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Abstract

It is well known that insects and other animals use olfactory senses in a wide variety of behavioural processes, namely to
recognize and locate food sources, detect predators, and find mates. This article discusses the gathering of olfactive information
and its utilization by a mobile robot to find a specific odour source in a room with turbulent phenomena’s and multiple sources
of odour. Three navigation algorithms are compared with a simple gas sensor and with an electronic nose. Their performance in
finding an ethanol source in a room with obstacles is evaluated. The first navigation strategy is based on bacteria chemotaxis.
The second strategy is based on the male silkworm moth algorithm that is used to search and track a female moth pheromone
plume. The last strategy is based on the estimation of odour geometry and gradient tracking. The electronic nose utilized is
composed by an array of different and weakly selective metal oxide gas sensors. The odours are identified and quantified by a
pattern recognition algorithm based on an artificial neural network. The test bed for the navigation algorithms was a Nomad
Super Scout II mobile robot.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the greatest challenge to the robotics research
community is the development of intelligent machines
capable of autonomous navigation in natural environ-
ments. Such machines will rely on a complex sensoring
system able to gather the important features of the
environment and on intelligent control algorithms that
generate the appropriate actions to the sensed environ-
ment w1x. Although it is rather common to find robots
with sensors that mimic the animal world(particularly
the human senses), sensors for taste and smell(chemical
sensors) are by far the least found on robotics. The
reasons for that are not only the reduced importance of
those senses in human motion, but also a consequence
of the long way for chemical sensors to evolve in order
to become similar to their biological counterpartsw2x.
Robots can take advantage from an electronic nose

when they need to carry out some chemically related
tasks, such as identification of washed zones by cleaning
robots(Fig. 1a), follow odour tracks(Fig. 1b) or find

*Corresponding author. Tel.:q351-239-796-277; fax:q351-239-
406-672.

E-mail address: lino@isr.uc.pt(L. Marques).

sources of odour, like gas leaks, drugs, explosives,
landmines, etc.(Fig. 1c).
Other research groups have already addressed the

utilization of gas sensors in the robotics field. Ishida et
al. used metal oxide gas sensors to build an odour
compassw3,4x and to find an odour sourcew5–7x. Russell
and Deveza laid down a camphor track and used two
gravimetric sensors to follow that track with a robot
w8,9x. In other work, Russell proposed algorithms to
follow an odour plume until the source is foundw10x.
Kuwana and Shimoyama implemented the silkworm
moth algorithm in a mobile robot with two insect
antennae as pheromone sensorsw11x. Kazadi uses a
similar algorithm to track a water vapour plume with a
small mobile robot equipped with resistive polymer
sensorsw12x. Grasso et al. developed a biomimetic robot
lobster (RoboLobster) to investigate the way lobsters
localize and track odour plumes. This robot can move
in water and is equipped with left and right conductivity
sensors. Grasso’s research team is still improving their
robot in order to behave like real lobstersw13x. All these
groups explored the utilization of only one kind of
sensor or navigation algorithm. Because the used sensors
are not very selective, in the presence of multiple odours,
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Fig. 1. There are several animal behaviours based on olfactory sensing that can be implemented on mobile robots, namely the following:(a)
repellent behaviours, where a robot goes away from an odour. This behaviour can be used on a cleaning robot to detect the pavement already
cleaned.(b) and (c) represent attractive behaviours. In(b) the robot A mark a chemical trail on the ground that can be followed(and maybe
reinforced) by robots B and C. In(c) the robot follows the chemical gradient of an odour plume in order to find the odour source.

it is possible to find other odour sources than the one
pursuit. Morse et al. simulated the chemotaxis of aC.
elegans worm and experimented the simulated algo-
rithms in a small mobile robot equipped with a photo-
sensor to navigate through a light gradientw14x. Holland
w15x, Leow w16x, Pierce-Shimomuraw17x and Sandini
w18x also used software agents to simulate the movement
of ‘creatures’ in chemical gradients.
An interesting aspect to study is how the complexity

of the algorithm or the sensing selectivity improves the
performance of finding the odour source inside turbulent
plumes. This work uses three different algorithms with
increasing complexity. One of the most simple algo-
rithms that can be used to move through a chemical
gradient is the chemotaxis behaviour presented for
instance byE. coli bacteria. A more complex, but also
very well studied behaviour is the pheromone plume
tracing behaviour presented by the male silkworm moth.
The most complex algorithm that can potentially mini-
mize the moving distance consists in plume estimation
with gradient tracking.

1.1. The biased random walk of bacteria

Bacteria are microorganisms which are too small to
measure concentration gradients over the length of their
bodies. In a constant environment, motile bacteria gen-
erally move in a random walk of straight runs punctuated
by brief periods of reversal that serve to randomise the
direction of the next run. The chemotaxis system con-
trols the probability of a reversal. If during a run the
bacteria determine that conditions are improving, then
it suppresses reversals so the cell keeps moving in the
preferred direction. If on the other way the conditions
are getting worse then the runs become shorter and the
frequency of the tumbles increases so the cell chooses
another random heading. The effect of this mechanism

is to bias the random walks so that bacteria tend to
migrate toward attractant and away from repellentsw19x
w20x. Holland and Melhuishw15x simulated the loco-
motion of animats toward a point source of stimulation.
The simulated animats have a single symmetrical sensor
and present behaviours based on those found in bacteria
and worms.

1.2. Pheromone searching in the male silkworm moth

In 1959, Adolph Butenandt succeeded to identify the
chemical structure of a sex attractant emitted by female
silkworm moth,Bombyx mori, and named the substance
bombykol. In the same year Karlson and Luscher pro-
posed the termpheromone (from the Greekpherein ‘to
transfer’, andhormon ‘to excite’) for substances, such
as bombykol that are released to the environment and
excite individuals of the same species at a distancew21x.
The male moth’s antennae contains approximately
20 000 olfactory hairs that capture about a quarter of
the bombykol molecules that passes through it. When a
male moth detectsbombykol, it starts the following
sequence of movements to search for the female releas-
ing the pheromone moleculesw22x.

1. It orients anemotactically in the upwind direction and
2. Starts a sinusoidal zigzag movement across the lon-
gitudinal axis of the odour plume.

3. Upon loss of contact with the odour plume, the moth
flies back in a circle to re-enter in the active space.

1.3. Gradient driven robot motion

A possible way to find the source of an odour plume
is to estimate the local concentration gradient and move
the robot in the direction of the gradient’s increase. This
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Fig. 2. Main mobile robot behaviours.

can be done with a robot equipped with two or more
physically separated sensing units where the robot head-
ing should be toward the sensor with higher outputw23x.
Considering a differential structure mobile robot with
two sensors placed perpendicularly to the direction of
motion, the robot head is toward the maximum concen-
tration gradient when both sensors have the same output
level. A problem experimented with this approach is
that for low concentration gradients, the instantaneous
concentration fluctuation due to turbulent phenomena is
bigger then the average concentration differences
between the two sensors. A solution found to this
problem was to use the concentration values gathered
during the motion of the robot to estimate the odour
plume geometry and the local concentration gradient
w24x.

1.4. Robot control architecture

A common approach to control the motion of simple
mobile robots is to use a behaviour-based reflexive
architecture like theSubsumption Architecture proposed
by Brooks w25x. In behaviour-based architectures the
actuators are tightly coupled to the sensing layers of the
robot through independent processes that implement a
set of goal oriented reflexive behaviours. In the sub-
sumption architecture the control signal to the actuators
is the output of the active behaviour with higher priority
level. Other variants might use a combination from the
output of all active behaviours(Fig. 2). It is common
to find in this robot control architecture a repulsive
behaviour to avoid collision with obstacles and an
attractive behaviour that moves the robot toward the
goal.

2. The sensing system

The sensing system developed for measuring chemical
plumes with a robot is composed by two arrays(left
and right) of four Figaro metal oxide gas sensors(TGS
2600, TGS 2610, TGS 2611, and TGS 2181). The main
target gases of these sensors are general air contami-
nants, combustible gases, methane and ethanol, respec-
tively. Besides the favoured gas, all of them show some
sensitivity to other reducing gases. Using this array of
sensors, it is possible to test the same control algorithm
with different sensing selectivities. The main character-
istic of metal oxide gas sensor is an almost linear
decrease in the logylog space of its internal resistance
with the increase in the concentration of a reducing gas.
The following equation is an approximation of the sensor
resistancew26x.

aR yR sKC (1)s 0

where R represents the sensor resistance,R is thes 0

resistance in clean air,C is the concentration of the
reducing gas, anda represents the sensitivity of the
sensor to the considered gas.
Each array of the nose was mounted on a small

printed circuit board with the necessary signal condi-
tioning circuits. The sensor resistance is measured
through a 12-bit 16 channel data acquisition board
(Advantech PCM-3718).
Fig. 3 presents the calibration setup. This setup is

composed by a Dani CG 1000 gas chromatograph and
three Hastings mass flow controllers that control the
input mixture of synthetic air, methanol and ethanol
vapour. The gas mixture is inserted into a Perspex box
that contain both sensor arrays and in parallel is moni-
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Fig. 3. Calibration setup for both arrays of the nose.

Fig. 4. Electronic nose array. Fig. 5. Super Scout II mobile robot with the two gas sensing arrays.

tored by the chromatograph. The air inside the box is
mixed by a small fan.
The gas identification is made with a three layer

(4:4:2) feedforward neural network(Fig. 4). In the
training process, different concentrations of the gas
mixture were presented to both sensor arrays and their
output was compared with the output from the gas
chromatographw27,28x. The errors were back-propagat-
ed to adjust the weights of the net. After this process,
each array could identify and quantify the amount of
methanol and ethanol presented in the mixture and,
more important, the two arrays presented similar
responses to the same stimuliw24x.

3. Modelling odour fields

Odour molecules move through the environment by
two physical forces: fluid flow and diffusion. In outdoors

and in large spaces, fluid flow is the dominant physical
force involved in the transport of molecules forming an
odour plume. An odour plume carries information not
just about the chemical composition, but also about its
spatial and temporal profile. The way that plume is
perceived can give useful insights to estimate the odour
source location.
Dispersion and diffusion processes can be represented

by a set of differential equations. To model odour plumes
in real turbulent environments it is necessary to have a
rigorous model of the environment geometry and solve
the resulting equations using numerical methods. This
approach is very complicated and of reduced practical
interest to estimate the odour source localization in real-
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time by a mobile robot(Fig. 5). A simpler approach to
model the odour fields consists of using a statistical
model valid for time-averaged gas distributions. Using
this approach, the dispersion of an odour released from
a point source at a constant rateQ can be expressed by
the following Gaussian equationw29x:

Q 2 2y1y2 yys y1y2 xyhys( (y z) )wC(x,y,z)s e e
2ps s Uy z

2y1y2 xqhys( z) xqe (2)

whereC is the odour concentration(mgym ), Q is the3

rate of odour generation(mgys), U is the average wind
speed in theX axis direction(mys), s ands are they x

standard deviation of the odour plume in the horizontal
and vertical axis respectively(m), h is the effective
height of the source(m) andx, y andz are the distances
to the emission source(m). The Eq.(2) is valid for the
emission source located in the origin of the coordinates
and for the wind flowing in theX axis direction. The
dispersion coefficientss ands are functions of thexy z

coordinate and can be approximated by the following
simplified modelw29x:

ps sax (3)y

qs sbx (4)z

wherea, b, p and q are constants. It is worth noting
that the mass conservation condition requires all concen-
tration fluxes through each plume cross-sectional plane
(y, z) to be the same; i.e. for eachx the following
equation should be met.

Qs UC(x,y,z)dydz (5)|
Due to turbulent effects, the gathered concentration

valuesC (x , y , z , t ) show large fluctuations and thei i i i i

gradient does not always point in the direction of the
steepest ascent value. To smooth this effect, the local
concentrations and the gradient dynamics are liMITed
by a recursive digital filter and the filtered values are
used to estimate the geometry of the plumew30,31x.
In open spaces, the robot shortest path will be a

segment from the current position to the odour source
(goal vector). Using a steepest ascent method(gradient)
to navigate through a Gaussian plume does not guarantee
the shortest path to the goal. A better goal vector can
be defined by a linear combination of the concentration
gradient and the upwind vector.1

™ ™
Gsk =Cqk U (6)1 2

In the work presented here, the airflow around the robot is not1

measured in real-time. It was made a characterization of the flow
map in the workspace and those values are used during the
experiments.

≠C ≠C
Ž .=C x,y,z s iq j (7)0

≠x ≠y

(The z coordinate is constant for all robot acquisi-
tions).

4. Field tests and experimental results

In order to evaluate the performance improvement to
the navigation of a mobile robot that comes from the
utilization of an electronic nose, three search algorithms
were implemented and tested with the nose and with
the TGS 2181 gas sensor alone. Each situation was tried
20 times in order to give some statistical value to the
study. An experiment is considered finished if the robot
enters in a circle of 50-cm radius from an odour release
point or if a 10-min timeout is attained. The ground
circular area around the release point is marked with a
black colour that can be sensed by a reflective photo-
sensor placed on the bottom of the robot. The mobile
robot was programmed with a simple behaviour-based
architecture like the one represented in Fig. 2. The
OdourTrack is the behaviour that differs among the
experiments. This behaviour can use one of the follow-
ing three strategies:
The bacteria’s chemotaxis strategy, adapted from

Holland w15x, uses a minimum amount of memory. It
only needs to save the value of the last measured
concentration as it can be seen in the following listing:

Listing 1: E. Coli bacteria’s chemotaxis algorithm

While (TRUE){
If (curConc)lastConc)
Turn ("Random(58))
MoveForward(m"Random(5%m))
Else
Turn("Random(1808))
MoveForward(Random(5%))

}

Because this algorithm only needs the concentration
value in one point of the robot(supposedly the centre),
the average output of the left and right sensor array was
used.
The Silkworm moth algorithm allows an efficient

search and tracking of the odour plume(Fig. 6). The
robot starts to cross wind in order to find traces of the
target odour. After detecting the odour of interest, the
robot implements an upwind surge, a series of sinusoidal
movements limited by the plume boundaries(zigzag).
If the robot lost contact with the plume it loops back
trying to recoverw22,11x.
The direct gradient following intends to minimize the

distance run from the starting point to the odour source.
This algorithm fit a Gaussian plume model to the
concentration map gathered during the motion and to
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Fig. 6. State diagram of the moth algorithm to track a pheromone
plume.

Fig. 7. Experimental setup.

Table 1
Summary of the experiments

Ethanol sensors Electronic nose

Prob. Time(s) Prob. Time(s)

Bacteria’s 65 324 90 243
Moth 80 97 100 89
Gradient 75 92 100 73

the air flow information in order to estimate the location
of the odour source.

Listing 2: Motion algorithm with plume geometry estimation

SearchForPlumeTraces
While(odourDetected) {

EstimatePlumeGeom
If(Concentration)Threshold)
FollowGradient

Else
SearchForPlumeTraces

}

The practical experiments were done in a large accli-
matised laboratory with 208C and approximately 65%
RH. The work space(represented in Fig. 7) is composed
by two odour sources 2 m away from each other, three
controllable fans that provide an output air flow of
approximately 80 cmys and three obstacles that obstruct
the direct path from the starting point to the goal and
create a turbulent zone. The starting point of the robot
is 5 m upwind from the odour source.
The results from the set of experiments is summarized

in Table 1. That table presents the probability(in
percentage) to find the correct odour source in less than
10 min. The time column represents the average time
(in seconds) of the successful trials in each situation.
The first set of experiments shown that, using infor-

mation from only one gas sensor there exists a large
probability of finding the wrong odour source(it is
possible to track the wrong odour plume). Using gradi-
ent following algorithms, the localized odour source
depends mainly on the first plume detected by the
mobile robot. When the robot is at the interception of
the two plumes, it presents a random behaviour moving
to any of the odour sources. This random behaviour can
be minimized using an appropriate navigation algorithm.

The moth algorithm increases the probability to find the
right odour plume.
The last set of experiments show the benefits of

implementing an electronic nose based navigation algo-
rithm. Basically the implemented nose increases the
selectivity of the sensing system. Using the nose output
it is possible to know if the detected plume is the
ethanol or the methanol plume. This information allowed
the gradient search algorithm and the silkworm moth
algorithm to always find, in the tested setup, the right
odour source.

5. Conclusions

There exist some interesting potential applications for
mobile robots equipped with an electronic nose(e.g.
finding explosive traces in landmine fields), but there
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does not yet exist adequate gas sensors for most of
those applications because current gas sensors present
at least one of the following weaknesses: poor selectiv-
ity, low sensitivity, slow response time or large size.
Even considering these limitations, it is possible to
explore the field of olfaction based mobile robot navi-
gation using commercial gas sensors, but with some
restrictions, namely the use of artificially high gas
concentrations, a small workspace area and low robot
velocities. The work carried out so far evaluated the
effectiveness of three odour source localization algo-
rithms in a room with turbulent phenomena and two
different odour plumes. The algorithms used in the tests
were the pseudo random walk of bacteria, the male
silkworm moth pheromone plume searching and a gra-
dient ascent-searching algorithm. The effect of increas-
ing the selectivity, through the utilization of an electronic
nose, on the effectiveness of each algorithm was also
evaluated. Each situation was tested 20 times and the
results show that the gradient ascent algorithm per-
formed better than the others, but not much better then
the silkworm moth algorithm. Implementing biologically
based algorithms for mobile robot navigation is a very
effective way to navigate through odour plumes. The
results also show that increasing the selectivity with an
array of sensors, instead of a single element, improves
the navigation efficiency to find the source of a specific
odour in all tested algorithms. When the robot uses only
the output from the ethanol gas sensor, there exists a
large probability to enter in the methanol plume and
find the wrong odour source.
Testing different olfaction navigation strategies in real

environments is time consuming and presents low
repeatability among experiments. Simulation can resolve
some of these problems. On the other hand, it is difficult
to simulate the real-time evolution of an odour plume
in unstructured environments. The utilization of light
sources to generate a gradient field(instead of gas
sources) can reduce the time of the experiments and
increase the repeatability(the air will not become
poisoned), but some of the important peculiarities relat-
ed with chemical plumes, namely the turbulence effects,
will be lost. Our main efforts in the future will be in
the development of collective behaviour searching strat-
egies and learning algorithms to effectively find the
source of outdoor odour plumes. An envisaged applica-
tion for these algorithms will be in finding fields of
landmines with mobile robotsw32x.
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