clusters of
magic numbers with N=2, 8, 18, 20, 34, 40, 58, 92 and 106 electrons for densities
rs=1.00, 2.00, 3.25, 4.00 and 5.62 bohr [11]. The lowest average deviations were
found for PKZB (0.0007 hartree) and PBE (0.0012 hartree) while LSD presents an
average deviation of 0.0014 hartree. These results confirm that DFT is a very reliable
method. :

Actually, the calculations of Sottile and Ballone incorporate an error associated
to the fixed-node approximation. We may estimate this error using the differences
in parametrization of the correlation energy of the uniform electron gas made by
Ortiz-Ballone [12] (which was fitted to fixed-node Quantum Monte Carlo results)
and the LSD formula of Perdew-Wang 92 (3] (which was fitted to the released-node
Quantum Monte Carlo results of Ceperley and Alder [13]). Although this estimation
was made for the uniform electron gas (i.e., for N — o), we assume that it is valid
for all cluster sizes. The effect of such correction on the Sottile and Ballone values is
shown in Fig. 1.

The calculated average deviations of the various density functionals with respect
to corrected DMC values is presented in Table 1, which is not much different from
the corresponding table we have published before [11]. The conclusion is that the
most correct DFT results for the energetics of jellium spheres are obtained from the
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Table 1

Mean absolute deviations from released-node DMC (fixed-node values shifted by the
estimated fixed-node error) of the total energies per electron (in hartree) of jellium
clusters in various density functional approaches. The values are averages over nine
magic clusters with N=2, 8, 18, 20, 34, 40, 58, 92, and 106 electrons.

r, | LDA BLYP PBE PKZB
1.00 | 0.0048 0.0110 0.0016 0.0023
2.00 | 0.0025 0.0117 0.0008 0.0011
3.25 | 0.0011 0.0110 0.0004 0.0003
400 | 0.0006 0.0105 0.0004 0.0003
5.62 | 0.0005 0.0093 0.0006 0.0006

average| 0.0019 0.0107 0.0008 0.0009

PBE and PKZB exchange-correlation functionals.

Neglecting quantum oscillations due to the shell structure, the energy of a large
neutral N-electron jellium sphere is given by the simple liquid drop model (LDM)
formula [14]

ELDM _ f;—ﬂ-R3a + 47R%0 + 27 Ry =

= " N 4 dnr2o N3 4 27pyNY/3, (5)

where o, ¢ and vy are parameters describing respectively the volume, surface and
curvature energies, R = r,N /3 is the cluster radius, and €*"f = (47r3/3)a is the
energy per electron of the uniform electron gas. The surface energy o of jellium was
calculated in Ref. [15] and the curvature energy 7 in Ref. [16] both in the framework
of LSD using only the self-consistent density profile of the planar surface. The energy
per electron from Eq. (5) is then

ELDM
N

From Fig. 2 we see that the LDM performs an average of the LSD energies as a
function of N=1/3, The same behaviour is observed with other density functionals.
The oscillations around the LDM line of the different DFT approximations are about
the same. Local minima are located at the shell-closing numbers N =2, 8, 20, 34, 40,
58, 92, and 106.

This fact leads to the following calculation of energy differences
E ELSD

N N

= " 4 4qr2gN~Y3 4 oppyN—2/3, (6)

= (funif - f;%fgz)

+ 4rr2(o — oPSPYN Y3 4 2y (y — 4PSPYN—2/3, (7)
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Figure 2. Deviation of the exchange-correlation energy per electron from its uni-
form electron gas value, (E,. — E*"f)/N, using the Kohn-Sham equations in the
LSD, for density parameters r,=3.25, 4.00 and 5.62 bohr. For comparison we dis-
play the Liquid Drop Model (LDM), which includes the surface energy only: F,. =
472 ope N3,

Note that here F denotes a quantal energy and not the respective LDM approxima-
tion. Since the LSD surface energy o250 (r,) is well-known [15,16] from planar surface
calculations, we may extract the surface energy o at any level of theory (including
GGA, meta-GGA, and DMC) by evaluating the energies per electron within and
beyond LSD and then fitting the difference as a function of N~1/3 through Eq. (7),
taking e*"if — e}’{},{;z, o — olP4 and v — yEP4 a5 fit parameters. In Fig. 3 we see
an example of this fitting procedure. The most striking feature is the disapearance
of the significative oscillations around the LDM curves.

Table 2 shows the jellium exchange-correlation surface energies, calculated by
two separated methods [11]: fits to jellium spheres and computation of semi-infinite
systems which are the limit N — oo of the latter. The total surface energies may be
obtained by adding the kinetic and Hartree surface energies, which are the same irre-
spective of the employed functional (they are shown in the last column of the table).
The similarity between the values of surface energies obtained from fits and from
the planar surface code indicates the accuracy of the fitting method for extracting
surface energies.

The DMC surface energies estimated from the planar surface calculation of Aci-
oli and Ceperley [17] are 3566, 711 and 372 erg/cm? for ry= 2.00, 3.25 and 4.00
respectively. These are substantially lower than the values extracted from jellium
spheres which are close to PKZB and LSD values. Calculations of surface energies
based on the Random Phase Approximation (RPA+) [18, 19], which are reported
to be the most accurate jellium surface energies available, also shows similar values.
We believe therefore on the accuracy of the DMC surface energies we have extracted
from jellium spheres.



284 C. Fiolhais and L. M. Almeida

DMC-LSD

-0.03+4

PBE-LSD
-0.06+

-0.09- rs=3.25

Energy deviations (eV)

-0.12+4

-0.15 : . \ , : . .
0.0 0.2 0.4 0.6 0.8

-1/3
N

Figure 3. Energy deviations per particle from LSD of PBE (o), PKZB (A) and
DMC(o) for jellium spheres with r,=3.25 bohr, given by Eq. (7).

"Table 2

Jellium exchange-correlation surface energies o, (in erg/cm?). Values calculated
directly for a flat jellium surface are compared to those extracted from finite jellium
spheres (fits). o, -+ oy, is the sum of kinetic and Hartree surface energies, so that the
total surface energy is o = o + o + 0ge.

rs | LSD PBE fit PBE PKZB fit PKZB DMC fit | o5 + on
1.00] 40928 40068 40276 41637 41463 41196 |-109797
2.00( 3357 3263 3263 3420 3400 3347 -4220
3.25| 568.6 550.0 549.5 5785 5764 574.1 -347.7
4.00| 261.7 2526 252.5 2659 265.6 272.8 -98.2
562 700 674 674 71.1 71.3 83.7 1.48

Although the curvature energy represents a small term of the total energy, its
extraction from fitting is possible due to the good quality of the latter. In Table 3 we
present the jellium curvature energies obtained by fitting (Ref. [11]) jellium clusters
and LSD values interpolated from the results of Fiolhais and Perdew [16].

3. REAL METALS CALCULATIONS

In spite of the usefulness of the jellium model, realistic calculations of real metals
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Table 3

Jellium curvature energies «y (in millihartree/bohr). The LSD values were interpo-
lated using the formula y(rs) = Ar, ~B exp(—~r; C), with A, B and C parameters
fitted to v values [16] at r; = 2.07, 3.99, and 5.63 bohr (A=10.17271, B=1.580791,
and C'=0.289192).

rs | LSD BLYP PBE PKZB DMC
1.00f 762 584 613 326 1.77
200{ 191 115 158 087 0.76
3.25| 062 033 053 027 0.27
400f{ 036 019 031 0.15 0.10
5.62| 0.13 0.07 011 0.04 -0.07

have to go beyond it. We have made calculations using the CRYSTAL98 [20], an all-
electron DFT code which employs Gaussian basis sets. Some structural properties of
simple metals (Be, Al, Mg, Li and Na) for various DFT exchange-correlation energy
functionals have been reported elsewhere [21].

In order to calculate surface energies we have done a series of slab calculations
[22]. Quantum size effects in slab energies are sizeable but there are several ways to
extract surface energies from slab calculations.[23]. The surface energies extracted
from a series of slabs from 1 to 10 layers [22], adopting a method similar to that used
in Ref. [23], are shown in Fig. 4.

As predicted by the jellium model, real metal MGGA-PKZB surface energies
are close to LSD ones and higher than GGA-PBE ones. Moreover BLYP surface
energies are strongly underestimated, in agreement again to the prediction of the
jellium model. On the other hand, our LDA and GGA-PBE results are consistent
with previous calculations [26] using Green’s function Linear Muffin-Tin Orbitals in
the atomic sphere aproximation.

Experimental data on surface energies are available but do not correspond to a
direct measurement for the solid fase. They are obtained from the surface tension
measurements in the liquid phase extrapolated to zero temperature. However these
experimental data points also show that computation predictions are satisfactory
(except for BLYP).

Still with the CRYSTAL98 code, we have done monovacancy calculations for the
same five simple metals. We used the same basis set as in our previous metal bulk
calculations [21]. The calculations were performed by the method of supercells for
the unrelaxed monovacancy in the convencional crystal structures: bcc for Li and
Na, fcc for Al and hcep for Be and Mg. In the case of bee and fec structures the
monovacancies were calculated with 8, 27 and 64 atoms in the supercell in order
to check the convergence with respect to supercell size. We have also verified the
convergence with respect to the number of k-points. For the sake of simplicity, hcp
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Figure 4. Total surface energies o for real metals evaluated using CRYSTAL98. The
exhibited valence electron densities correspond to the five simple metals Be, Al, Mg,
Li and Na (r,=1.85, 2.07, 2.65, 3.19 and 3.91, respectively). Experimental values are
taken from Ref. [26].

calculations were only done in a supercell of 8 atoms.

The formation energy of the monovacancy E,. is obtained by subtracting the
total energy of the defect supercell with N — 1 atoms by the corresponding N — 1
atoms total energy of the supercell of the perfect bulk metal:

N - 1E(N).

Eyac = E(N - 1) - T (8)

The calculated monovacancy formation energies are shown in Fig. 5.

Experimental values correspond obviously to a relaxed structure. The unrelaxed
values should be higher than the experimental ones. However the atomic relaxation
in monovacancies for simple metals might not lead to a significative reduction of
formation energies. For aluminium, according to Mehl and Klein [24], the formation
energy is only lowered by 0.05 to 0.03 eV when some atoms are allowed to relax about
the vacancy.

4. CONCLUSIONS

Our calculations for the jellium model indicate that, accepting DMC as reference,
MGGA-PKZB is a better functional for the jellium clusters and surfaces than the
others. The LDM allows to extract surface energies from jellium clusters: both LSD
and MGGA give accurate surface energies, in agreement with recent DMC results for
clusters, but in disagreement with old DMC results for surfaces.

Considering real metals, we have verified that GGA-PBE and MGGA-PKZB
yield in general a fair agreement with experimental data for bulk and surface systems.
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Figure 5. Unrelaxed monovacancy formation energies for some simple metals. Lat-
tice constants used are the LDA ones found in Ref. [21] except for Al where we
considered a =4.05 A (the same value used in Ref. [24]). Experimental values are
taken from Refs. [14] and [25].

On the contrary, chemical based GGA’s like BLYP do not work well for these solids
and surfaces. MGGA-PKZB seems to overestimate the vacancy formation energies.
This is a puzzling result which should motivate further work.
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