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Abstract

An automatic visual inspection system for wood growing ring identification and measurement is described.

Given the irregular contrast distributions in wood samples, the identification of these elements is not

straightforward. Furthermore, it is observed that many rings exhibit very narrow widths. To overcome these

problems, several new methods are introduced, namely at the local image scale definition and at the image

segmentation levels. First, local scales are automatically computed and applied for ring center identification.

This information is then used to reconstruct the noisy image signal, which is segmented using a local minimum

distance-minimum cross-entropy principle. The system uses a reduced and intuitive set of user defined parameters;

for this reason, it is easy to tune.
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1. Introduction

Forestry, ecological and botanical researchers spend much of their time measuring annual ring data

for their analysis of forest growth and dynamics. One of their methods of sample collection is to cut

down the tree and then to cut one or more cross-sectional discs from the tree’s trunk. Once these samples

have been collected, they must be prepared for analysis. At the very least, this preparation includes

sanding to remove marks left by the saw and may also include polishing. Once a sample has been

prepared, there are a number of devices that can potentially help the researchers to gather information of
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interest. Some of these devices are purely mechanical, many include electronics and a few include a

computer. All of these devices require the operator to decide where one ring ends and the next begins.

The measurement systems that involve computers are currently at what has been called the

‘third generation’ of development. The main characteristics of these third generation systems is the

use of a high resolution input device (scanner or camera) to digitize an image and the ability to save

results to disk. Processing the image then requires an operator to identify regions or features in the

image, after which the computer attempts to use this information either to count the features or to

identify and then count the features in the image. In addition to eliminating human effort, there are many

benefits to be gained by letting the computer decide where tree ring boundaries are located.

These benefits can be described as follows: (i) it may take less time to analyze each sample, assuming an

efficient algorithm and/or a fast computer; (ii) the results of analyzing a given sample would be

repeatable and; (iii) more accurate information would result.

In this paper, an automatic measurement system for tree growing rings that does not require user

intervention (except for the introduction of the radial analysis direction) for ring identification and

measurement is described. Due to the low contrast between growing rings and the noise present in these

types of images, our tests revealed that it is not possible to rely directly on standard segmentation

algorithms. Therefore, it was necessary to develop new methods in order to solve this specific problem.

In our approach, ring centers are first identified using a scale-space representation of the image.

This representation enables automatic selection of local scales, which, in turn, permits robust

identification of the ring centers. This method is described in Section 2.1. After center identification,

the system proceeds with ring border computation using a minimum distance-minimum cross-entropy

principle, which is introduced in Sections 2.2 and 2.3. Finally, in Section 3, some main conclusions and

the results obtained with this inspection system are presented.

2. Identification of growing rings

Most wood species exhibit a low contrast between growing rings, in several cases being of the order of

the CCD’s noise characteristic. Furthermore, significant spatial variations in contrast usually occur in

wood samples. It is also observed that most latewood rings exhibit very small widths (several rings

exhibit widths between 3 and 4 pixels in the digital image). These characteristics impose severe

constraints upon image segmentation, which is a very critical operation since it affects the shapes of the

identified objects and, therefore, greatly influences the inspection system’s accuracy. To avoid noise

influence during the segmentation of the image, false maximums and minimums are detected and the

image signal between adjacent noisy pixels is reconstructed by constraining the signal as a type C1

function. This method enables subpixel accuracy, which turns out to be of major importance, given the

small widths of several rings. Using the reconstructed signal, a local minimum distance-minimum

cross-entropy principal is applied to identify ring transitions.

2.1. Growing rings detection with automatic scale selection

We consider the black growing rings as line-like structures with a slight curvature. It is assumed that the

medulla center of the sample is known a priori. Hence, the ring direction at each point can be estimated as

being perpendicular to the radius that passes through each ring. The gray profile across the longitudinal
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direction shows a dip on the contrast between the line ring structure and the adjacent white rings that can be

considered background, while the gray-value profile along the longitudinal direction shows only slight

variations. The gray-value profile across the ring can be considered to be a generalized edge with a

Gaussian profile. Since the typical profile is known and the orientation can be estimated, an optimal

operator for ring detection is constructed based on a unidirectional approach along the radial direction.

However, the scale of each ring is not know a priori, so an operator must be applied for different scales in

order to identify the scale leading to the strongest response. In this work, we use a multi-scale detector

approach, based on the idea of normalized derivatives introduced by Lindeberg (1993).

The dependency of the second derivatives with width s of a Gaussian kernel gðx;sÞ applied to a line

structure with a Gaussian gray-value profile f ðxÞ across the line is applied to estimate the width of the

structure. In the framework of the classical scale space theory, Lindeberg (1993) suggests the use of local

extrema (with respect to s) of g—parameterized normalized derivatives of the form

›=›x;g2norm ¼ sg›=›x—for scale estimation. The general principle of scale selection states that scale

levels for feature detection can be selected from scales where normalized differential invariants assume

maxima over the scales. Taking up this idea for line structures, we look for a normalized second

derivative. The line response function is defined as rðx;sÞ

rðx;sÞ ¼ sg d2hðx;sÞ

dx2
ð1Þ

with hðx;sÞ ¼ f ðxÞ^gðx;sÞ being the convolution of the line profile f ðxÞ obtained in the radial direction

near the ring and the Gaussian kernel of width s: Lorentz, Carlsen, Buzug, Fassnacht, and Weese (1997)

have shown that (i) for a line with a Gaussian profile of width s0 and unitary contrast, convolved with a

Gaussian of width s; yields a Gaussian of width stot ¼
ffiffiffiffiffiffiffiffiffiffi
s2

0 þ s2
q

and (ii) to obtain sopt ¼ s0; g must be

3/2, leading to rð0;soptÞ ¼ 21=
ffiffiffiffiffiffiffi
8sopt

p
: This framework presents good stability for features detection.

Fig. 1 shows the results of the space scale extrema (i.e. points that are extrema both in space and scale)

of the line response function obtained along a radial direction. Note the ability of the method to extract

each one of the black rings.

2.2. Signal reconstruction

Let
Q

¼ ½x1;…; xn� be the coordinates of the points that define the radial section introduced by the

user, G ¼ ½x1;…; xn� be the coordinates of the estimated ring centers detected with the line detector

Fig. 1. Multi-scale blob detection using normalized scale-space extrema of the squared Laplacian.
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along
Q
; as introduced in Section 2.1, and f ðxÞ; x [

Q
be the gray values of the image along the given

section. As the acquired image exhibits the CCD’s noise, as a first step, the algorithm estimates a

noise-free function f̂ðxÞ: For this purpose, all false maximums and minimums of f ðxÞ are identified. Let :

be the group of minimums and maximums of f ðxÞ and let FðxÞ be defined by FðxiÞ ¼ f ðxiÞ2 f ðxiþ1Þ:

Then : is defined as in Eq. (2)

:¼

�
{xi[

Y
:FðxiÞFðxiþ1Þ,0

�[�
xj¼

xiþxk

2
[
Y

:Fðxi21ÞFðxkÞ,0^ f ðxiÞ

2 f ðxzÞ¼0;xi;xk;xz[
Y

;z¼ iþ1…k

�
ð2Þ

While the first part of the definition in Eq. (2) is due to sharp local inflections of f ðxÞ; the second

part is for local inflections identification where maxima or minima extend for several points.

Clearly, all points in :; except those that correspond to the ring centers, identify noisy data segments.

To estimate the noise-free signal, it is assumed that it exhibits a monotonously decreasing behavior

between earlywood and latewood ring centers and monotonously increasing behavior between latewood

and earlywood ring centers. Hence, for each pair of points xi; xiþ1 [ :; which verify the constrain

xi; xiþ1 � G; i.e. are not ring centers, the signal has to be reconstructed. For this purpose, it is assumed

that the signal is of type C1 with a maximum of one inflection in the noisy segment. We apply a

third-order polynomial f̂ðxÞ ¼ ax3 þ bx2 þ cx þ d approach to reconstruct the noise information.

Namely, the curve is reconstructed using an interpolation obtained with the minimization of the

following (note that this formulation corresponds to a C1 curve):

E ¼

3lwil
2

2lwil 1 0

3lwiþ2l
2

3lwiþ2l
2

1 0

lwil
3 lwil

2 lwil 1

lwiþ2l
3 lwiþ2l

2 lwiþ2l 1

2
6666664

3
7777775

a

b

c

d

2
6666664

3
77777752

df

dx
ðwiÞ

df

dx
ðwiþ2Þ

f ðwiÞ

f ðwiþ2Þ

2
6666666664

3
7777777775

���������������

���������������

2

;

wj ¼
xj21 þ xj

2
; j ¼ i; i þ 2

xi21; xi; xiþ1; xiþ2 [ :

8><
>:

ð3Þ

This procedure is shown in Fig. 2 and in Fig. 3 some approximation results are shown.

2.3. Local minimum distance-minimum cross-entropy ring identification

After signal reconstruction, the system proceeds with a segmentation phase, i.e. the system identifies

the transitions between earlywood and latewood rings. This is performed with a cross-entropy

similarity measure. Ideally, transitions between rings should induce rapid changes in the curve’s

slopes. However, given the low contrast that characterizes most of the wood samples, it is observed that

it is almost impossible to distinguish these transition regions from the ring’s interior regions.
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Therefore, the main idea at this stage for each segment comprehended between adjacent ring centers is to

partition the curve into two homogenous subsegments with maximum resemblance to the original curve.

Let I : Rþ £ Rþ ! Rþ and m1;m2 [ Rþ be the partition function such that

Iðy; TÞ W
m1 ( y , T

m2 ( y $ T

(
ð4Þ

and let S : Rþ £ RN
þ ! R be the similarity measure between f ðxÞ and Iðf ðxÞ; TÞ: There are several

possible definitions for S: For instance, in Brink (1989) the correlation between f ðxÞ and Iðf ðxÞ;TÞ is

used, while in Kapur, Sahoo, and Wong, 1985, Li and Lee, 1993, Pal and Bhandari, 1993, and Shoo,

Fig. 2. Approximation procedure. Original curve—continuous; approximated curve dotted.

Fig. 3. Estimation results of f̂ðxÞ:
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Soltani, Wong, and Chen, (1988), maximum entropy is applied. For this particular problem, it is

observed that the best similarity measure is the cross-entropy measure, i.e. let f ðxÞ [ ½ym; yM� and

Prðf ðxÞ ¼ yÞ be the probability of occurrence of f ðxÞ ¼ y for the segment under consideration:

SðT ;f ðxÞÞ¼
ðT

ym

Prðf ðxÞ¼yÞlog2

Prðf ðxÞ¼yÞ

Prðm1Þ

� �
dyþ

ðyM

T
Prðf ðxÞ¼yÞlog2

Prðf ðxÞ¼yÞ

Prðm2Þ

� �
dy ð5Þ

Given that latewood rings exhibit very small widths, subpixel resolution is highly important, since an

error of one pixel during width identification may lead to substantial biased measurements. To avoid

this, f ðxÞ and f̂ðxÞ are further linearly interpolated using a step of D1 (we use D1¼0:1)

between consecutive points. Using this approach, it can be shown that Eq. (5) can be rewritten by

SðTÞ¼
XT21

i¼1

HðiÞðymþDði20:5ÞÞlog2

HðiÞðymþDði20:5ÞÞ

m1

� �
þ
XN
i¼T

HðiÞðymþDði20:5ÞÞ

£log2

HðiÞðymþDði20:5ÞÞ

m2

� �
ð6Þ

where N¼ dyM2ym=De; D; number of discretization levels (we use D¼100)

m1¼

XT21

i¼1
HðiÞðymþDði20:5ÞÞXT21

i¼1
HðiÞ

; m2¼

XN

i¼T
HðiÞðymþDði20:5ÞÞXN

i¼T
HðiÞ

HðiÞ; number of points such that f ðxÞ2ym[�Dði21Þ;Di�

Using Eq. (6), the curve is partitioned such that Iðy; TpÞ; where

SðTp
; f ðxÞÞ ¼ minT[�ym;yM½{SðT ; f ðxÞÞ} ð7Þ

The transition between rings is selected at point xp; such that f ðxpÞ # Tp ^ f ðxp þ 1Þ . Tp; 1! Oþ:

Eq. (7) is applied with f ðxÞ and f̂ðxÞ: Let xp and x̂p; be the transition points obtained with f ðxÞ and f̂ðxÞ;
respectively, and let xm be the coordinates of the latewood ring center under consideration. The actual

transition point is obtained from:

x ¼
xp ( lxp 2 xml , lx̂p 2 xml

x̂p ( lxp 2 xml $ lx̂p 2 xml

(
ð8Þ

Usually, it is observed that Eq. (7) produces exact results when applied to f̂ðxÞ since f ðxÞ may lead to

identifications of Tp which correspond to local minimums that are more pronounced inside the brighter

rings (note that CCD noise increases quadratically with the intensity level (Healey & Kondepudy,

1991)). However, it is also observed that Eq. (3) may lead to estimations of f̂ðxÞ that are too smooth,

leading, therefore, to biased estimations of Tp: These smooth estimations will occur whenever the data

between centers exhibit large concentrations of noise. In these cases, it is observed that points w will be

chosen near the centers and, therefore, exhibit small slopes. Hence, to minimize these effects—given that

latewood rings are much smaller than earlywood rings—Eq. (8) is applied.
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3. Results and conclusions

An automatic system for tree growing rings detection and measurement is introduced. First, ring

centers are identified using a scale-space representation of the image. The purposed algorithm is able to

identify each optimal local scale autonomously, i.e. it enables the extraction of the meaningful features

in the image (in this case, the ring centers), avoiding false centers detection, which otherwise could occur

due to noise interference. After ring center identification, the system proceeds with ring border

computation, using a minimum distance-minimum cross-entropy principle. This is a two-step procedure:

(i) first, the image along the radial analysis direction is reconstructed using a ‘low-pass filtering’

approach with cubic polynomials; and (ii) a maximal resemblance measure, computed upon

minimum cross-entropy, is applied to map gray levels into two classes. This procedure has proven to

be very robust.

Theoretically, the developed method does not require any user intervention, except for the definition

of the radial direction for ring analysis. However, due to the computational load imposed by the optimal

scale selection procedure described in Section 2.1, the operator should specify the range of admissible

scales by providing a minimum and a maximum limit for the search interval. These are the only

parameters required by the system. It is observed that their definition can be provided once and used for

all subsequent inspections. The only reason for avoiding very large search interval specification is due to

the added computational load.

The described algorithms have been integrated in an automatic visual inspection system. Fig. 4 shows

the results of the analysis of some Pinus pinaster (pine wood) samples and in Fig. 5, the result obtained

in the analysis of a cross-section disc sample is depicted. As can be observed, the method correctly

detects the tree ring boundaries without user intervention, even for images with very low contrast and

very narrow rings, as in Fig. 4c, and is able to detect false rings, as can be observed in Fig. 5.

This system is currently being used in several national sylviculture research projects under

development. In comparison with traditional hand-performed inspections, the proposed system enables

much faster and more accurate sample analysis. Namely, it is usually observed that hand-performed

inspections take up to two hours per sample, while with this new approach, an inspection can be

Fig. 4. Results obtained by the outline method for some Pinus pinaster samples.
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conducted in less than two minutes if a 1 GHz Pentium III computer is applied. As for

accuracy, results reported with hand-made measurements have less than 1=3 mm; while this system is

able to achieve much better accuracies, which, nevertheless, are dependant on the applied zoom factor of

the lens.
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