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Abstract

A hierarchical control strategy consisting on a supervisory switching of PID con-

trollers, simpli®ed using the c-Means clustering technique, is developed and applied to

the distributed collector ®eld of a solar power plant. The main characteristic of this solar

plant is that the primary energy source, the solar radiation, cannot be manipulated. It

varies throughout the day, causing changes in plant dynamics conducting to distinct

several operating points. To guarantee good performances in all operating points, a

local PID controller is tuned to each operating point and a supervisory strategy is

proposed and applied to switch among these controllers accordingly to the actual

measured conditions. Each PID controller has been tuned o�-line, by the combination

of a dynamic recurrent non-linear neural network model with a pole placement control

design. To reduce the number of local controllers, to be selected by the supervisor, a

c-Means clustering technique was used. Simulation and experimental results, obtained

at Plataforma Solar de Almer�ia, Spain, are presented showing the e�ectiveness of the

proposed approach. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

The main control requirement in a solar power plant, in order to be able to
use the heated oil for power production, is to maintain the outlet oil temper-
ature from the collector ®eld at a constant pre-speci®ed value. The funda-
mental feature of the plant is that its primary energy source, the solar
radiation, is a measurable disturbance and cannot be in¯uenced by the control
system. Moreover, since the solar radiation changes substantially during plant
operation, due to the daily solar cycle, atmospheric conditions, such as a cloud
cover, humidity and turbidity, this leads to signi®cant variations in the dy-
namic characteristics (e.g., the time constant and the time delay) of the ®eld,
corresponding to di�erent operation conditions. Therefore, it is di�cult to
obtain a satisfactory performance over the total operating range with a static
controller.

This paper presents the application of a hierarchical control strategy to the
distributed collector ®eld of a solar power plant at the Plataforma Solar de
Almer�ia. The Acurex distributed solar collector ®eld of this solar plant is well
described in literature [6,7] and is located at Tabernas, in south of Spain. The
®eld consists of 480 distributed solar collectors arranged in 20 rows, which
form 10 parallel loops. Each loop is 172 m long and the total aperture
surface is 2672 m2. The plant is able to provide 1.2 MW peak of thermal
power. A picture and a schematic diagram are shown, respectively, in Figs. 1
and 2.

Each collector uses parabolic mirrors to concentrate solar radiation in a
receiver tube. Synthetic oil is pumped through the receiver tube and picks up
the heat transferred through the tube walls. The inlet oil, at temperature Tin, is
pumped from the bottom of the storage tank ¯owing through the collector ®eld
where its temperature is raised. Next, the heated ¯uid is introduced into the
storage tank, from the top, to be used for electrical energy generation or
feeding a heat exchanger in the desalination plant. The manipulated variable in
the solar plant is the oil ¯ow rate, Qin, and the main goal is to regulate the
outlet ®eld oil temperature, Tout, at a desired value, Tref . The main disturbances
are the solar radiation, Irr, and the inlet oil temperature.

To deal with the several operating points, that characterises the plant be-
haviour, some control strategies have been proposed. One of them applies
adaptive control schemes, using local linear models of the plant, which mimic
changes during the operation [7,5]. In Ref. [8], experimental results when
measurable disturbances of the plant (solar radiation and inlet oil temperature)
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are included in the design of a predictive MUSMAR-controller, are presented.
Also fuzzy controllers (e.g., incremental PI fuzzy controller) have been tested at
this plant [21,3]. In some of these contributions a feedforward compensation
term, obtained from the static behaviour of the plant, has been proposed to
compensate the e�ects of the radiation and the di�erence between the desired
output temperature and the inlet temperature. Another possibility is to apply

Fig. 1. Acurex solar collector ®eld.

Fig. 2. Schematic diagram of the Acurex ®eld.
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an indirect adaptive controller, using a certain predictive search strategy based
on a mathematical model of the process [19,18]. Another alternative might be
the commissioning of a switching controller using di�erent models of the plant
for di�erent operating points [20]. A similar strategy has been followed in this
work.

There are several ways to design a controller for each local model. Tra-
ditional PID controllers have some well known advantages, such as the dy-
namic performance reached in some nominal operating conditions, reliability
based on stability studies and their industrial widespread use [9]. They are
simple to implement and have been succeeded in regulating many industrial
processes.

In order to improve the performance of PID controllers, several strategies
have been proposed, such as adaptive or supervising techniques. One can
consider the following main reasons for using a supervisor [12]:

(i) adaptive controllers are able to cope with most of the cases that leave the
PID under-optimal, but they require specialised design methods using some
a priori model structure knowledge [16];
(ii) PID supervisors are easier to implement because they need very little
knowledge about the process;
(iii) the combination of a linear PID control law with a supervisory strategy
can lead to a highly non-linear control law; then it can allow increasing sig-
ni®cantly the robustness of the control system [1];
(iv) ®nally, the supervisor can provide an interface with the user for
expressing precisely the speci®cations in terms of close loop perfor-
mances.
One possibility to implement the supervisor is using the fuzzy logic meth-

odology (some examples are described in Ref. [13]). Fuzzy logic, [23], has been
considered as an e�ective tool to deal with disturbances and uncertainties in
terms of vagueness, ignorance and imprecision.

In this work the hierarchical control strategy is based on a PID control
technique with a fuzzy logic switching supervisor. The supervisor has been
derived using a fuzzy method to implement on-line the switching between each
PID controller, accordingly to the measured conditions. The local PID con-
trollers have been previously tuned o�-line using a neural network approach,
that combines a dynamic recurrent non-linear neural network model with a
pole placement control design. For reducing the number of local controllers, a
c-Means clustering technique was applied.

The paper is organised as follows. Section 2 describes the neural network
approach to design the PID controllers and the classi®cation technique is
presented. The fuzzy switching supervisory, providing the mechanism to switch
between the PID controllers, is also described. In Section 3 some simulations
and experimental results are presented. Finally, some conclusions are em-
bodied in Section 4.
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2. Control methodology

2.1. PID design and tuning

Neural networks have been successfully applied for the modelling and
control of non-linear systems. The dynamic recurrent neural networks, which
involve dynamic elements and feedback connections, have been considered
more suitable for modelling dynamical systems [11]. In this work, a recurrent
Elman's neural network was used to obtain each nominal model. The corre-
sponding nominal parameters of each PID controller were obtained with a pole
placement algorithm, assuming a linearisation of each nominal neural model.
Additionally, in order to improve the controllers performance, the experience
acquired from the plant behaviour can be used to further adjust the PID
parameters.

For the controller design, the available plant data, obtained by experimental
results from other researchers, was used. Due to the di�culty to obtain data
covering all range of possible operating conditions, some controllers were
designed using data from a simulation plant model [2]. In this case the fol-
lowing relation [2], characterising the steady state behaviour, was used

Qin � 0:7869 Irr ÿ 0:485 Tout ÿ 151:5� � ÿ 80:7

Tout ÿ Tin

: �1�

It is assumed that each nominal model is described by a general non-linear
discrete state equation in the form

x k� � � f x k�f ÿ 1�;Qin k� ÿ 1�g; �2�

Tout k� � � h x k� �f g; �3�
where f and h are non-linear functions and x�k� 2 Rn represents a state vector,
at discrete time k. The ability of a recurrent Elman's network to approximate a
discrete time non-linear system is used [17]. No previously assumptions are
made about the process, with the exception that the maximum value for its
order (n) is known in advance. An Elman's network can be described by the
following equations:

xh k� � � r W xcxc k� �;W xuQin k�f ÿ 1�g; �4�

xc k� � � kxc k� ÿ 1� � xh k� ÿ 1�; �5�

Tout k� � � W yxxh k� �; �6�
where rf�g is a hyperbolic tangent non-linear function, xc�k� is a context unit
and xh�k� is a hidden unit. The context units are locally recurrent and a mul-
tiplicative constant, k, decreases the values as they are fed back. This constant
determines the memory depth, i.e., how long a given value fed to the context
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unit will be remembered. The interconnection matrices, W xu 2 Rn;1, W xc 2 Rn;n

and W yx 2 R1;n which de®ne the interconnection paths for the context-hidden
layer, input-hidden layer and hidden-output layer, respectively, are evaluated
from the truncated Werbos' backpropagation through time algorithm [22].
Due to the computational complexity of the BTT, a natural simpli®cation was
obtained by truncating the backpropagation of the information to a ®xed
number of prior time steps, on a sliding window mode. From the non-linear
neural model, Eqs. (4)±(6), it is possible to derive a linear model by computing
the derivatives from the output (Tout) with respect to the input (Tin), extracting
the actual linearised parameters [10]. Following this approach a discrete time,
linear time invariant (LTI), single input single output (SISO) system can be
obtained in the form of a standard discrete time state space model:

x k� � � W Ax k� ÿ 1� � W BQin k� ÿ 1�; �7�

Tout k� � � W Cx k� �: �8�
W A, W B and W C are matrices of dimension �n; n�, �n; 1� and �1; n�, respectively.
Due to the identi®ability of the controller parameters, a second order system
�n � 2� was considered. Adopting an input-output representation, the system
described by Eqs. (7) and (8) can be de®ned by

P �qÿ1� � B�qÿ1�
A�qÿ1� �

Tout�qÿ1�
Qin�qÿ1� �

b1qÿ1 � b2qÿ2

1� a1qÿ1 � a2qÿ2
; �9�

where qÿ1 is the backward shift operator. Concerning the PID controller, it is
de®ned by

F �qÿ1�Qin�k� � G�qÿ1�e�k�: �10�
The output error, e�k�, is de®ned as the di�erence between the desired outlet

oil temperature, Tref , and the actual outlet oil temperature, Tout.

e�k� � Tref�k� ÿ Tout�k�: �11�
F �qÿ1� and G�qÿ1� are polynomials in the form

F �qÿ1� � 1� f1qÿ1 � f2qÿ2 � 1
ÿ ÿ qÿ1

�
1
ÿ � fqÿ1

�
; �12�

G�qÿ1� � g0 � g1qÿ1 � g2qÿ2: �13�
The resulting closed loop transfer function is given by

Tout�k� � BG�qÿ1�
AF �qÿ1� � BG�qÿ1� Tref�k�: �14�

The PID polynomials are computed such that the closed loop poles, ob-
tained from the solution of Diophantine equation (15), are placed in the desired
locations p1 and p2.

78 J. Henriques et al. / Internat. J. Approx. Reason. 22 (1999) 73±91



AF �qÿ1� � BG�qÿ1� � Am�qÿ1�; �15�

Am�qÿ1� � 1
ÿ ÿ p1qÿ1

�
1
ÿ ÿ p2qÿ1

� � 1� c1qÿ1 � c2qÿ2: �16�
Finally, the PID parameters are evaluated by the following equation:

H � Cÿ1X; �17�
where H, C and X are matrices de®ned by

H �

f1

f2

g0

g1

g2

266664
377775; �18�

C �

1 0 b1 0 0
a1 1 b2 b1 0
a2 a1 0 b2 b1

0 a2 0 0 b2

1 1 0 0 0

266664
377775; �19�

X �

c1 ÿ a1

c2 ÿ a2

0
0
ÿ1

266664
377775: �20�

2.2. Supervisor design

To formulate the design problem it is assumed that it is possible to represent
the plant dynamics by a number of characteristics behaviours M1;M2; . . . ;MN

and that, for each Mi, a corresponding model Pi may be derived, where each Pi

is called a nominal model. In order to obtain a desired performance when the
plant is operating under conditions Mi, it is assumed that a nominal controller
Ci, can also be designed. The hierarchical control structure, which is based on a
fuzzy switching supervisor of PID controllers, is shown in Fig. 3.

The fuzzy supervisor consists of three stages: the fuzzi®cation, the fuzzy rule
inference and the defuzzi®cation. The ®rst one converts the numerical values of
the solar radiation (Irr) and the reference temperature (Tref ) de®ning the
nominal operating points into linguistic variables. The fuzzy rule base de®nes
the switching control strategy. The selected controller is obtained by
the defuzzi®cation part, which chooses among rules that have been ®red
simultaneously.
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An intuitive method, issued from the knowledge of the operators and the
authors themselves, was used to derive the membership functions for the lin-
guistic variables, solar radiation and reference temperature. The universes of
discourse I and R, respectively, for the solar radiation and reference temper-
ature, were de®ned by

I � 600 W=m2; 1000 W=m2
� �

; �21�

R � 230�C; 270�C� �: �22�
For both variables ®ve linguistic terms were assumed

VS; SM ;NO; LA; VLf g � fVerySmall; Small;Normal; Large; VeryLargeg:
�23�

The fuzzy sets, SI and SR, are de®ned as a set of ordered pairs:

SI � Irr; lI�Irr�� � j Irr 2 If g; �24�

SR � Tref ; lR�Tref�� � j Tref 2 Rf g: �25�
The membership functions, lI�Irr� and lR�Tref�; respectively, for the solar

radiation and the reference temperature, were considered triangular, as shown
in Figs. 4 and 5.

The rule base that de®nes the strategy to switch between controllers is drawn
in table of Fig. 6. The two rule base inputs, assuming to describe the actual
nominal conditions, are the solar radiation and reference temperature. The
output i � 1; . . . ; 25 is the index that identi®es the selected controller, Ci.

Fig. 3. Diagram of the fuzzy switching supervisor PID control.
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In general a Mamdani fuzzy system [15] is described by a set of rules in the form

Rule i : IF x is X� � AND y is Y� �
THEN z is Z� �; �26�

Fig. 6. Switching supervisor rule base.

Fig. 4. Solar radiation membership function.

Fig. 5. Reference temperature membership function.
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where X and Y are fuzzy sets in the antecedent and Z is a fuzzy set in the
consequent. In a Mamdani type inference, after the aggregation process, it is
common to have a fuzzy set for each output variable that needs defuzzi®-
cation. However, it is possible to use a singleton as the output membership
function rather than a fuzzy set. Following this idea the switching supervisor
rule base (table shown in Fig. 6 can be described by a set of rules in the
following way

Rule i : IF Irr is SI �i�
ÿ �

AND Tref is SR�i�
ÿ �

THEN ai � l�i�I �Irr� 
 l�i�R �Tref�;
�27�

where SI �i� and SR�i� de®ne, respectively, the linguistic values of variables Irr and
Tref for the ith rule, i � 1; . . . ; 25, l�i�I �Irr� and l�i�R �Tref� de®ne the respective
membership degrees and 
 denotes the common product operator.

The aggregation of the consequents of the ®red rules, determine i such that
ai � amax � max a1; . . . ; a25f g. This index identi®es the controller to be selected.
This very simple procedure has proved to be e�ective.

Usually only one controller will be active. In the case that two controllers
were simultaneously activated, it is assumed that the rule which correspond to
the highest reference temperature membership function, l�i�R �Tref�, will be the
selected one and the corresponding controller is selected for control purposes.

Fig. 7 shows the fuzzy switching approach for a particular situation
(Irr � 620 W/m2 and Tref � 267�C). Using the proposed fuzzy model, the se-
lected controller was the C21.

2.3. Clustering and supervisor simpli®cation

The purpose of clustering is to classify a data set D � d1; d2; . . . ; dNf g into
homogeneous groups of data V � v1; v2; . . . ; vMf g with 16M 6N (if M � 1, all
data belongs to the same class and if M � N , each data sample de®nes a class).
The c-Means clustering algorithm [4] is an extremely powerful classi®cation
method which minimises the Euclidean distance between each data point
(controller coe�cients) and its cluster center. The number of clusters (M)
should re¯ect the level of knowledge of the system under consideration, or the
level of generality in the user's description of the system.

In this work the data to be classi®ed are the parameters of the nominal PID
controllers Ci; i � 1; . . . ; 25 (which can be interpreted as 3D points, see Fig. 8).
Seven clusters (distinct controller classes) were considered, M � 7. After ap-
plying the c-Means clustering procedure, the initial 25 controllers (symbol + in
Fig. 8) were reduced to seven classes (symbol O in Fig. 8).

By reducing the number of controllers, the task of re-tuning of the nominal
controllers can be simpli®ed. The ®nal rule base, which de®nes the supervision
task, is now presented in table of Fig. 9.
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3. Results

The experiments were carried out in the Acurex solar collectors ®eld of the
Plataforma Solar de Almer�ia from 6 to 7 July 1998. The proposed control was
implemented in C code and operates over a software developed at PSA [14],
also in C code. The e�ectiveness of the developed approach was ®rst tested in
simulation using a non-linear distributed parameter model of the Acurex ®eld,
developed at the University of Sevilla [2]. Also, a comparison between the

Fig. 7. Example of the fuzzy inference mechanism.
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behaviour of the proposed approach with the behaviour of a ®xed PID con-
troller was performed.

The described experiments intended to show the results in the following
situations: (i) several changes in the operating points, by setting di�erent ref-
erence temperatures (it is not possible to manipulate the solar radiation) and
(ii) the rejection capabilities of the controller to disturbances in the inlet oil
temperature and when the addition/suppression of a collector loop from op-
eration was done.

The e�ect of strong disturbances caused by large passing clouds, which
produce drastic changes in the direct solar radiation level, was not possible to
test due to the clear conditions during the experiments. In all the experiments
the sampling time was 15 s and the output temperature (Tout) was considered as

Fig. 9. Simpli®ed supervisor rule base.

Fig. 8. Clustering of the PID controllers (+:- initial controllers; O:- ®nal controllers).
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the average temperature of the all loops (another typical strategy is to assume
the maximum value).

3.1. Simulations

The performance of the proposed strategy was compared with a static PID
controller. This controller was designed for the operating point, Irr � 800 W/m2

and Tref � 240�C, in other words, the controller C5 was implemented. The data
used to perform the present simulation (Tin and Irr) was obtained on 6 July 1998
(the solar radiation evolution is presented in Fig. 12).

From the simulation results (Fig. 10) it can be seen that the ®xed PID
controller is well designed for its nominal conditions (approximately from 10 h
10 min to 10 h 50 min, from 12 h 15 min to 12 h 50 min and from 14 h 10 min to
the end of the time simulation), but for other conditions the performance de-
teriorates.

The proposed strategy, on the other hand, deals quite well with these
nominal conditions variations, providing signi®cant improvements in the
performance of the closed loop system (Fig. 11). The selected controller,
computed by the fuzzy supervisor, and the solar radiation evolution, are shown
in Fig. 12.

Fig. 10. Simulation 1 ± results using a ®xed PID controller (C5).
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Fig. 11. Simulation 2 ± results using the proposed switching strategy.

Fig. 12. Simulation 2 ± solar radiation and selected controller ± 6 July 1998.
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3.2. Experiments

The ®rst experiment was carried out on 6 July 1998. The proposed control
strategy was tested to cope with the changes in plant dynamics. Fig. 13 shows
the results in which several reference temperatures changes have been per-
formed. Also, in order to show the rejection capabilities of the proposed
controller, a change in the inlet oil temperature have been done at instant 13 h
25 min.

As can be seen the behaviour is quite good. The response presents almost no
oscillations neither overshoot and settles for the new value of the reference
temperature in about 15 min. The disturbance rejection capabilities of the
controller were also acceptable.

From the use of a PID controller, it should be expected a zero steady state
error. The actual error, for instance at instant 12 h 10 min, is justi®ed by the
evolution of solar radiation in its daily cycle, which acts as a load disturbance
(approximately a ramp) in the output temperature and is not adequately
compensated by the integral action of the PID. This experiment has shown that
the fuzzy supervisor mechanism, which makes the switch between the PID
controllers (shown in Fig. 14), provides a good control strategy.

Fig. 13. Experiment 1 ± results obtained on 6 July 1998.
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The experiment 2 has been carried out on 7 July 1998 and the results can be
seen in Figs. 15 and 16. The set point temperature was changed and at instant
14 h 55 min one loop has been suppressed from the ®eld and connected again at
instant 15 h 12 min.

After an initial phase the outlet oil temperature reaches the reference. The
results are very acceptable in face of the di�erent operating points and the
addition/suppression of a collector loop.

Concerning the fuzzy switching supervisor and observing the results, it can
be concluded that the adequate controller has been selected to each operating
point.

4. Conclusions

A PID based hierarchical control combining a switching supervisor strategy
and the c-Means clustering technique has been presented and applied to a
distributed collector ®eld of a solar power plant. The process is characterised
by di�erent operating conditions, depending on the changes in dynamics
caused by variation of the solar radiation, reference temperature, and plant
characteristics. Based on a neural network approach o�-line trained with ex-
perimental data, a set of nominal PID controllers tuned for di�erent operating

Fig. 14. Experiment 1 ± solar radiation and selected controller ± 6 July 1998.
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Fig. 16. Experiment 2 ± solar radiation and selected controller ± 7 July 1998.

Fig. 15. Experiment 2 ± results obtained on 7 July 1998.
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points have been designed. Next, the number of nominal PID controllers have
been reduced employing a c-Means clustering technique.

Simulation results have shown the e�ectiveness of the proposed switching
strategy. Testes carried out in the solar ®eld at PSA con®rm the simulation
results and show that the system has robustness with respect to changes in solar
radiation, inlet oil temperature and operating conditions.
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