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Abstract

In this work a practical study evaluates two parametric modelling approaches* linear and non-linear (neural)* for automatic
adaptive control. The neural adaptive control is based on a developed hybrid learning technique using an adaptive (on-line) learning
rate for a Gaussian radial basis function neural network. The linear approach is used for a self-tuning pole-placement controller.
A selective forgetting factor method is applied to both control schemes: in the neural case to estimate on-line the second-layer weights
and in the linear case to estimate the parameters of the linear process model. These two techniques are applied to a laboratory-scaled
bench plant with the possibility of dynamic changes and di!erent types of disturbances. Experimental results show the superior
performance of the neural approach particularly when there are dynamic changes in the process. ( 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Self-tuning adaptive control based on linear paramet-
ric models is a well-established methodology for linear or
linearized processes, especially for the regulation prob-
lem (AstroK m & Wittenmark, 1995; Landau, Lozano &
M'Saad, 1998). In the case of non-linear processes, the
linear parametric approach for modelling can be unsatis-
factory because the linear model may not be able to
represent appropriately the process in the entire region
spanned by the reference. This may degrade the control
performance particularly in dynamics change situations.
The parameter adaptation of the linear model may solve
this drawback to a certain extent, if there are no signi"-
cant changes in the dynamics of the process (time-delay
variations, order variations). Non-linear parametric
models are expected to further improve the control sys-
tem if they have general mapping capabilities, if they are
computationally acceptable and possible to adjust them
on-line. The radial basis function neural networks
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(RBFNN) have these properties, and recent progress in
their structure building algorithms strengthens their
potential for real-time control (Langari, 1997; Yingwei
& Sundararajan, 1998). However, there is still a lack of
experimental proof of the advantages of this methodo-
logy. Most of the works present simulations for relatively
simple case studies.

In this paper an experimental comparison is made
between two adaptive controllers and a "xed term con-
troller: self-tuning pole-placement (STPP) controller,
RBFNN-based controller and a PID controller. For
adapting the parameters (of the linear model in the "rst
case and of the output layer weights in the second case)
both use the recursive least-squares method with a direc-
tional forgetting factor strategy. A hybrid learning tech-
nique is developed for the RBFNN inverse model of the
process with an adaptive learning rate for the on-line
estimation of the centres of the activation functions of the
neurons.

Both algorithms were implemented on a real-bench
process (laboratory scaled) with a normal microcom-
puter. Experiments were carried out to compare the
controllers with respect to the following situations: set-
point tracking, disturbance rejection, process dynamic
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changes, sensor failure and time variance. To make com-
parisons, experiments were carried out so that each
controller was subjected (as far as was possible) to the
same environmental conditions, disturbances and plant
variations.

The remainder of this paper is organised as follows.
The STPP control strategy is described in Section 2.
Section 3 presents and discusses the RBFNN control
structure. In Section 4 the experimental results are
provided and analysed, and "nally in Section 5 some
conclusions are presented.

2. The self-tuning pole-placement controller

An indirect adaptive self-tuning scheme is used. The
controller parameters are evaluated after a pole-place-
ment design.

2.1. The linear model

The process to be controlled is assumed to be a single-
input}single output (SISO) linear system, described by an
ARX model (1)

A(q~1)y(k)"q~dB(q~1)u(k)#f(k), (1)

where A(q~1) and B(q~1) are polynomials (2,3) in the
backward shift operator (q~1), assumed to be, in this
study, of second order.

A(q~1)"1#a
1
q~1#a

2
q~2, (2)

B(q~1)"b
1
q~1#b

2
q~2, (3)

where k denotes the sampling instant, d is the time delay
and f(k) represents white noise.

2.2. Pole-placement controller

A well-known general linear controller can be de-
scribed by (4) (AstroK m & Wittenmark, 1995) (Fig. 1 shows
this type of control structure):

F(q~1)u(k)"H(q~1)r(k)!G(q~1)y(k). (4)

The polynomials F, G and H have the following form
(5)}(7):

F(q~1)"1#f
1
q~1#f

2
q~2, (5)

G(q~1)"g
0
#g

1
q~1#g

2
q~2, (6)

H(q~1)"h
0
#h

1
q~1#h

2
q~2. (7)

The closed-loop transfer function is given by (8)

y(k)"
q~d BH

AF#q~d BG
r(k)#

F

AF#q~d BG
f(k), (8)

F(q~1) and G(q~1) are determined so that the closed-
loop poles (roots of AF#q~dBG) are placed in desired

Fig. 1. Linear controller structure.

locations, de"ned by a polynomial A
m
(q~1). In order to

have a null steady-state error, integral action is assumed,
F will contain the factor (1!q~1) and therefore
F(q~1)"0 for q"1. It is possible to de"ne a polynomial
A

0
(q~1) that speci"es the dynamics resulting from distur-

bances, without in#uencing the dynamics from reference
input. A Diophantine equation is then de"ned as

AF#q~d BG"A
0
A

m
. (9)

The polynomial H is de"ned as H"iA
0
, where i is

a constant determined from the steady-state error condi-
tion. For more details see Henriques and Dourado
(1995).

i"
A

m
(1)

B(1)
. (10)

2.3. Selective forgetting method for least-squares
recursive estimation

The process model parameters hT"[a
1
a
2
b
1
b
2
] are

estimated on line by using a selective forgetting method
in order to minimise the square error between the output
of the actual plant and the output of the second-order
linear model.

A well-known identi"cation method to estimate the
parameters h3Rn, considering n parameters is the RLS-
recursive least squares* given by formulae (11) (Ljung,
1987),

e(k)"y
d
(k)!uT(k)h4 (k!1), (11a)

hK (k)"hK (k!1)#P(k)u(k)e(k), (11b)

P(k)"
1

j CP(k!1)!
P(k!1)u(k)u(k)TP(k!1)

j#u(k)TP(k!1)u(k) D, (11c)

where e(k) is the estimation error, y
d
(k) is the plant out-

put, j3R` is a forgetting factor, P(k)3RnCn is the
covariance matrix and u(k)3Rn a regression vector, func-
tion of the available information: u(k)T"[!y(k!1),
y(k!2), u(k!1), u(k!2)].

This method solves the problem of estimating varying
parameters. However if the sequence of regression vec-
tors u(k) is not su$ciently exciting, the eigenvalues
of P(k) will grow without limit. The resulting problems
are discussed for example in Parkum, Poulsen and
Holst (1992) and in Bittanti, Bolzern and Campi
(1990). In order to solve this problem Parkum et al.
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(1992) proposed the following two steps procedure to
implement (11):

Step 1: Measurement update: Eqs. (11a) and (11b).
Step 2: Update of covariance matrix

P(k#1)"IMP(k)N5P(k). (12)

The only di!erence between the methods lies in the
choice of the function IM N, the time update for the
covariance matrix. It is possible to guarantee that the
covariance matrix is bounded from the above and from
the below (13):

a
.*/

I
n
4P(k)4a

.!9
I
n

(13)

where I
n

is the identity matrix (n is the number of para-
meters to be estimated) and a

.*/
, a

.!9
are positive

constants verifying (14).

0(a
.*/

(a
.!9

(R. (14)

The lower boundary allows the identi"cation method
to track time-varying parameters, while the
upper boundary prevents the blow up of the covariance
matrix. The selective forgetting method is a directional
one. It is not uniform in the parameter space and it
forgets more in those directions with more and better
information. The update of the covariance matrix is given
by (15)

P(k#1)"
n
+
i/1

a
i
(k)

j
i
(k)

l
i
(k)l

i
(k)T, (15)

where a
i
3R and l

i
3R are the eigenvalues and the corre-

sponding unitary eigenvectors of P(k). In the
conventional forgetting factor method all the j

i
are

equal.
In this method the chosen forgetting factor can be

a function of the amount of information received in the
direction l

i
as an increasing function of a

i
. The forgetting

factor j
i
(k) associated with the direction l

i
(k), can then be

evaluated by

j
i
(k)

"G
1 if a

i
(k)'a

.!9
,

a
i
(k) Ca.*/

#a
i
(k)

a
.!9

!a
.*/

a
.!9

D
~1

if a
i
(k)4a

.!9

.

(16)

3. RBFNN controller

3.1. The RBFNN structure and training

In most generic sense, a RBFNN is any network that
has radial symmetric activation functions. The output of
a hidden neuron is a function of the distance between an
input vector and the centre of the function. Fig. 2 shows
the structure of this type of network. Given an input

Fig. 2. RBFNN structure.

vector of dimension p, x3Rp, the output of the network
is described by (17)

y"
m
+
i/1

u
i
u
i
(Ex!c

i
E) (17)

in which u
i
(i"1, 2, 2, m) are the network weights, E.E

denotes de Euclidean norm, c
i
3Rp are the basis function

centres and u: RpPR is the radial basis function. This
function can be selected in one of the several ways. In this
work the Gaussian exponential function was used (18),
where p

i
de"nes the width of the receptive "eld

u
i
: RpPR, u

i
(x)"exp A!

Ex!c
i
E2

p2
i

B . (18)

In the on-line learning procedure proposed in this
paper, all the parameters of the NN are identi"ed in two
steps. The "rst step applies the recursive K-means cluster-
ing in a modi"ed version of the technique proposed by
Moody and Darken (1989), Pereira, Henriques, Ribeiro
and Dourado (1996), which is essentially a competitive
learning algorithm of Kohonen type. In this work
a monitoring procedure is introduced to update the
learning rate. In the second step the previously described
selective forgetting factor is applied to the estimation of
the weights of the output layer.

3.2. Calculation of the centres and widths of the
Gaussian functions with adaptive learning rate

Since during each period of time the network input
exists only in some regions of the input space, it is
reasonable to allocate the centres of the Gaussian func-
tions in those regions, using a clustering algorithm, like
for example the K-Means Clustering (Moody & Darken,
1989). However, the clustering should be adaptive, in
order to follow the region in the input space that is being
spanned each time. For that purpose consider the follow-
ing simple but e$cient adaptation technique:

Step 1: The initial centres c
i
(i"1, 2, 2, m) are chosen

randomly.
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Step 2: Read the next input vector, x(k).
Step 3: Modify only the closest centre c

i
according

to (19).

c
i
(k)"c

i
(k!1)#b(k) [x(k)!c

i
(k!1)]. (19)

Step 4: Compute the sum of squared error (SSE) for the
last N sampling periods:

SSE"

N
+
i/1

[y
p
(k!i)!y

d
(k!i)]2. (20)

Step 5: If the SSE is greater than e
c

then (21):

b(k#1)"b
c

(21)

otherwise (22):

b(k#1)"cb(k) (22)

where b(k) represents the learning rate, 0(b(k)(1,
y
p
(k) is the process output, y

d
(k) is the desired response,

and b
c
is an initial constant value for the learning rate. In

case the modelling error over a period of time (sliding
window of N samples) is greater than a selected "xed
threshold e

c
, the adaptive learning rate remains constant,

otherwise it decreases to zero, in which c represents the
decay constant, 0(c(1. The widths of the Gaussian
functions are determined by the P-nearest-neighbour heu-
ristic method (Moody & Darken, 1989):

p
l
"S

1

P
+P

i/1
Ec

l
!c

i
E2,

(23)

where c
i
(i"1, 2, 2, P) are the P-nearest neighbours of

the centre c
l
. In this work, P"2 is used.

3.3. Learning the weights by the selective forgetting
algorithm

Due to the linearity of the error function with respect
to the weights, the weight matrix can be solved so that
the error is minimised, in terms of the recursive least-
squares algorithm. The conditions assuring that the
network inputs provide persistency of excitation, with
"xed centres, are given in Gorinevsky (1995). However if
the input is su$ciently exciting, the elements of the
covariance matrix converge to zero, loosing the track-
ing capability if the system is time variant. As seen in
Section 2 a selective forgetting algorithm allows this
problem to be solved and guarantees that the parameter
covariance matrix is bounded from above and below.

Another disadvantage of the usual methods is that the
forgetting is uniform in space, leading to problems when
only some directions of the parameter space are excited.
This is the case with the radial basis function networks
due to the local representation property of the Gaussian
functions. One input will only signi"cantly activate
a very restricted number of neurons. The selective forget-
ting algorithm applied in RBF learning guarantees that

Fig. 3. Structure for real-time adaptive RBFNN control.

the forgetting is proportional to the amount of informa-
tion received in each direction.

The learning procedure described above is used to
train the available controller in the form of a RBFNN.
The control structure proposed is shown in Fig. 3, with
monitoring and adaptive training. This is a simpli"ed
adaptive internal model control (IMC) scheme in adap-
tive form. The RBFNN is used to model the inverse of the
plant. The training signal is the di!erence between the
reference and the process output. The feedback signal is
a measure of the accuracy of the inverse model. If it is
perfect, then l equals y

p
and the control is in open loop

and in steady state, l equals r. In the presence of process
changes or disturbances, y

p
no longer equals the refer-

ence, a correcting feedback signal y
p
!l is generated and

at the same time the RBFNN learns on-line the new
situation. The output follows quickly the reference. The
"rst-order "lter F is applied to smoothen the error signal
for reference changes and introduces robustness into the
control system.

This method can even be applied to singular systems,
which do not satisfy the invertibility conditions over the
whole operational space, as it searches for local models.
It learns the process dynamics in order to annul the
steady-state error, retaining its parameters. Hence, the
attained model is local to the addressed operating point.

4. Experimental results

4.1. The experimental bench

The experimental bench is composed of two laborat-
ory processes, the process trainer PT326 and the Process
Control Simulator PCS327 (Feedback, 1984) (Fig. 4). Air
is forced to circulate by a fan blower through a tube and
heated at the inlet. There is an energised electric resist-
ance inside the tube, and due to the Joule e!ect, heat is
released by the resistance and transmitted, by convection,
to the circulating air, resulting in heated air. This is
a non-linear system with a pure time delay. The pure time
delay depends on the position of the temperature sensor
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Fig. 4. (a) The experimental bench PT326; (b) PT326 schematics dia-
gram; (c) A schematic diagram of the PT326 in series with the PCS327.

element (positions I, II, and III, see Fig. 4(b)) and the
damper position ()). The system input, u(k), is the voltage
applied to the power electronic circuit feeding the heating
resistance, and the output, y

p
(k), is the outlet air temper-

ature, expressed by a voltage, between !10 and 10 V,
issued from the transducer and conditioning electronics.

The PCS327 is an analogue electronic apparatus
allowing the introduction of additional poles of di!erent
values and additional time-delays as illustrated in
Fig. 4(c).

Four groups of experiments were carried out for each
controller: set-point tracking, load disturbances, system
dynamics change with sensor failure and time variance.
These experiments were conducted using a PC with A/D
and D/A converters, the algorithms being implemented
in C code. The vertical scales in the "gures represent the
output air temperature in 3C. Its relation to the voltage
from the sensor/transducer is 1V-223C, 3V-323C, 5V-
383C. As a result of the construction of the apparatus
there is a non-linearity in this relation.

Each experiment was of 120 s duration. Initial condi-
tions were: damper position )"403, detector probe in
III position. The sampling time was 200 ms. In these
simulations, the following values were chosen using
a trial-and-error procedure:

RBFNN: m"5, a
.!9

"0.25, a
.*/

"0.01,

P(0)"0.25I
5

, e
c
"1, b

c
"0.6, N"20, c"0.9.

Fig. 5. (a) Set-point tracking * RBFNN; (b) Set-point tracking
* STPP; (c) Set-point tracking * "xed term PID.

STPP: A
m
"(1!0.7q~1), A

0
"(1!0.5q~1),

a
.*/

"0.01, a
.!9

"0.2, P(0)"0.1I
4
.

In the PID controller, the Ziegler}Nichols method was
applied, resulting in the following control action:
u(k#1)"u(k)#0.12e(k)!0.51e(k!1)#0.13e(k!2).

The NARX (24) model, in the terminology of
Chen and Billings (1989), can represent the non-linear
system:

y
p
(k)"f [ y

p
(k!1), y

p
(k!2), 2, y

p
(k!n

a
),

u(k!1), u(k!2), 2, u(k!n
b
), e(k)]. (24)

In this case n
a
"2 and n

b
"2 were considered.
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Fig. 6. (a) Regulation}variation in input air*RBFNN; (b) Regulation}variation in input air* STPP; (c) Regulation}variation in input air* PID.

In order to assess the performance of the three control-
lers several indices were considered, namely, sum of
square error sse"+N

k/0
e(k)2, sum of absolute error

sae"+N
k/0

De(k)D, sum of instant square error sise"
+N

k/0
ke(k)2, sum of square control ssc"+N

k/0
u(k)2 and

"nally the sum of square change of control
sscc"+N

k/0
(u(k#1)!u(k))2. With respect to the output

error the "rst one will punish major output tracking
errors and the sum of instant square error will penalise
most steady-state errors. The last two indices evaluate
the actuation e!ort and smoothness.

4.2. Set-point tracking

In this "rst set of experiments the tracking perfor-
mances of the controllers with respect to set-point cha-
nges (step input) was studied. Fig. 5(a) and (b) show the
behaviour of the three controllers. Both the RBF and
STPP controllers started without any a priori parameter
estimation. Note that despite being put into control with-
out a priori knowledge of the process (the Gaussian
function centres were initialised at random and the
widths and the output layer weights were simply in-
itialised at zero), the RBFNN initial performance is quite
reasonable. In a similar way the STPP control performed
as well as the RBF controller also without any a priori
identi"cation. In the remaining experiments, the adaptive

controllers also start without any particular knowledge
about the process. In this "rst experiment, the perfor-
mance of the PID was comparable to the others, and
even slightly better (see the performance indices table)
since the tuning method was based on the given set
points.

4.3. Variation in the damper position (X)

The second simulation run addressed the disturbance
rejection capabilities of the controllers. Variations were
considered in the #ow rate of input air: )"603 at instant
20 s and )"203 at instant 40 s. As can be seen, both the
adaptive controllers perform well in maintaining the out-
put at their set points. Fig. 6(a)}(c), show the behaviour of
process for a regulation situation. The PID controller
exhibits poor performance in these situations.

4.4. Changes in system dynamics and sensor failure

Now consider an experiment with the purpose of
studying the e!ect of a dynamics change. A detector
probe shift from positions III to II occurs suddenly at
20 s. Being a manual operation, there is a sensor failure
during that period. After 20 s, the sensor is repositioned
to position III. The behaviour of the controllers under
this in#uence are shown in Fig. 7(a)}(c). The RBFNN and
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Fig. 7. (a) Regulation}sensor fault * RBFNN; (b) Regulation}sensor fault * STPP; (c) Regulation}sensor fault * PID.

Fig. 8. (a) Additional poles and delays * RBFNN; (b) Additional poles and delays * STPP; (c) Additional poles and delays * PID.

C. Pereira et al. / Control Engineering Practice 8 (2000) 3}12 9



Fig. 9. (a) Time variance * RBFNN; (b) Time variance * STPP; (c) Time variance * PID.

Table 1
Summary of the experimental results

Criteria RBFNN STPP PID

Computational complexity Medium (heavy, if using a lot of
neurons)

Medium Light

Tracking performance Good Good Best (if tuned correctly)
E!ect of sensor failure Good Good Worst
E!ect of dynamics change Superior Regular Poor
Time variance Good Good Worst

STPP performed best under this condition. The PID
performed worst during the second sensor failure (ap-
proximately 5 s) as its output oscillated adversely.

4.5. Introduction of additional poles and time delays

Another set of experiments used the PT327 for the
introduction of delays and poles in the process dynamics.
Fig. 8(a)}(c) show the controllers' behaviour with respect
to the introduction of a delay and a pole. A pole of 1 s
and a delay of 1 s were introduced at 40 s and 80 s,
respectively. The STPP and PID controllers had some
di$culty in controlling the process after the introduction
of the pole, and were unable to control the process when
the pole and delay were simultaneously present. The
RBFNN shows greater robustness in these situations as

illustrated in the "gures. It can be stated that the neural
network behaves signi"cantly better in situations of pro-
cess order changes.

4.6. Time variance

In order to assess how well the controllers handle time
variance in this last experiment, the calculated actuation
signal u

q
(k) is multiplied by a time variable gain: u(k)"

ku
q
(k), where u(k) is the actual actuation signal, and k is

the variable gain, increasing linearly from 1 to 3. Once
again the RBFNN controller performs quite well com-
pared to the other applied techniques as can be seen in
Fig. 9. The "xed PID controller shows the highest perfor-
mance degradation for large values of k.

10 C. Pereira et al. / Control Engineering Practice 8 (2000) 3}12



Table 2
Calculated performance criteria (calculated value/best performance)

RBFNN SSE SAE SISE SSC SSCC

Set-point tracking 1.24 1.62 1.09 1 1
Variation in input air 1.46 1.07 1 1 1
Sensor fault 1.13 1 1.30 1 1
Additional poles and delays 1 1 1 1 1
Time variance 1 1 1 1 1

STPP SSE SAE SISE SSC SSCC

Set-point tracking 1.40 1.23 1.30 1.04 2.93
Variation in input air 1 1 1.01 1.11 2.37
Sensor fault 1 1.00 1 1.09 2.43
Additional poles and delays 1.52 1.50 1.62 1.11 2.59
Time variance 1.56 1.39 1.43 1.05 1.70

PID SSE SAE SISE SSC SSCC

Set-point tracking 1 1 1 1.03 2.18
Variation in input air 2.70 1.93 5.54 1.15 2.81
Sensor fault 2.29 1.50 2.82 1.03 3.81
Additional poles and delays 2.23 1.85 2.71 1.09 4.23
Time variance 1.65 1.38 1.37 1.05 2.04

5. Conclusions

The results obtained by the RBFNN controller are
good. In trivial situations it shows comparable perfor-
mance with the STPP and tuned-"xed PID controllers
(see Table 1). The "xed parameter controller applied
exhibits very good performance if tuned accordingly. In
some experiments the ST performance is better with
respect to the error but worse with respect to the control
e!ort. In Table 2 each cell contains the quotient between
the calculated criteria and the best-performance criteria
for the same set of experiments. The neural controller
produces a smoother control. Considering both criteria
of error and control e!ort the RBFNN seems to be better
in all situations. From the point of view of robustness the
RBFNN controller performs best when there are more
serious changes in dynamics. Considering the perfor-
mance and development costs the RBFNN is preferable.
For a more complex, high order non-linear system these
advantages will probably be more evident than in this
case study. These facts are understandable if one thinks
about the RBFNN controller as a self-tuning non-linear
controller, as in fact it is. The self-tuning property lies in
the recursive on-line learning of the NN, and to control
a non-linear process, particularly in the tracking prob-
lem, a non-linear self-tuning controller is preferable to
a linear ST one.

The authors hope that the present work will be an
encouragement for industrial engineers to implement
neural adaptive controllers in real factories.
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