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Abstract. A new variational framework for the Liouville equation is presented. The Vlasov 
equation is obtained from the complete factorisation of the trial distribution function, 
while the linearised Vlasov equation arises from the additional assumption of small 
oscillations around an equilibrium state. It is stressed that the definition of this state does 
not necessarily require minimisation of the free energy. The classical energy-weighted sum 
rule is derived. 

1. Introduction 

The Vlasov equation, since its initial formulation in 1938 [ l ] ,  has been extensively 
applied in plasma physics. Recently it has been introduced into nuclear physics, after 
the recognition that the main features of collective motions, such as nuclear vibrations 
and deep inelastic reactions, could be suitably described within a classical phase space 
[2]. It is well known that the Vlasov equation corresponds to a one-particle reduction 
of the Liouville dynamics. 

We have proposed in [3] a variational approach to the quantum mechanical 
Liouville-von Neumann equation. Our method contrasts with that proposed by Balian 
and Veneroni [4,5] in that it does not aim to obtain the best expectation value of a 
given observable at a certain time but only pretends to approach variationally the 
Liouville-von Neumann equation. Therefore, instead of having both density matrices 
and observables as variational objects-a procedure which in the most general situation 
gives rise to redundant dynamics (Liouville-von Neumann and backward Heisenberg 
equations of motion)-we concentrate solely on density matrices. We believe this less 
ambitious approach helps the quantum statistical variational principle to become more 
transparent. 

Balian and Veneroni have stated in [5] that their formalism, using two variational 
operators which are dua!s of each other, has an  obvious translation in classical statistical 
mechanics. In the present work we discuss the classical counterpart of the simpler 
formulation presented in [ 31, where the variations are restricted to density matrices. 
Nevertheless, this cannot be directly obtained by a mapping of the Wigner-Kirkwood 
type from the Lagrangian of [3], some modification of the action principle being 
required. 

Starting from a convenient action principle, we derive in this work the Liouville 
equation for the distribution function of a general many-particle system. 

The technique of Lagrange multipliers is involved, in a very similar way to the 
general process of constructing variational principles discussed in [6]. The procedure 
used in [6] relies on incorporating defining equations through the use of generalised 
Lagrange multipliers, which may be functions or operators. 
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Restrictions in the variational family of distribution functions lead to manageable 
approximations to the classical many-body dynamics. The Vlasov equation, corre- 
sponding to uncorrelated single-particle motion, is readily obtained in our framework, 
as well as its linearised version. We sketch the main steps of the derivation, since we 
believe this is useful to illustrate the role of the generalised Lagrange multipliers. 

We remark that the derivation presented is, in principle, independent of any quantal 
formalism and holds whether a quantal treatment is relevant or not. 

In 0 2 we introduce the general formalism. The static solution and the small- 
amplitude oscillations around it are considered in particular. 

In P 3, the independent-particle approximation is shown to lead to the Vlasov 
equation for the single-particle distribution function. The linear response around 
equilibrium is treated just for the sake of completeness, although the result is known. 
The nature of equilibrium is discussed. The static solution, which should be associated 
with the so-called ‘passive states’ of quantum statistical mechanics [7,8], does not 
need to be a thermal equilibrium state, since the static limit of our procedure is more 
general than the usual minimisation of a thermodynamical potential. The classical 
energy-weighted sum rule is derived at the end of this section. 

The conclusions are collected in 9 4, where possible applications are also referred 
to. 

2. General formalism 

2.1. Variational approach to the Liouville equation 

It is well known that the time-dependent Schrodinger equation for a system described 
by the Hamiltonian H may be obtained from the variational principle 

S 1,; L d t = O  (2.1) 

where the Lagrangian L is given by 

L = (Yli d/dt  - HIY) (2.2) 
IT) denoting the time-dependent state vector. 

For physical situations requiring the use of mixed states we accept that the evolution 
of the density matrix is adequately described by the Liouville-von Neumann equation 

fi = -i[H, D ] .  (2.3) 
As we have shown in [3], this equation may be derived from a variational principle 

(2.1), provided the Lagrangian is given by 

L = -i Tr( UDo 0’) - Tr( UDoU+H) (2.4) 
where D is a fixed (time-independent) density matrix and U = U (  t )  a time-dependent 
unitary operator. We may write U in the form U = exp(iS), S = S(t) being a time- 
dependent Hermitian operator. 

The manipulations required to derive (2.3) from (2.1) and (2.4) rely heavily on the 
expression of the trial density matrix D 

D(t)=  U(t)D,U(t)+.  (2.5) 
The time dependence of D(t)  is introduced through the unitary operator U (  t ) .  
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In the classical case it is not convenient to use the classical counterpart of the 
operator U as a variational field, so that the variational formulation should be modified 
in order to describe the evolution in phase space. 

At this point we introduce the set A of all distribution functions F =  
F ( x ,  , p l , .  . . , xN,pN)  of a given N-particle system, which may be obtained from a 
particular distribution function Fo by a canonical transformation 

(2.6) 

with S = S(x,,  p l ,  . . . , xN, p N )  a real function. Here {A, B} denotes the Poisson bracket 
between the functions A and B. Let F = F ( x ,  , p l ,  . . . , xN, pN,  t )  be a trial distribution 
function belonging to the set A for each value of t .  Then there exists a generator G 
such that 

I 1 
A =  F :  F = F , + { S , F o } + - { S , { S , F , } } +  . . .  { 2! 

F = { G ,  F } .  (2.7) 
From (2.6) we conclude that the generator G is conveniently given by the following 
expression: 

1 1 
G = S + i { S ,  S}+-{S,{S,S}}+ . . . .  

3!  

The following Lagrangian is considered: 

L =  F G d r , - , -  F H d r , _ N  5 5 (2.9) 

where 

dr , - ,  = d r ,  . . . drN = d3xI d3p,/(27r)’. . . d3xN d3p~/(27r)3 

is the integral element in phase space and H is the classical Hamiltonian of the system. 
We restrict the variations of F to the set A and impose (2.7) as a subsidiary condition 

using the technique of Lagrange multipliers. 
We shall show in the following that an action principle based on the Lagrangian 

(2.9) leads to the Liouville equation 

F = { H ,  F }  (2.10) 

that is, that the exact generator G coincides with the Hamiltonian H (see (2.7)).  
The variations SF and SG are not independent of each other, due to the relation 

indicated by (2.7) which must be satisfied at all times. This constraint is imposed with 
the aid of a generalised Lagrange multiplier A = A(x, , p , ,  . . . , xN, p N ,  t ) ,  which is a 
real function of all the phase-space variables and of the time. 

The following generalised action is therefore considered: 

where L is given by (2.9). This action should be made stationary with respect to 
arbitrary variations of F and G at intermediate instants of time between t ,  and t 2 .  

The variation of (2.11) yields 
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The term involving S F  may be integrated by parts, giving 

- 5,; d t  5 d r l - N ( A S p )  = - dT,-  .(SFA) (2.13) 5 
(2.14) 

in order that the first term of (2.13) vanishes. 

we arrive at the following Euler-Lagrange equations: 
Since the variations SF and SG are arbitrary for intermediate times ( t l  < t < t r ) ,  

G - H + A - {G,  A} = o (2.15) 

F-{A, F}=O.  (2.16) 

From (2.15) we obtain 

{ F, G - H + A - { G, A}} = 0. (2.17) 

We observe that { F, { G, A}} may be transformed, using the Jacobi identity, (2.7) and 
(2.16), to give 

{F,{G,Al}=-{G,{A, F}}-{A,{F, GI} 
=-{G, F}+{A, P} 
= -F+{A, p}. (2.18) 

Thus 

{ F ,  G - H } + ( { F , A } + ~ - { A , F } ) = o .  (2.19) 

From (2.16) it follows that 

F-{A, F}-{A, F } = O  (2.20) 

{ F ,  G - H } = O .  (2.21) 

and therefore (2.19) leads to 

Inserting (2.21) in (2.7), (2.10) is obtained as desired. 
A comment about the condition (2.14) is appropriate here. This condition enables 

us to disregard the endpoint contribution to the variation of the action. 
Since we are only considering an action integral with the purpose of obtaining an 

equation of motion for the distribution function and the actual value of the action is 
irrelevant, we may add to the Lagrangian a term which is a total time derivative. The 
term 

(2.22) 

will cancel the endpoint contribution represented by the first term on the R H S  of (2.13). 
The condition (2.14) may be imposed without any loss of generality, since in our 
formalism it is innocuous. On the contrary, the boundary conditions discussed by 
Balian and Veneroni in [5] are physically relevant. That there are two boundary 
conditions is related to the fact that two equations of motion arise in their formulation, 
duplicating the dynamical description when no limitations on the variations are made. 
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We emphasise the essential conceptual difference between the goal of our variational 
principle and that of Balian and Veneroni, which has a price to pay for being more 
ambitious, namely boundary conditions must be incorporated in the Lagrangian. 
Although with G = H (2.9) looks similar to the classical image of equation (3.1) of 
[ 5 ] ,  we should note that in the present work A does not correspond to a physical 
observable but is only a convenient mathematical object. Moreover, we d o  not a priori 
identify G with H. 

2.2. Static case 

From the Liouville equation (2.10) it follows that a state of equilibrium, characterised 
by a time-independent distribution function F,, occurs only if we have 

{ F o ,  H}=O.  (2.23) 

However, this equation alone does not ensure the existence of stable equilibrium, 
which is expressed by the following condition: 

Eo= dTl - , (FoH)S  d r l - N ( F H )  (2.24) 5 i 
for all F E  A (see (2.6)). 

If at t = 0 the distribution function F ( 0 )  = F( t ) l ,=o  does not satisfy { F ( O ) ,  H }  = 0, 
then F ( t )  is not stationary, i.e. F (  t )  may oscillate. Around which state does F (  t )  
oscillate? F ( t )  may oscillate around the state Fo satisfying (2.24) (the distribution 
function Fo is the classical image of the quantal ‘passive states’ discussed in [7,  81). 
Henceforth it seems natural to assume that short-term dynamics applies before statistical 
equilibrium sets in. We discuss this issue in more detail in [9]. 

It is possible to derive (2.23) from (2.24). We have 

(2.25) 

from which, S being an  arbitrary real function, (2.23) follows. We remark that the 
variation principle expressed by (2.25) corresponds to the static limit of (2.12). 

2.3. Linear response 

Let us now consider the linear response to a small external perturbation of a system 
initially in equilibrium. At all instants after the disturbance, the function is described 
by a distribution function, which differs only infinitesimally from the stationary one. 
The fact that the function S is infinitesimal allows us to neglect terms of higher order 
than the second in S in the expansion F = Fo+ { S, Fo} + +{ S, { S, F,}} + . . . and in (2.8). 
In the following, Fo denotes the state of stable equilibrium satisfying (2.24). 

We now replace the Lagrangian (2.9) by its leading order expression, which is 
quadratic in S, 

(2.26) 

The linear terms d o  not appear since they do  not contribute to the final result in view 
of the stationarity condition (2.23) and of the condition (2.14) at the endpoints. 

L‘Z’= 1 2 1 dr-1-N Fo({S, 31 -is, { K  SI)). 
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The variation of the action corresponding to (2.26) yields 

d r l - N  Fo({6s, s} - {6s, { H, s}})  = 0 i 
I d L N W S ,  Fo}-{{M SI, FoI)=O. 

so that 

As the variations SS are arbitrary, we finally obtain 

IS, Fo) = {H, {S, Fo}} 

(2.27) 

(2.28) 

(2.29) 

where use has been made of the stationarity condition (2.23) and of the Jacobi identity 
for Poisson brackets. The last equation should be understood as expressing the exact 
classical linear response to small perturbations. 

In the study of the linear response no use has been made of a Lagrange multiplier, 
since a truncation of (2.8) has been introduced directly in (2.9). 

3. Independent-particle approximation 

3.1. Vlasov equation 

In general, the exact description of many-body systems of physical relevance requires 
rather complex distribution functions. We must therefore resort to some approximation 
scheme, based on an adequate choice of the variational family of distribution functions. 
The distribution function is supposed to have a form specified a priori, which is guessed 
on the basis of physical arguments. Simplicity of the subsequent treatment is usually 
invoked in this choice. 

The independent-particle approximation consists in choosing right from the outset 
the following many-particle distribution function: 

N 1 
F N ( ~ I , P I , .  . . , ~ N , P N ,  t )  =-exp( -N)N”  n d ( x , , p , ,  t )  

N !  r = l  
(3.1) 

where N is the average particle number. The function d is normalised to unity at all 
instants 

(3.2) 

so that 

The approximation (3.1) means that correlations due to two-particle collisions are 
neglected. 

To obtain the Lagrangian adequate to the approximation (3.1) we begin by generalis- 
ing (2.9) to the case of a variable number of particles. We consider the following 
Lagrangian: 
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Since the particles are identical, the energy may be written as 

where 

(3.4) 

f(i>=f(xi,p>, t ) =  N ~ ( x , , P , ,  t ) .  (3.5) 

If the distribution function F should retain the structure exhibited by (3.1), then the 
generator of its time derivative is of the form 

(3.6) 

(3.7) 

The Lagrangian of the independent-particle approximation is finally obtained: 

This Lagrangian is supplemented by the subsidiary condition 

f(1) = {g(l),f(l)} (3.9) 

which is equivalent to (3.5). The condition (3.9) is implemented with the aid of a 
Lagrange multiplier a(x ,  p,  t )  which is a real function of the phase-space variables of 
a single particle and of the time. The derivation of the Euler-Lagrange equations 
corresponding to the Lagrangian (3.8), with the constraint (3.9), proceeds along similar 
steps to those leading from (2.11) to (2.21) and (2.10). One finds 

f= { h , f }  (3.10) 

with 

h = h [ f l  = p 2 / 2 m  + u ( x ,  x ’ ) f ( x ’ ,  p ’ ,  1 )  dT’. (3.11) 

Equation (3.10) is precisely the Vlasov equation. It is possible in principle, but 
difficult in practice, to improve the distribution function given by (3.1). This problem 
is related to the non-existence of a safe criterion to truncate the Bogoliubov-Born- 
Green-Yvon-Kirkwood chain of equations, which incorporates in a systematic fashion 
correlations absent in the mean-field approximation [lo]. 

I 
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3.2. Temperature-dependent Thomas-Fermi theory 

The stationary limit of (3.10) 

{ h n , f o }  = 0 (3.12) 

where ho = h [ f o ] ,  can be derived from the minimum principle for the energy, expressed 
in (2.25), assuming as variational space the set of distribution functions of the form 
(3.1), such that the single-particle distribution functions are obtainable by canonical 
transformations from any one of these functions. 

In particular, the well known Thomas-Fermi result for finite temperatures [ 111 
corresponds to minimising the energy, keeping the entropy fixed. The solution of this 
problem is 

f O ( X , P )  ={l+exP[p (ho(x ,P ) -A) l}~ '  (3.13) 

where p is the inverse temperature and A is the chemical potential necessary to 
guarantee the normalisation condition (3.2). 

We point out that the solution (3.13) is determined by a supplementary requirement 
about the entropy of the system. We may however fix the equilibrium distribution 
function by a different condition, envisaging the description of situations different 
from the standard thermal equilibrium. 

3.3. Linearised Vlasov equation and associated sum rule 

We are especially interested in the analysis of small-amplitude motion near equilibrium. 
We may obtain from the variation of (2.26), in the framework of the independent- 

particle approximation (3.1), the linearised Vlasov equation, which represents the 
classical limit of the quantal random phase approximation: 

with fo satisfying (3.12). 
This equation has been applied in nuclear physics to account for small-amplitude 

vibrational modes [ 12-14]. Solutions of (3.14) at zero temperature are able to reproduce 
the giant resonances characteristic of the nuclear fluid, if allowance is made for 
deformations of the Fermi sphere in !he variational function. If this ansatz is enlarged 
by including local distortions of the Fermi sphere, it is possible to describe low-lying 
modes, which are a continuation in the quantal region of the classical capillary waves. 
In fact, these excitations exist due to the absence of Landau damping, a kind of 
damping which can be accounted for in a phase-space description. At finite tem- 
peratures, we expect a redistribution of strength between low- and high-lying modes. 

We note that the linearised Vlasov equation is a sum rule conserving theory, so 
that any redistribution of strength presented in a quantal description should also be 
apparent from a classical treatment. 

In  the remainder of this section we will prove that the classical random phase 
approximation does preserve the energy-weighted sum rule at any temperature. 

The normal modes of (3.14) are obtained postulating the following ansatz for the 
time dependence of the function s: 

(3.15) 
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where use has been made of (3.15), (3.18) and (3.19). Thus 
r 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

where the second member should be evaluated in the independent-particle framework. 
Clearly, (3.22) is the classical analogue of the quantal energy-weighted sum rule, which 
is valid for arbitrary temperatures [ 151. 

4. Conclusions 

We have developed a variational formulation to the Liouville equation, which in 
particular is appropriate to the derivation of the Vlasov theory in the independent- 
particle approximation. We have pointed out that the stationary limit encompasses 
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statistical equilibrium as described by the thermal Thomas-Fermi theory, but is more 
general than that, since we may choose trial distribution functions which d o  not 
need to be canonically equivalent to the distribution function describing statistical 
equilibrium. The Vlasov equation may be linearised around any static solution. 

Among the physical situations in which our variational method should be useful 
we sketch an  example taken from nuclear physics. 

The recent experimental discovery of giant resonances in ‘hot’ nuclei [ 161 has 
motivated the extension of semiclassical techniques from zero to finite temperature. 
The giant dipole resonance in compound nuclei was the first observed collective mode 
built up  on a statistical excitation of the particle degrees of freedom. Recent work 
along the lines of the present paper [ 171 seems to support the view that the semiclassical 
methods already tested successfully for T = 0 are also adequate to the consideration 
of thermal excited systems. 
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