
ARTICLE IN PRESS
0168-9002/$ - se

doi:10.1016/j.ni

�Correspond
E-mail addr

1Partially fun

Foundation for
2Partially fun

Berlin, German
Nuclear Instruments and Methods in Physics Research A 559 (2006) 53–56

www.elsevier.com/locate/nima
Metadata services on the Grid

Nuno Santosa,b,�,1, Birger Koblitza,2

aCERN, Geneva, Switzerland
bDepartment of Computer Science, University of Coimbra, Portugal

Available online 6 December 2005
Abstract

We present an interface for metadata access on the Grid, designed to support flexible schema management, efficient retrieval of large

result sets and to allow a broad range of implementations. We also describe an implementation of this interface, which supports a wide

range of storage back-ends and two access protocols: SOAP and a TCP-streaming-based protocol. This interface and implementation

have been selected as the official metadata components of the gLite-EGEE middleware. Finally, we present the results of extensive

performance studies, where the two front-ends are compared to evaluate the cost of using SOAP as metadata access protocol.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Data Grid; Metadata; SOAP
1. Introduction

Data Grids often contain millions of files spread over
several storage sites. To find the files of interest, users and
applications need an efficient mechanism to discover and
query information about their contents. This is provided by
associating descriptive attributes (metadata) to files and by
exposing this information in catalogues, which can then be
queried to locate files based on the value of their attributes [1].

A metadata catalogue can also be regarded as a
simplified database for jobs running on the Grid, which
often need to retrieve or store non-file-related metadata too
small or too volatile to be stored in data files. If this
information can be modelled as metadata (i.e., in the form
of (key, value) pairs with type information), then a
metadata catalogue is often a good alternative to using a
relational DB, offering a simplified interface and greater
integration with other Grid services (e.g., GSI security).

A metadata service for use in this environment should
satisfy some specific requirements. It must expose a
e front matter r 2005 Elsevier B.V. All rights reserved.

ma.2005.11.104

ing author. CERN, Geneva, Switzerland.

ess: Nuno.Santos@cern.ch (N. Santos).

ded by Grant SFRH/BD/17276/2004 of the Portuguese

Science and Technology (FCT).

ded by Bundesministerium für Bildung und Forschung,

y.
complete but simple interface, so non-technical users can
easily use it. It should be flexible and support dynamic
schemas, since there is no single schema that will serve all
application-domains. The service must also allow metadata
to be structured as an hierarchy of logical collections, so
that related metadata can be grouped together and isolated
from other metadata. To deal with the large number of
entries (several millions), it must be designed with
scalability in mind. The support for collections and
hierarchies is a good first step in this direction, with
replication being the next logical step. Finally, security is
required to provide different access levels to different users.
In this paper we describe an interface for Metadata

Services3 that we have developed based on our experience
with testing a number of custom metadata services used by
several LHC collaborations at CERN. Although these
services have similar goals and are built around similar
concepts, they have incompatible interfaces and static
schemas designed for a specific application-domain, limit-
ing their reuse in other domains. Our interface generalises
the functionality of these Metadata Services in a coherent
and generic interface, suitable for most application-
domain.
3This interface was initially proposed by the ARDA group and then

evolved jointly with the gLite (EGEE) Data Management team. It has

since then become the official EGEE metadata interface.

www.elsevier.com/locate/nima

ARTICLE IN PRESS
N. Santos, B. Koblitz / Nuclear Instruments and Methods in Physics Research A 559 (2006) 53–5654
The remainder of this paper is organised as follows.
Section 2 describes our interface, Section 3 presents our
implementation of the interface, Section 4 presents the
results of a benchmark study of this implementation and
Section 5 presents the related work.

2. The metadata interface

In order to create an interface generic enough to be used
by many types of Grid applications, we had not only to
design a generic set of operations for users, but also to
allow a broad range of different implementations. No
single implementation is likely to satisfy the metadata
needs of the whole range of Grid applications, which vary
significantly in their size and access patterns. Having this in
mind, we designed our interface to hide as many
implementation details as possible, allowing those deci-
sions to be taken by implementors in the way that better
suits the needs of the target applications. In the following
discussion we will point out the main aspects where
implementations might differentiate themselves.

The basic concepts of the metadata interface4 are entries,
attributes and schemas. An entry is the name of the data
item or resource being described, an attribute is a
(key, value) pair with type information, and a schema
is a logical group of attributes. Entries are associated with
one or more schemas and inherit the attributes defined in
those schemas. This is the only way of associating
attributes to an entry, it is not possible to have attributes
associated directly with entries. The interface defines
operations to add and remove entries from a schema, and
to list the schemas to which an entry belongs. Also, entries
cannot exist on their own, they must be created with at
least one associated schema.

Schemas are defined dynamically by the user. There are
operations to create and delete schemas, as well as to add
and remove attributes from a schema. Since the schemas
are dynamic, we provide methods to discover their
attributes at runtime. Schemas are the basic blocks used
to structure and organise metadata as logical groups. But
much of the details of schema management are left open to
implementations. For instance, implementations may
either allow an entry to belong to multiple schemas or
only to a single schema. Also, they may either organise the
schemas in a flat namespace or in a hierarchy.

To design the query operations we considered several
issues, starting by the query language. Since most
implementations will use relational databases as back-
ends, an SQL-based language was a natural option, with
advantages both for users, most of which are familiar with
SQL, and for implementors, who can delegate most of the
query processing to the RDMS engine. Nevertheless, the
Metadata Interface does not restrict the type of storage
back-end and other implementations may not use rela-
4The complete specification of the interface is at https://edms.

cern.ch/file/573725/1.2.
tional databases. For instance, an implementation based
on an XML datastore would probably use XQuery as
query language. Since, no single query language is suitable
for all possible implementations, we decided not to specify
any at the interface, leaving this as an implementation
detail. For the interface, queries are simply two text strings:
the query itself and the name of query language being used.
The second issue is how to deal with large result sets. A

naive implementation will read from the back-end all the
results of a query in a single operation and send them to the
client in one message. This does not scale for large result
sets or for many clients due to the memory requirements.
To address this issue, the interface uses iterators to retrieve
responses in small chunks. This is implemented by the
methods query() (initiates a query and retrieves the first
bunch of results), nextQuery() (gets the next chunk of
results) and abortQuery() (cancels a query). Queries are
identified by an opaque token, obtained in the initial
query() invocation, that must then be provided to
nextQuery() and abort() methods. Implementations
are free to choose either to use a stateful or stateless model
to implement these methods. A stateful implementation
backed by a relational database can use a database cursor
to read the results from the back-end. This is efficient and
ensures consistency of the results, since the query is
executed only once, but requires the server to keep state
between invocations from the client, increasing its com-
plexity. A stateless implementation can use the LIMIT
clause of SQL to return a specific range of results and use
the opaque token sent to the client to store the current
position in the results. This option is simpler to implement,
but is less efficient (multiple queries) and has consistency
problems since the database may be updated between two
invocations from the client, changing the result set.

3. A prototype implementation

Together with the interface we have developed a
prototype implementation called ARDA Metadata Grid
Application (AMGA),5 to validate the interface and receive
feedback from users.
The AMGA implementation uses a file-system model for

structuring metadata. Schemas play the role of directories:
they may contain entries and other schemas, allowing users
to create an hierarchical structure. Our experience with
users shows this to have been a good option, since many of
them are making heavy use of hierarchies for better
organising their metadata. From now on we will refer to
schemas as directories, since this better reflects the model of
AMGA.
Access control is on a per directory basis, with all entries

in a directory sharing the same ACL list. Having a per-item
ACL would impose a large performance penalty for little
added value. The implementation also supports groups of
5The AMGA implementation was recently chosen to be the official

metadata catalogue of the gLite middleware.

https://edms.cern.ch/file/573725/1.2
https://edms.cern.ch/file/573725/1.2

ARTICLE IN PRESS
N. Santos, B. Koblitz / Nuclear Instruments and Methods in Physics Research A 559 (2006) 53–56 55
users. Other security features are authentication based on
certificates, grid-certificates or password, and secure con-
nections using SSL.

Entries can only be in a single directory. This simplifies
access control, since allowing an entry to be in multiple
directories could result in conflicts between the possibly
contradictory security policies of the different directories.

AMGA is designed to use a relational database as
storage. Each directory is a table, entries are rows and
attributes are columns. Attributes are added or removed
from directories by adding or removing columns from the
directory’s table. A master table keeps the index of all
directories, together with some per-directory properties
(e.g., ACLs). This structure is flexible and efficient. Most
operations require only two accesses to the database: one
to the index table and another to the table of the directory.

The prototype was implemented as a multi-threaded
Cþþ server (Fig. 1). The back-end is modular, supporting
several storage systems by way of modules. Most of storage
modules we have developed are for relational databases,
including PostgreSQL, Oracle, MySQL and SQLLite. We
also created a stand-alone implementation that stores the
metadata directly on the filesystem.

For operations that return large result sets, the server
uses a stateful model. When the user sends a query()
request, the server creates a cursor on the database to read
the result set. It then sends the partial results to the client
asynchronously: when the client is processing a chunk of
the results, the server is already reading the next chunk into
a local buffer, so it can answer immediately to the next
request. Since database connections are kept open between
calls from the client, there is the risk of running out of
resources due to buggy or malicious clients. The server
implements two mechanisms to prevent this situation: it
kills sessions that are left unused for a long time and limits
the maximum number of sessions a single user can open. A
stateless server would not require these mechanisms, but it
would have significantly worse performance (queries have
to be repeated for each chunk of results sent to the client)
and would also require complex mechanisms to ensure that
results are kept consistent between calls of the same query.

The front-end supports two access protocols: SOAP and
TCP-Streaming (TCP-S). The SOAP front-end is based on
Metadata Server

MD
Server

SOAP

TCP
Streaming

Postgre
SQL

Oracle

SQLite

Client

Client

Fig. 1. Main components of the AMGA implementation.
the gSoap toolkit [2]. The TCP-S front-end is based on a
text protocol similar to SMTP or TELNET, where
commands and answers are sent as plain text. Since this
is a stream-oriented protocol, it is not possible to
implement the interface as it is, since it is designed for a
message-based protocol. Nevertheless, the commands
supported by the TCP-S protocol mirror closely the
operations defined on the interface. The main difference
is in how large results are sent to the client, where we take
advantage of the stream-oriented nature of the protocol, by
sending the results back in a single stream of bytes. This is
efficient, since it does not require several round-trips
between the client and the server. For the TCP-S protocol,
we have created an iterative command line interface to the
server and client libraries in Cþþ, Java, Python, Perl and
Ruby.
Several applications have used or are using the AMGA

implementation, either for evaluation or production. The
LHCb collaboration has been evaluating the AMGA
implementation using their bookkeeping information (20
million entries, 15GB). They have uncovered many bugs
and some limitations on the initial versions, which have
since then been fixed. Another user with very different
access patterns is Ganga [3], an user interface to submit
jobs to the Grid being developed by LHCb and ATLAS.
Ganga uses the AMGA implementation to store metadata
describing the status of the jobs, consisting in a small but
highly dynamic set of metadata.

4. Benchmark study

In this section, we present the results of a benchmark
study comparing the SOAP and the TCP-S front-ends.6

The tests were performed on two Linux desktop computers
connected via switched fast Ethernet with a network
latency of � 0:1ms.7 The metadata server was pre-loaded
with 100 collections, each containing 1000 entries. Each
entry has 60 attributes, amounting to about 700 bytes of
data.
Fig. 2 presents the results of reading 1000 entries from

the server using two access methods: in single entries are
read one at time, while in bulk they are read using a single
query. The bulk method shows the benefits of the iterators
defined in the interface, that allows large responses to be
read in a single query. Results were taken for different
numbers of concurrent clients. Each client was reading
from its own directory.
Reading in bulk is a factor of 10 faster than reading

single entries for both protocols, showing the importance
6Due to space limitations, we can only present part of the results. Please

consult the ACAT’05 presentation at http://www-zeuthen.

desy.de/acat05/talks/Santos.Nuno.1/Metadata.ppt for

the complete study.
7The client PC was a dual 2:4GHz Xeon with 1GB RAM. The server a

dual Pentium III (800MHz, 0:5GB RAM). The more powerful client was

used to simulate multiple clients. In all tests with multiple clients it was

made sure that the client PC was not limiting performance.

http://www-zeuthen.desy.de/acat05/talks/Santos.Nuno.1/Metadata.ppt
http://www-zeuthen.desy.de/acat05/talks/Santos.Nuno.1/Metadata.ppt

ARTICLE IN PRESS

100

1000

1 10 100

A
ve

ra
ge

 th
ro

ug
hp

ut
 [e

nt
rie

s/
se

c]

clients

TCP-S, Single
TCP-S, Bulk

gSOAP, Single
gSOAP, Bulk

Fig. 2. Throughput of the metadata service while reading 1000 attributes

using single and bulk operations.

N. Santos, B. Koblitz / Nuclear Instruments and Methods in Physics Research A 559 (2006) 53–5656
of minimising the number of interactions with the server.
Comparing the two protocols, we can see that SOAP is at
least 2 times slower than TCP-S: 1000 queries per second
for TCP-S against 500 for SOAP. In the other tests we
performed the overhead of SOAP was even greater, varying
between 2 and 5 times.

gSoap is considered one of the fastest SOAP toolkits [4],
but most Grid applications being developed nowadays are
written in Java and therefore use Apache Axis. We have
evaluated the relative performance of these toolkits by
comparing clients implemented in gSoap (2.7.0f) and Axis
(1.2RC3). We have also tested a client in Python using ZSI
(1.6.0). The test consisted in making 1000 null requests.
gSoap took 4 s to complete the test, Axis 11 and ZSI 25.
All these tests were made using the gSoap-based server. If
we had also changed the toolkit on the server to match the
one in the client, the results for Axis and ZSI would be even
worse. These results show clearly that SOAP toolkits vary
widely in performance. We have performed the same test
with the TCP-S protocol using clients written in Cþþ,
Java and Python, and found no significant difference in
performance (all clients took between 3 and 4 s), showing
that the programming language by itself is not the limiting
factor.

5. Related work

A metadata service with similar goals is the Metadata
Catalog Service [1,5]. The model and structure used for
metadata is similar to our own, supporting flexible schemas
and an hierarchical organisation. The authors have
provided two implementations, one based on Web Services
and the other on OGSA-DAI [6] Grid Services. Our work
differs in several aspects. First, our metadata interface was
designed to give as much freedom as possible to
implementations, so they can adapt to particular segments
of applications. Another difference is that we address
explicitly the problem of returning a large result set over
stateless protocols like SOAP, by using iterators and
sessions. There are also some important differences in
our implementation. To allow easy deployment in the
available infrastructure of any Grid site, it is designed to be
DB independent without requiring external middleware
like OGSA-DAI. And for applications with high-perfor-
mance requirements, it supports an efficient TCP-s proto-
col, which we have shown to be 2–5 times faster than the
alternative SOAP protocol.
6. Conclusions

We have presented the EGEE interface for metadata
access on the Grid, which is designed to cover a broad
range of applications. It supports dynamic schemas, an
iterator pattern to retrieve large result sets using message-
oriented protocols and a high level of abstraction that gives
developers freedom to explore different types of imple-
mentations. We have also described our implementation,
which was chosen as the official gLite-EGEE Metadata
Catalogue. Its main features are the support for different
relational databases as storage back-end and the support
for two access protocols: SOAP and a custom-designed
protocol based on TCP-s. Finally, we have presented the
results of a performance study comparing these two
protocols, where the TCP-s-based protocol is shown to
be 2–5 times faster than SOAP.
Acknowledgements

This work was performed within the ARDA project and
the authors would like to thank in particular V. Pose
(Dubna, Russia) for his intensive studies and testing of the
streaming protocol. Also we would like to thank the
GridPP and EGEE-gLite teams for their collaboration on
metadata ideas.
References

[1] E. Deelman, et al., 16th International Conference on Scientific and

Statistical Database Management (SSDBM’04), 2004.

[2] R.A.V. Engelen, K.A. Gallivan, CCGRID ’02: Proceedings of the

Second IEEE/ACM International Symposium on Cluster Computing

and the Grid, Washington, DC, USA, 2002, IEEE Computer Society,

Silver Spring, MD, p. 128.

[3] Ganga—Gaudi/Athena and Grid Alliance, hhttp://cern.ch/ganga/i.

[4] M. Govindaraju, et al., GRID ’04: Proceedings of the Fifth IEEE/

ACM International Workshop on Grid Computing (GRID’04),

Washington, DC, USA, 2004, IEEE Computer Society, Silver Spring,

MD, pp. 365–372.

[5] G. Singh, et al., SC ’03: Proceedings of the 2003 ACM/IEEE

Conference on Supercomputing, Washington, DC, USA, 2003, IEEE

Computer Society, Silver Spring, MD.

[6] M. Antonioletti et al., Concurrency and Computation: Practice and

Experience, 17 (2005) 357.

http://cern.ch/ganga/

	Metadata services on the Grid
	Introduction
	The metadata interface
	A prototype implementation
	Benchmark study
	Related work
	Conclusions
	Acknowledgements
	References

