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ABSTRACT

Background Abnormal mitochondrial function has long been associated with the development and the pro-
gression of cancer. Multiple defects in the mitochondrial genome have been reported for various cancers,
however the often disregarded mitochondrial epigenetic landscape provides an additional source of deregulation
that may contribute to carcinogenesis.

Design This article reviews the current understanding of mitochondrial epigenetics and how it may relate to
cancer progression and development. Relevant studies were found through electronic databases (Web of
Science and PubMed).

Results and conclusions The remarkably unexplored field of mitochondrial epigenetics has the potential to
shed light on several cancer-related mitochondrial abnormalities. More studies using innovative, genome-wide
sequencing technologies are highly warranted to assess whether and how altered mtDNA methylation patterns
affect cancer initiation and progression.
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Introduction

Cancer is a complex, heterogeneous disease characterized by

multiple molecular and cellular transformation events that

ultimately lead to the formation of tumours. A growing body

of evidence suggests that defects in the collective mitochon-

drial genome (i.e. both nuclear and mitochondrial encoded)

may be one such collection of transformation events that

contribute to cancer initiation and progression. Multiple

insults to the mitochondrial genome associated with cancer

have been described in the literature [1,2]. For instance,

characteristic mutations and deletions in control and coding

regions of mitochondrial DNA (mtDNA) specific to particular

cancers are also commonly reported [3], as is depletion of

mtDNA [4]. In this regard, Petros et al. [5] showed that cyto-

plasmic hybrids (cybrids) made by fusing mitochondrial DNA

depleted prostate cancer cells with mitochondria containing a

well-characterized point mutation in the mtDNA-encoded

ATP6 gene, known to impair ATP production and increase

ROS formation, were more tumorigenic in mice than wild-type

prostate cybrids. In contrast to the mitochondrial genome, little

to no research efforts have been directed at the role of

alterations to the mitochondrial epigenome in cancer. This

review explores the potential role of the emerging field of

mitoepigenetics in carcinogenesis, with particular emphasis on

mtDNA epigenomics.

Mitoepigenetics

The term mitoepigenetics encompasses all bidirectional phe-

nomena between the mitochondrial and the nuclear genomes

[6]. This includes all epigenetic events that affect the expression

of nuclear-encoded mitochondrial genes and, in the opposite

direction, the amount of cellular mtDNA copies and the specific

mtDNA haplotype – both known to significantly alter the

nuclear epigenetic landscape [7]. Mitoepigenetic events may

also include the interplay between mitochondrial-derived sub-

strates and the nuclear epigenetic landscape [8,9] and the often

overlooked methylation and hydroxymethylation of mtDNA,

which are discussed in detail below.

Mitochondrial DNA: genomics and epigenomics
Human mtDNA is a double-stranded, closed-circular molecule

of 16 569 bp that encodes for 2 rRNAs and 22 tRNAs of the

mitochondrial translation machinery, as well as 13 polypep-

tides of the oxidative phosphorylation (OxPhos) system (Fig. 1)

[10]. Similarly to nuclear DNA (nDNA), mtDNA is found in a

packed protein–DNA structure called nucleoid, in which
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mitochondrial transcription factor A (TFAM) is the major pro-

teic component [11]. While it is conceivable that mtDNA

nucleoids may undergo epigenetic post-translational modifica-

tions in their protein scaffold in a similar fashion to histones in

nDNA nucleosomes, there is currently no evidence for the

occurrence of this mechanism. Thus, mtDNA epigenetic phe-

nomena currently comprise only DNA methylation and hy-

droxymethylation [6].

mtDNA methylation and hydroxymethylation. The first

comprehensive map of methylated cytosines (m5C) in the

human mitochondrial genome was recently published [12].

Similarly to nDNA, human mtDNA displays a low frequency

of CpG dinucleotides (435 in 16 659 nucleotides) [13].

Although mtDNA methylation was initially reported to occur

exclusively in CpG dinucleotides [14], recent data shows that

m5C is found predominantly in non-CpG sites [15]. The

origin and functional roles of non-CpG methylation are

currently unknown. Some controversy regarding mtDNA

methylation still remains, however, as a recent study apply-

ing regionally specific and genome-wide analyses found that

both CpG methylation and hydroxymethylation were absent

from human mtDNA in two different cell lines, suggesting

that CpG methylation plays no role in mtDNA function [16].

Presumably, CpG mtDNA methylation is carried out by

mitochondrial DNA methyltransferase (mtDNMT1), an isoform

of the maintenance methylase DNMT1 that contains a mito-

chondrial targeting sequence [17]. The de novo methyltransfer-

ase DNMT3a may also be involved, as it has been found to

colocalize with mitochondria in mouse neuronal cells when

overexpressed [18]. The required methyl donor S-adenosyl-I-

methionine (SAM) is synthesized in the cytosol and imported to

the mitochondrial matrix via the mitochondrial SAM carrier,

likely via exchange for its metabolized variant S-adenosyl-I-

homocysteine (SAH) [19]. SAM synthesis is regulated in part by

the mitochondrial one-carbon (folate) metabolism [20]. In

postmitotic differentiated cells, the mitochondrial bifunctional

enzyme (MBE, a protein that participates in mitochondrial

folate metabolism) is not expressed, allowing the flow of one-

carbon units towards SAM synthesis. Conversely, cells with a

more proliferative phenotype (e.g. embryonic or cancer cells)

express MBE, and thus, one-carbon units are shuttled pre-

dominantly towards nucleotide rather than SAM synthesis

[21,22]. Reduced SAM availability may explain, at least in part,

the global nDNA hypomethylation patterns seen in cancer cells

[23] and mtDNA hypomethylation in lymphoblasts derived

from Down syndrome patients [24].

Levels of mtDNMT1 may also influence mtDNA methylation

status. Interestingly, transcription of the mitochondrial variant

of DNMT1 has been shown to be influenced by various factors

related to cancer such as loss of p53 and increased signalling by

the oxidative stress-responding transcription factors nuclear

respiratory factor 1 (NRF1) and peroxisome proliferator-acti-

vated receptor gamma coactivator 1-a (PGC-1a) [17]. Similarly

to nDNA methylation [25], mtDNA methylation can also be

affected by several factors, suggesting that abnormal mtDNA

methylation can be used as a biomarker [26].

Hydroxymethylation of mtDNA has also been described [17].

In nuclear DNA, m5C is oxidized into 5-hydroxymethylcytosine

(hm5C) by the ten-eleven translocation (TET) family of meth-

ylcytosine dioxygenases [6]. The biological significance of this

modification awaits further characterization, although it is

possible that in mitochondria it promotes demethylation by

preventing mtDNMT1-mediated remethylation after a

replication cycle.

Figure 1 Map of the human mitochondrial genome,
according to the revised Cambridge Reference Sequence
(NC_012920, [56]). mRNA- and rRNA-coding genes (grey boxes)
are interspersed with tRNA genes (black dots, single-letter
code) on both the H- and L-strands (outer and inner circles,
respectively). Duplicate tRNA genes are distinguished by their
codon recognition sequences (parentheses). ND, Cyt b, CO and
ATPase refer to genes that encode to OxPhos complexes I, III, IV
and V, respectively. Locations of the various translation
initiation sites (ITL, ITH1, ITH2), replication origins (OH, OL) and
the termination site (TERM), indicated by bent arrows, are in
agreement with various publications (see [10,57] and
references therein). CpGs that display protection from
methylation by exogenous bacterial DNMTs are highlighted in
black boxes (data from [30]).
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mtDNA transcription. The individual strands of mtDNA are

distinguished based on their different buoyant densities in

denaturing CsCl gradients, in which they may be separated

into the guanine-rich ‘heavy’ (H) and cytosine-rich ‘light’ (L)

strands. Transcription and replication of mtDNA in both

strands are largely controlled by the regulatory noncoding

displacement loop (D-loop) region, which contains the H-

strand promoter 1 (HSP1), the L-strand promoter (LSP) and the

H-strand origin of replication (OH) [10]. HSP2 is located close to

the D-loop, roughly � 60 bp upstream of HSP1. In many types

of cancer, the bulk of the reported mtDNA mutations occur

predominantly in the D-loop region [3]. This indicates a trend

favouring the segregation of heteroplasmic mutant D-loop

mtDNA populations towards homoplasmy, as they may confer

a survival advantage to cancer cells. Likewise, mtDNA variants

displaying aberrant D-loop methylation could also follow this

selection pattern.

Transcription of mtDNA is initiated at specific sites within the

promoters (ITL, ITH1 and ITH2) and is carried out by the mito-

chondrial DNA-directed RNA polymerase (POLRMT), which

requires the assembly of a complex with TFAM and mitochon-

drial transcription factor B2 (TFB2M) [27] at the promoter sites.

The initial mitochondrial transcripts are polycistronic pre-

mRNAs thatmust be further processed toproduce the individual

mRNA, tRNA and rRNA molecules [28]. HSP1 produces a rela-

tively short pre-mRNA transcript that terminates at the 30 end of

the 16S rRNA gene in the termination site (TERM) region, gen-

erating two tRNAs and the two rRNAs [29]. CpGs in the TERM

region are strongly protected against methylation, presumably

due to occupancy by themitochondrial transcription termination

factor (mTERF) that arrests HSP1-derived transcript progression

at the TERM site [30]. mTERF also appears to stimulate serial

HSP1 transcription [31], possibly via simultaneous binding to

both the TERM and ITH1 regions (Fig. 2) [32]. Because HSP1

encodes for rRNA and tRNA only, mTERF stimulated tran-

scriptionmay underlie the higher rate of rRNA synthesis relative

to mRNA in mitochondria [33]. HSP2 produces a much longer

transcript that encompasses the majority of the H-strand, which

is ultimately processed into 10 mRNAs, 13 tRNAs and the 2

rRNAs. LSPproduces a transcript that spans all coding regions of

the L-strand, generating 1 mRNA and 8 tRNAs. Termination of

L-strand transcription is also mediated by mTERF at the TERM

site [31]. The organization ofmtDNApromoters is different from

that of their nuclear counterparts; nDNApromoters are enriched

with clusters of CpG dinucleotides (the so-called ‘CpG islands’)

[34], whereas mtDNA promoters are virtually devoid of CpG

dinucleotides. While this suggests that mtDNA methylation

plays no significant role in mtDNA transcription regulation, the

observation that mtDNMT1 overexpression asymmetrically

alters transcription rates of both mtDNA strands suggests

otherwise [17]. Moreover, some of the few CpGs that do occur in

mitochondrial promoters have been found to be moderately

protected frommethylation byTFAMoccupancy [30]. This raises

the possibility that short-term reductions in TFAM levels

may lead to long-term epigenetic imprinting in the transiently

exposed promoters, thereby disturbing mitochondrial

transcriptomics.

mtDNA replication. Replication of mtDNA occurs

continuously and is independent of the cell cycle. mtDNA

is replicated by a protein complex composed of polymerase

c (POLc), an accessory 55 kDa subunit (p55), the

replication factors mitochondrial single-stranded binding

protein (mtSSB) and Twinkle, the mtDNA helicase [35].

Methylation of the POLc gene (POLG) promoter was shown

to regulate mtDNA copy number. Replication of mtDNA

begins in the OH, upon extension of a cleaved LSP-derived

RNA–DNA primer. Although the L-strand origin of

replication (OL) is located well outside the D-loop, L-strand

replication is only initiated when the growing daughter

H-strand displaces the parental H-strand [28]. Thus, replica-

tion of both strands is dependent on the integrity of the

D-loop. As such, abnormal methylation of the D-loop and

OL regions could explain, at least in part, the depletion of

Figure 2 Schematic representation of mtDNA regulatory hubs
containing CpG sites protected from methylation. Top:
methylation of the TERM and ITH1 regions may alter the binding
efficiency of mTERF, thereby altering normal rates of rRNA:
mRNA synthesis and ultimately compromising mitochondrial
translation dynamics. Bottom: methylation of OL may prevent
POLc binding and impair mtDNA replication. Black and red
strands represent parental and nascent strands, respectively.
Open and solid lollipops represent unmethylated and
methylated CpGs, respectively. Presently, no data are available
linking mitochondrial transcription and replication dynamics to
regional mtDNA methylation status; therefore, this model
should be regarded as purely hypothetical.
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mtDNA commonly observed in cancer. The displaced

H-strand adopts a stem-loop structure with a CG-rich region

at the base of the stem (Fig. 2) that is critical for L-strand

replication, as mutations in this regions were shown to

impair the transition from primer RNA to DNA synthesis

[36]. The functional implication of OL methylation state

remains to be addressed.

Mitochondrial regulation of nDNA epigenetics in
cancer

Interestingly, retrograde crosstalk between mitochondria

and nucleus appears to have a role on tumorigenesis [37].

Mitochondrial dysfunction can promote changes in the

expression of nuclear genes involved in cellular signalling,

metabolism, growth, differentiation and apoptosis [38]. There is

increasing evidence that alterations in mitochondrial function

severely influence nDNA methylation and histone methylation

and acetylation, possibly via disturbing the normal cellular

metabolome [39].

Epigenetic mechanisms involving protein acetylation are

highly dependent on mitochondrial function, which affects

acetyl coenzyme A availability. Tumour proliferation is pro-

moted by upregulation of the mitochondrial citrate transport

protein, which shuttles acetyl moieties from mitochondria to

the cytoplasm [40,41]. Altered mitochondrial acetyl group

export rates disrupt histone acetylation dynamics and may

partly account for the enhanced tumorigenic phenotype.

Impaired function of succinate dehydrogenase (SDH), a

component of both the mitochondrial respiratory chain and the

Krebs cycle, promotes nDNA hypermethylation in multiple

tumour lineages, including gastrointestinal stromal tumours,

gliomas, paragangliomas and pheochromocytomas [42]. Similar

effects were shown to occur in absence of another Krebs cycle

enzyme, isocitrate dehydrogenase (IDH), suggesting that

mutations or malfunction of these two Krebs cycle enzymes in

distinct tumour types disturb epigenomic patterns [42]. In

addition, the oncometabolite d-2-hydroxyglutarate (2HG),

produced by mutant IDH enzymes, promotes neoplasia

development by competitive inhibition of histone demethyla-

tion and m5C hydroxylation, leading to alterations in histone

and DNA methylation in gliomas and leukaemias [43]. Human

breast tumours and cancer cell lines with elevated 2HG also

exhibit a hypermethylation phenotype, which in some cases is

associated with MYC activation [44].

Absence of mtDNA in the prostate cancer cell line LNq0-8
was shown to induce methyltransferase 1 expression and hy-

permethylation of the nDNA promoters, including the CpG

islands of endothelin B receptor (EDNRB), O6-methylguanine-

DNA methyltransferase (MGMT) and E-cadherin (CDH-1) [45].

In addition, in 90% of prostate cancers, the GLI pathogenesis-

related 1 (GSTP1) promoter is found methylated [46]. Distinct

works show either increased or decreased mtDNA content in

malignant tumours [47–49], which might depend on tumour

status and origin. One such study focused on D-loop deme-

thylation, which was pointed out as an early event in colorectal

cancer that might affect mtDNA content, because the D-loop

regulates mtDNA replication [47].

As several key subunits of the mitochondrial respiratory

chain are coded by mtDNA, mutations or methylation of the

mitochondrial genome may promote aberrant expression of

those subunits, altering mitochondrial metabolism. Being the

source of fundamental metabolites for enzymes that modify

the epigenetic landscape of nuclear DNA, disruption of

mitochondrial homeostasis may activate proto-oncogenes

and/or inactivate tumour suppressing genes, leading to

tumour development. In fact, oxidative phosphorylation,

Krebs cycle, b-oxidation of fatty acids and amino acid and

lipid metabolism are altered metabolic pathways observed in

several human cancers, including colon, breast, lung, prostate,

pancreas, liver, kidney and brain [50]. Thus, mtDNA

methylation may occur spontaneously in normal conditions,

and when a minimal threshold of mtDNA heteroplasmy is

reached, changes in mitochondrial metabolism homeostasis

may occur, inducing nuclear epigenetic landscape transfor-

mation, which may in turn lead to tumour formation and

development.

There are some studies showing mtDNA methylation in

distinct diseases [17,51]. As this is a rather new subject, reports

regarding mtDNA methylation in cancer are currently scarce.

One of the few studies available suggests that hypermethyla-

tion of mtDNA only occurs at very low frequency in both

gastric and colorectal cancer [52]. However, only 37 CpG sites

were considered. A second study analysing both cervicovaginal

cells of patients with cervix cancer and a cervix cancer cell line

(SiHa) obtained similar results. Again, only three CpG sites

were taken into account [53].

Nevertheless, it is well known that both metabolic repro-

gramming and epigenetic alterations are deeply involved in

carcinogenesis [54,55], justifying and encouraging the search

for alterations in mtDNA methylation in cancer cells using

more sophisticated methodologies, such as mtDNA-wide

bisulphite sequencing or LC-MS.

Final remarks

The considerations presented in this review support the idea

that disrupted mitoepigenetics may contribute to tumorigene-

sis. Experiments aimed at elucidating the functional implica-

tions of mtDNA methylation and hydroxymethylation could

help clarify the role of these epigenetic marks, deepening our

understanding of mitochondrial biology in cancer and providing
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a basis for experimental treatments aimed at epigenetic

manipulation.

At this stage, it is important to ascertain whether the mtDNA

methylome is deregulated in various cancers and at different

progression stages. This would immediately indicate new

avenues of research. For instance, can aberrant mtDNA meth-

ylation be used as a reliable biomarker for cancer? Do hetero-

plasmic methylomes develop into homoplasmic methylomes?

Is there a functional link between mtDNA methylation and

mitochondrial dysfunction in cancer? Finally, does mtDNA

methylation in fact play a role in cancer initiation and pro-

gression? The extreme simplicity of the mitochondrial genome

relative to the nuclear genome should make it an excellent

experimental model to address these issues.
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