
Appl Categor Struct (2016) 24:733–742
DOI 10.1007/s10485-016-9458-7

On Exponentiable Morphisms in Classical Algebra

Maria Manuel Clementino1 ·Dirk Hofmann2 ·
George Janelidze3

Received: 12 November 2015 / Accepted: 2 February 2016 / Published online: 30 July 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We study exponentiability of homomorphisms in varieties of universal algebras
close to classical ones. After describing an “almost folklore” general result, we present
a purely algebraic proof of “étale implies exponentiable”, alternative to the topologically
motivated proof given in one of our previous papers, in a different context. We prove that
only isomorphisms are exponentiable homomorphisms in ideal determined varieties and
extend this to ideal determined categories. Finally, we give a complete characterization of
exponentiable homomorphisms of semimodules over semirings.
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1 Introduction

Recall that a morphism f : A → B in a category C is said to be exponentiable if the pull-
back functor f ∗ : (C ↓ B) → (C ↓ A) has a right adjoint. This paper is one of many
that attempt to characterize such morphisms in various concrete situations. The categories
we are interested in are varieties of universal algebras, which, being close to those of classi-
cal algebra, have few exponentiable morphisms. More specifically, the four sections of this
paper are devoted to the following four questions respectively:

Question 1.1 What can we say about exponentiability in a variety of universal algebras
in general? Since P. T. Johnstone [18] says, after giving an object-wise characterization of
cartesian closed varieties, “...the argument of the above proof may be used to characterize
the exponentiable objects of T -Alg...” one might expect that we aim at a syntactical char-
acterization of exponentiable homomorphisms of algebras. We do not go that far, but only
make preliminary remarks, the most important of which is that the exponentiability of f

reduces to preservation of finite coproducts by the functor f ∗ – in fact even just to preser-
vation of finite coproducts of objects in (C ↓ B) with free domains. This “almost folklore”
result is a natural counterpart of Proposition 3.1 in [18], to whose proof the citation above
refers.

Question 1.2 After studying, by embedding a variety of algebras in the corresponding cat-
egory of lax algebras, the exponentiability of the so-called étale homomorphisms (Theorem
5.5 of [4]), one can ask: What is the purely algebraic version of the implication

“étale =⇒ exponentiable”? (1.1)

Surprisingly, the above-mentioned reduction allows us to avoid the advanced machinery of
lax algebras used in [4] and prove the implication (1.1) for algebras over any finitary taut
monad.

Question 1.3 What are ‘sufficiently classical’ categories of algebras in which only isomor-
phisms are exponentiable? We knew for a long time that all semi-abelian categories were
such, which includes all varieties of groups with multiple operators in the sense of P. J.
Higgins [11] (hence the categories of groups, rings, modules and various types of algebras
over rings, crossed modules, etc.). But now we prove that the same is true for all ideal
determined categories and in particular for pointed ideal determined varieties of algebras.

Question 1.4 What exactly are exponentiable morphisms of semimodules? This question
is answered fully.

Let us also mention an ‘unwritten section’: It would be devoted to the case where all oper-
ations in the given variety are either 0-ary or unary – however, it would be an easy exercise
using the fact that the forgetful functor from such a variety to a suitable category of the
form (C ↓ Sets) preserves coproducts, and the reduction result mentioned in Question 1.1.

Throughout this paper we shall use the following notation:
Unless stated otherwise,Cwill denote a variety of (finitary) universal algebras, equipped

with the free-forgetful adjunction

(F, U, η, ε) : Sets → C
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whose monad will be denoted by T .

2 Exponentiability and Coproducts

We begin with a theorem that combines rather trivial implications with a special case of
a ‘folklore’ theorem (another special case was used, e.g., in [1], but we could not find a
convenient general reference):

Theorem 2.1 The following conditions are equivalent for a morphism f : A → B in C:

(a) f : A → B is exponentiable;
(b) the pullback functor f ∗ : (C ↓ B) → (C ↓ A) preserves all small colimits;
(c) the functor f ∗ preserves the initial object and binary coproducts;
(d) the functor f ∗ preserves finite coproducts of objects whose underlying objects in C

are free algebras on one-element sets;
(e) for every set S and every map g : S → U(B), the diagram

(2.1)

of canonical morphisms, where pS(a, t) = a and qS(a, t) = t for (a, t) ∈ A×BF({s})
(assuming that F({s}) is a subalgebra of F(S)), is a pullback;

(f) the same as (e) but assuming that S is finite.

Proof The implications (a) =⇒ (b), (b) =⇒ (c), (c) =⇒ (d), and (e) =⇒ (f) are trivial.
(b) =⇒ (a) follows from the Special Adjoint Functor Theorem (see e.g. Theorem 2 in
[20, Chapter V, Section 8]) and the fact that the category C is co-well-powered. (c) =⇒ (b)
is also easy since:

• (b) is true for C = Sets;
• since the forgetful functor C → Sets preserves reflexive coequalizers, this implies that

f ∗ preserves reflexive coequalizers;
• colimits can be calculated via coproducts and reflexive coequalizers, and coproducts

can be calculated via filtered colimits and finite coproducts;
• pullback functors of algebraic categories always preserve filtered colimits since those

are calculated as in Sets;
• preservation of finite coproducts is equivalent to preservation of binary coproducts and

the empty coproduct.

(d) =⇒ (c) follows from the fact that pullback functors between algebraic categories pre-
serve filtered colimits and reflexive coequalizers. (d) ⇐⇒ (f) follows from the fact that
diagram (2.1) can be identified with the diagram
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where g′(s) = g(s) for s ∈ S, and qS(a, t) = t for (a, t) ∈ A ×B F({s}). Similarly, (e)
is equivalent to the infinite version of (d) (that it, to the version of (d) where the finiteness
assumption is dropped), while that infinite version of (d) trivially follows from (b).

Corollary 2.2 If C has no 0-ary operations, then f : A → B is exponentiable if and only
if the functor f ∗ preserves binary coproducts.

Consider a commutative diagram in C of the form

(2.2)

where the p’s and q’s are the appropriate pullback projections. To require the preservation

of binary coproducts by f ∗ is to require that the rectangle
1

2
is always a pullback, while

the rectangle 2 is a special case of it. Therefore we have:

Proposition 2.3 The functor f ∗ preserves binary coproducts if and only if the rectangles
1 and 2 in (2.2) are pullbacks for all h : X → B and k : X → B.

3 The Taut Monad Case

Let us recall from [4]:

Definitions 3.1

(1) T is taut (in the sense of E. Manes [21]) if it preserves pullbacks of arbitrary maps
along injections, or, equivalently, F preserves such pullbacks;

(2) f : A → B is a discrete fibration if the diagram

is a pullback;
(3) f : A → B is étale if it is a pullback stable discrete fibration.

Theorem 3.3 below is a finitary-taut counterpart of the first part of Theorem 5.5 of [4].
Proving it, we will use the following obvious lemma:

Lemma 3.2 If f : A → B is a discrete fibration, and g : S → U(B) any map, then the
morphism

εA × 1F(S) : FU(A) ×FU(B) F (S) → A ×B F(S)
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is an isomorphism.

Theorem 3.3 If T is a (finitary) taut monad, and f : A → B is étale, then f : A → B is
exponentiable.

Proof We can assume that the monad T is non-trivial (see Remark 3.4 below). As follows
from Theorem 2.1(a) ⇐⇒ (e), it suffices to show that

∑
s∈S(A×B F({s})) and A×B F(S)

are canonically isomorphic to each other for every map g : S → U(B). Indeed, there are
canonical isomorphisms

∑

s∈S

(A ×B F({s}))
(1)∼=

∑

s∈S

(FU(A) ×FU(B) F ({s}))
(2)∼=

∑

s∈S

F (U(A) ×U(B) {s})

(3)∼= F(U(A) ×U(B) S)
(4)∼= F(U(A ×B F(S)) ×UF(S) S)

(5)∼= FU(A ×B F(S)) ×FUF(S) F (S)

(6)∼= (A ×B F(S)) ×F(S) F (S)
(7)∼= A ×B F(S).

where, assuming that S is non-empty, the reasons for these isomorphisms to hold are:

(1) Lemma 3.2 (applied to the composite {s} → S → U(B) instead of g);
(2) T is taut and the map {s} → U(B) is injective;
(3) F being a left adjoint preserves coproducts;
(4) U being a right adjoint preserves pullbacks;
(5) T is taut and ηS : S → UF(S) is injective;
(6) Lemma 3.2 (applied to the projectionA×B F(S) → F(S) instead of f ; that projection

is a discrete fibration since f is étale);
(7) is obvious.

When S is empty, the isomorphisms (1) and (2) are trivial, while the other isomorphisms
hold for the same reasons as for non-empty S.

Remark 3.4 When T is any of the two trivial monads, only one of which is taut, every
morphism of T -algebras is trivially exponentiable.

4 Only Isomorphisms are Exponentiable in Ideal Determined Varieties

As shown by H. P. Gumm and A. Ursini [10] a variety of universal algebras is ideal deter-
mined (which is the same BIT in the sense A. Ursini [22, 23]) if and only if it is subtractive
(this term was later introduced in [24]) and 0-regular in the sense of K. Fichtner [7]. We
recall the latter two terms:

Definitions 4.1

(1) C is subtractive when it admits a constant term 0 and a binary term s satisfying the
identities

s(x, 0) = x, s(x, x) = 0; (4.1)

(2) C is 0-regular, where 0 is a fixed constant term in the theory of C, when every
congruence on every algebra A in C is completely determined by (A and) its class
of 0.
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In this section we will, however, consider only the case of pointed C, where a constant 0
is not only fixed, but it forms the unique 1-element subalgebra in any algebra. As mentioned
in [14], it is obvious that a pointed variety is 0-regular if only if every regular epimorphism
in it is normal (=the cokernel of its kernel); accordingly we shall call such varieties normal,
which also agrees with Z. Janelidze [16], who calls a pointed regular category normal if its
regular epimorphisms are normal. A normal variety can equivalently be defined as a pointed
variety in which every morphism with zero kernel is a monomorphism.

Theorem 4.2 Let C be a pointed variety and let f : A → B be exponentiable in C. Then:

(a) f has zero kernel;
(b) if C is normal, then f is a monomorphism;
(c) if C is subtractive, then f is a regular epimorphism (=surjective);
(d) if C is ideal determined, then f is an isomorphism.

Proof (a) follows from the fact that f ∗ must preserve initial object, and (b) follows from
(a). (d) follows from (b) and (c), and so we only need to prove (c). For that, consider the
square 2 in diagram (2.2), which must be a pullback diagram. In that diagram, for each
b ∈ B, we have

f (0) = 0 = s(b, b) = [1B, 1B ](s(ι1(b), ι2(b))),

where s is as in (4.1) and ι1 and ι2 are the coproduct injections B → B + B. Therefore
there exists (a unique) t ∈ A + A with [1A, 1A](t) = 0 and (f + f )(t) = s(ι1(b), ι2(b)).
Using this element t and denoting the zero endomorphisms of A and of B by 0A and 0B ,
respectively, we calculate

b = s(b, 0) = [1B, 0B ](s(ι1(b), ι2(b))) = [1B, 0B ](f + f )(t) = f [1A, 0A](t),

which shows that b belongs to the image of f . That is, f is surjective, as desired.

Remarks 4.3 Let us assume that C is an arbitrary pointed category with finite limits and
finite coproducts instead of being just a variety of algebras. Theorem 4.2 extends to this
categorical context as follows. If f : A → B is exponentiable, or, more generally, f ∗
preserves finite coproducts, then:

(a) f has zero kernel.
(b) If all morphisms in C with zero kernels are monomorphisms, then f is a monomor-

phism. In particular, this is the case when C is normal in the sense of [16].
(c) If C is subtractive in the sense of [15] and regular, then f is a regular epimorphism.

In order to extend our proof above to this context it is convenient to use the following
result due to D. Bourn and Z. Janelidze [3, Theorem 5.1] (implicitly also present in
Section 5 of [2]): a pointed regular category is subtractive if and only if, for every
object A in it, the composite

(4.2)
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is a regular epimorphism. Indeed, consider the commutative diagram

Since the square 2 of diagram (2.2) must be a pullback, f ′ is an isomorphism. Then,
since, by Theorem 5.1 of [3], the vertical composites are regular epimorphisms, it
follows that so is f .

(d) When C is ideal determined in the sense of [13], it is subtractive and normal, which
now implies f is an isomorphism. The normality is in fact a part of the definition
of “ideal determined” while subtractivity is a consequence of it, as follows from the
results of [8]. In particular, f is an isomorphism whenever C is semi-abelian in the
sense of [12]; this fact, proved a long time ago in a preliminary version of the present
paper, was mentioned by J. R. A. Gray [9] with a reference to [4], which we thought
then would include the present paper.

5 Exponentiability of Semimodule Homomorphisms

Let us use now an enriched-categorical context, where C is supposed to be a category with
finite limits enriched in the category of commutative monoids.

When C is a variety of algebras this forces C to be the variety of S-semimodules for
some semiring S (with 1). This fact is well known and usually considered as “folklore”, but
it follows from the results of B. Csákány [6] and was clearly formulated and proved by J. S.
Johnson and E. G. Manes [17]; we thank Stephen Lack for giving us these references.

That is, the varieties of algebras to which the results of this section apply are exactly
the varieties of semimodules. On the other hand, having finite limits in C, to say that C is
enriched in the category of commutative monoids is the same as to say that C has a zero
object and, for every A and B in C, the canonical morphism

[
1 0
0 1

]

: A + B → A × B (5.1)

is an isomorphism (this classical result goes back to S. Mac Lane [19]).
The morphism (5.1) being always an isomorphism immediately makes the square 1 in

diagram (2.2) a pullback, and so in this case we obtain the following simplified version of
Proposition 2.3:

Proposition 5.1 The functor f ∗ preserves binary coproducts if and only if the diagram

(5.2)
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in which +A = [1A, 1A]
[
1 0
0 1

]−1

is the ‘internal addition’ on A and +B is defined

similarly, is a pullback.

We are also interested in the preservation of the initial object, but Corollary 5.2 below
makes it trivial.

The internal addition +A involved in (5.2), together with the zero morphism 0A : A →
A, makes A an internal commutative monoid, and Proposition 5.1 gives

Corollary 5.2 If the functor f ∗ preserves binary coproducts, then f is a monomorphism.
In particular f has zero kernel, which implies that f ∗ preserves the initial object.

Proof Let (A ×B A, π1, π2) be the kernel pair of f ; to prove that f is a monomorphism is
to prove that π1 = π2, or, equivalently, that

(〈π1, π2〉 : A ×B A → A × A) = (〈π2, π1〉 : A ×B A → A × A).

We have
+A〈π1, π2〉 = π1 + π2 = π2 + π1 = +A〈π2, π1〉,

(f × f )〈π1, π2〉 = 〈f π1, f π2〉 = 〈f π2, f π1〉 = (f × f )〈π2, π1〉,
which implies 〈π1, π2〉 = 〈π2, π1〉 since diagram (5.2) is a pullback.

Now we are ready to give a complete characterization of exponentiable morphisms of
semimodules:

Theorem 5.3 Let S be a semiring and C be the category of S-semimodules. The conditions
(a)–(g) below on a morphism f : A → B in C satisfy the implications

(a) ⇐⇒ (b) ⇐⇒ (c) ⇐⇒ (d) ⇐= (e) ⇐⇒ (f ) ⇐⇒ (g).

Moreover, if S is a quotient semiring of the semiring of natural numbers, then all these
conditions are equivalent to each other.

(a) f is exponentiable;
(b) f ∗ preserves binary coproducts;
(c) diagram (5.2) is a pullback;
(d) f is injective and, whenever f (a) = b1 + b2 in B, there exist (uniquely determined)

a1 and a2 in A with f (a1) = b1, f (a2) = b2, and a = a1 + a2.
(e) f is injective and, whenever f (a) = s1b1 + · · · + snbn in B for some natural number

n and elements s1, . . . , sn of S, there exist (uniquely determined) a1, . . . , an in A with

f (a1) = b1, . . . , f (an) = bn, anda = s1a1 + · · · + snan;
(f) f is a discrete fibration;
(g) f is étale.

Proof (a) ⇐⇒ (b) follows from Theorem 2.1(a) ⇐⇒ (c) and Corollary 5.2. (b) ⇐⇒ (c) is
nothing but (a special case of) Proposition 5.1. (c) ⇐⇒ (d), (e) =⇒ (d), (e) ⇐⇒ (f), and
(g) =⇒ (f) are obvious. The remaining implication (f) =⇒ (g) follows from (e) ⇐⇒ (f)
and the fact that the class of maps satisfying (e) is (easily seen to be) pullback stable. When
S is a quotient semiring of the semiring of natural numbers, we can assume that s1, . . . , sn
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in (e) are natural numbers and prove (d) =⇒ (e) by induction on n, having in mind that f

is injective.

Remarks 5.4

(a) Every étale morphism of S-semimodules is exponentiable. Concerning this fact we can
now say:

• It follows from Theorem 5.5 of [4] if we assume that the free S-semimodule
monad satisfies a version of Beck-Chevalley Condition (see [4] for details), which
is analyzed in terms of S in [5].

• It follows from our Theorem 3.3 under a much weaker assumption that the free
S-semimodule monad it taut; as mentioned in [5], that monad is taut if and only if
no non-zero element in S has an additive inverse.

• It is implication (g) =⇒ (a) of our Theorem 5.3, which is proved above under no
additional assumptions at all.

However, the three proofs are surprisingly different from each other.
(b) Among the cases when S is a quotient semiring of the semiring of natural numbers (as

in the second assertion of Theorem 5.3), let us mention the following three:

• S is the semiring of natural numbers; in this caseC is the category of commutative
monoids.

• S = {0, 1} with 1 + 1 = 1; in this case C is the category of semilattices.
• S is a ring; this makesC an abelian category, and implies that any of the conditions

(a)–(g) of Theorem 5.3 holds if and only if f is an isomorphism – however, the
fact that all exponentiable morphisms in an abelian category are isomorphisms
also follows from Remark 4.3(d) of course.

(c) To see that the implication (d) =⇒ (e) in Theorem 5.3 does not hold in general,
consider the following simple example. Let S be the monoid semiring N[M] over the
semiring N of natural numbers with M = {1, x} and x2 = x. Let B = N[M] as N[M]-
semimodule, A = xB, and let f : A → B be the inclusion map. Then f obviously
satisfies (d), but it does not satisfy (e) since x = x · 1 in A while there is no a in A

with f (a) = 1.
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