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Abstract

The variation of the electrical signal with humidity in ceramic sensors is originated by the chemical and physical sorptions of water molecules
existing in the atmosphere. The aim of the work described in the present paper is to establish an equivalent electrical circuit for the case of
two titania thick-film samples. It is shown, at least for the temperature of 23◦C, that the same type of circuit represents adequately these two
samples for various relative humidities. Chemisorption and physisorption are responsible for the different charge transport mechanisms – ion
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opping, ion diffusion and electrolytic conduction. Complex impedance data were obtained at the temperature of 23◦C and various relativ
umidities, in the frequency range 0.1 Hz–40 MHz. The best and simpler circuit representation we found, which gives the best fitt
ole–Cole and Bode plots, consists of twoRCparallel circuits in series with two constant-phase elements (CPEs). The values of the e
omponents are tabled and, as an example, the Cole–Cole and Bode plots fitting obtained for one of our samples, the sample B
H, in the frequency range 0.1 Hz–40 MHz is shown.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The physical phenomena of electrical conduction and po-
arization which occur in a ceramic humidity sensor are usu-
lly represented by resistances and capacitances[1–4]. Some
apers[5–7], however, go further on taking into considera-

ion a Warburg impedance to explain mainly, and in more
r less length, the spur presented in the Cole–Cole plots
−X=−X(R), in Z=R+ jX, i.e., minus the imaginary part
ersus the real one of the total impedance of the sensor). The
ariations observed in humidity measurements in ceramic
ensors are originated by the chemical and physical adsorp-
ions of water molecules existing in the atmosphere[8–11].
ome authors[12–14] reported that low and high humidity
ensitivities are governed by different transport mechanisms,
n which electronic conduction is included. It must be said

∗ Corresponding author. Tel.: +351 239796200; fax: +351 239796247.
E-mail address:faia@deec.uc.pt (P.M. Faia).

that in our samples we did not find any trace of electr
conduction, and, more, in our interpretation of the resu
seems that the same mechanisms exist at both low and
humidities. However, these mechanisms participate in d
ent proportions, which allow to separate between low
high relative humidity (RH) ranges, the limits of which
situated between 30 and 40% RH.

The electrical response of a porous material will be
lated to the surface moisture affinity, and the porous
microstructure, namely the dimensions and interconnec
of the capillary micropores.

The rather involved behaviour of our samples is un
stood by measuring their complex impedances subjected
external sinusoidal varying electric field. Conduction me
nisms are dependent on free charge carriers, while the d
tric behaviour has to do with polarization processes. Sinc
first work by Bauerle[15], complex impedance spectrosco
has been largely used to separate the several parts of th
trical response of ceramics, namely sensors.

925-4005/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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The aim of the work described in the present paper is to
establish an equivalent electrical circuit, within a frequency
range, the response of which gives a good fitting for the
obtained experimental data with an adequate physical com-
prehension based on the several known mechanisms already
established and described in the literature. The best fitting
was reached by heuristic reasoning after several previous
attempts of various kinds of circuits, always supported by
the underlying chemical and physical mechanisms. The same
type of equivalent circuit represents adequately the complex
impedance measurements we have obtained at the tempera-
ture of 23◦C for various relative humidities (RH) equal to 12,
17.5, 24.7, 54.7, 73.5, and 100% and at different frequencies,
in the range 100 Hz–40 MHz for the sample A, and, for RH
equal to 78, 87.5, and 100%, in the range 0.1 Hz–40 MHz for
the sample B.

2. Samples and measurements

An explanation of the characteristics and fabrication of the
samples as well as the description of the details related to the
way measurements performed have already been described
[16]. However, for the sake of an easy and satisfying under-
standing of the topic of this paper some essential information
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(b) presentation of the registered Cole–Cole and Bode plots,
and their interpretation;

(c) presentation of the type of circuit adopted.

3.1. Basic models assumed for the electrical conduction
and polarization

The electrical conduction and polarization are explained
by the adsorbed water on the metal oxide surface and also
on the capillary water condensation within the pores[17,18].
The porous structure of the TiO2 samples favours both these
processes.

Two types of adsorption of water vapour molecules take
place: in the beginning chemisorption occurs then followed
by physisorption. When adsorption starts on the clean ox-
ide surface, a layer of hydroxyl groups is formed. The wa-
ter vapour molecules are chemisorbed through a dissocia-
tive mechanism by which two surface hydroxyls per water
molecule are formed: the hydroxyl group adsorbing on a sur-
face Ti4+ ion and the proton forming a second hydroxyl with
an adjacent surface O2− ion.

It has been estimated that only one hydroxyl group is
formed on each surface metal ion[10,11]. Thus the initial
chemisorbed layer is tightly attached to the titania grains sur-
face. Once this initial layer formed, it is no further affected
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s given here.
Two different thick-film sensors, sensor A and senso

ave been fabricated onto clean polished alumina wafers
diameter of 20 mm and thicknesses of 3 mm. Over two

er paste electrodes with an interdigital pattern, an emu
n acetone with ethyl cellulose as a temporary binder o
eceived TiO2 powder (purity > 99%) was spin-coated o
he substrates at low speed (250 rpm) for 30 s. The co
rocedure was repeated three times for sample A, and

or sample B, with intermediate drying and the burning off
rganic binder of the previous layers at 150◦C for 15 s. Af-

erwards, the deposited film was heated up in air up to 80◦C
t a constant rate of 10◦C/min, and maintained at that te
erature for 2 h. The X-ray diffraction (XRD) showed t

he TiO2 phase of the films is anatase. A constant rela
umidity (RH) was obtained by mixing water-saturated
synthetic air saturated with water vapour) with dry synth
ir in a given ratio. Impedance spectra were recorded i
ange 0.1–200 Hz by means of a frequency response ana
olartron (model 1250), and in the range 100 Hz–40 MH
sing an impedance/gain-phase analyzer, Hewlett-Pa
model HP4194A), both with a peak voltage of 0.5 V.

. Results and discussion

This section will be organized into three parts:

a) the basic models assumed for the electrical condu
and polarization;
,

y exposure to humidity. In the case of anatase, whic
he phase of our titania sensors, it has been estimate
he desorption of the chemisorbed layer takes place ar
00◦C [19].

As relative humidity (RH) increases, an additional la
f water molecules starts to be formed, on the chemiso
ne, being complete by 20% RH. Many more physiso

ayers will be joined as humidity gets higher[20]. These ph
sisorbed layers are easily and reversibly removed by
reasing the humidity.

With more than one layer of physisorbed water molecu
ater starts to be condensed into the capillary pores.
eck of the pore is filled or unfilled according to its
ius and thickness of the physisorbed layer, i.e., dep

ng on the magnitude of the relative humidity. With
reasing RH, the thickness of the physisorbed layer of
er gets bigger which leads to the filling of successi
igher diameter necks, following the prediction of Kel
quation:

k = 2γM

ρRT ln Ps
P

(1)

k being the neck radius,γ the surface tension,M the molecu
ar weight of water,ρ the density of water,Rthe gas constan

the absolute temperature,Ps andP the water vapour pre
ure at saturation and the actual value, respectively. At
emperature (23◦C) and according to the above equat
ater vapour starts to condense in mesopores of size̊A
round 15% RH and continues on up to around 1000Å under
aturated atmosphere[21].
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Three regimes of electrical conduction could be assumed
[8,22]: (a) with only a small coverage of water, (θ � 1), on
the chemisorbed hydroxyl groups, proton (H+) hopping dom-
inates; (b) with a fractional coverage (θ < 1) of water, less than
one physisorbed monolayer, hydronium (H3O+) diffusion on
hydroxyl groups dominates; (c) when water is abundant, with
a coverage greater than one (θ > 1), then proton (H+) transfer
process is dominant.

In the regime (a), adsorbed vapour molecules originate
hydroxyl groups. The hydroxyl groups dissociate originat-
ing protons, OH− → O2− + H+, which requires a high ac-
tivation energy. Protons will hop between the hydroxyl
groups.

In the regime (b), each water molecule is slightly bonded
with one hydroxyl group and H3O+ will be the dominant
charge carrier. Protonic migration proceeds following a chain
of exchange reactions, H3O+ + H2O↔ H2O + H3O+ [9]. Si-
multaneously, H+ transfer also takes place between adjacent
H2O molecules in clusters.

In the regime (c), when the fractional water surface cover-
age is greater than one (θ > 1), then the transport mechanism
is assured by H+ transfer between adjacent H2O molecules
within a continuous film. The Grotthuss chain reaction takes
place[8], with H3O+ being hydrated, H3O+ → H2O + H+,
which represents the transport mechanism energetically
favoured in liquid water.
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Fig. 1. Sample A – The measured Cole–Cole plots, in the 100 Hz–40 MHz
range, at the temperature of 23◦C, for different RHs.

from 12 to 100%[16]. As it is well known,R is the resistance,
X the reactance of the sample andf the frequency of the ap-
plied voltage. In this paper, only the results obtained at the
temperature of 23◦C are reported, just because that is suffi-
cient to give support to what we are interested: the proposal
of a type of an equivalent electrical circuit for the sensor. As
far as the frequency range is concerned, sample A has been
measured in the 100 Hz–40 MHz range, while for sample B
the range used was 0.1 Hz–40 MHz. In order to be included
in the same plane, the diagrams are multiplied by appropriate
factors (in brackets).

The Cole–Cole plots, shown inFigs. 1 and 2, give a more
direct and easy understanding of the conduction processes
involved. It can be noticed that their areas shrink with in-
creasing RH. At a sufficiently high RH, the Cole–Cole plots
are composed by elongated semicircles prolonged by curved
lines for the low values of frequency. This behaviour is basi-
cally explained by two relaxation mechanisms, with not very
different time constants, for the higher frequencies and by
diffusion charge transport, more dominant at lower frequen-
cies.

F MHz
r

Finally, at high humidity, liquid water condenses in
ores, according to Kelvin’s law, and electrolytic conduc
ccurs simultaneously with protonic transport[3,18].

The sensor capacitance, due to electric polarization, is
elated to some sort of movement of charges in the ap
lternating electric field. However, unlike the case of c
uction, a translation movement is either blocked or
ered[23]. Electric polarization is related to an oscillat
r reorientation of charges caused by the variation of th
lied field. For the chemisorbed water molecules, as the
ound to the surface by two hydrogen bonds, they are
o free to reorient, following the external electric field
hose which are physisorbed, only singly bonded. Then
olarization, and consequently, the capacitance of the
or will increase as less tightened are the water mole
ith their neighbours, which happens as RH incre

24,25].
Adding up to molecules orientation, there is also the

ribution to the polarization due to mobile charges accu
ated at transitional structural places, as the two-layer m
uggests[11,26]. In conclusion, it can be said that polari
ion is originated both by the orientation of adsorbed w
olecules and mobile charges accumulated at the elect
nd pore necks.

.2. Recorded Cole–Cole and Bode plots

Cole–Cole and Bode spectra of the complex impeda
(f ) = R(f ) + jX(f ), of the TiO2 thick films were recorde
t different temperatures, with the relative humidity vary
ig. 2. Sample B – The measured Cole–Cole plots, in the 0.1 Hz–40
ange, at the temperature of 23◦C, for different RHs.
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Fig. 3. Sample A – The measured Bode plots,R=R(f), in the
100 Hz–40 MHz range, at the temperature of 23◦C, for different RHs.

The Bode plots (Figs. 3–6) confirm the suggestions given
by the Cole–Cole plots. At the higher frequencies, the ob-
served shapes are typical of relaxation mechanisms expressed
by theRCparallel circuits. At the lower frequencies, typical
diffusion mechanisms traduced by constant-phase elements
(CPEs) are evidenced.

These considerations were taken as an orientation for the
choice of the type of equivalent electrical circuit of the sensor,
as it is described below.

Fig. 4. Sample A – The measured Bode plots,−X=−X(f), in the
100 Hz–40 MHz range, at the temperature of 23◦C, for different RHs.

Fig. 6. Sample B – The measured Bode plots,−X=−X(f), in the
0.1 Hz–40 MHz range, at the temperature of 23◦C, for different RHs.

As it is well known, theRCparallel circuit impedance is
given by

ZR‖C = R

1 + ω2C2R2 − j
ωCR

1 + ω2C2R2 (2)

with the angular frequencyω = 2πf .
The corresponding Cole–Cole plot,−X=−X(R), is a

semicircle, whose diameter is equal toR, and the angular
frequencyωp at which the peak occurs obeys to the equation

ωpRC = 1 (3)

The constant-phase element (CPE) has a complex impedance
given by[27]

ZCPE = Af−n
(

cos
(nπ

2

)
− j sin

(nπ

2

))
(4)

represented in the Cole–Cole plot by a straight line making
an angle ofnπ/2 with the abscissae (R) axis. It must be said
that the CPE-like response is always well approximated only
over a finite range of frequency[28].

We think that CPEs represent what occurs at the
electrodes–water layer and at the water molecules layers in-
terface as well as inside the filled pores.

3.3. The type of circuit adopted
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Fig. 5. Sample B – The measured Bode plots,R=R(f), in the 0.1 Hz–40 MHz
range, at the temperature of 23◦C, for different RHs.
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AC equivalent circuits for thick-film humidity senso
hich represent the effect of moisture on the electrical
uction and polarization of the material have been prop
y several authors[1,4,22,29–32].

In general, for a given data set there exists more than
quivalent circuit which gives a reasonable fitting. The ch
etween these ones has to be based both in simplicit
onsistency with the known physical and chemical proce
hich take place in the system[33,34]. The best fittings wer

eached after several attempts. All the complex imped
lots obtained, Cole–Cole and Bode ones, were mode
beying the above criteria, by the equivalent circuit show
ig. 7.
Cgeo is the geometrical capacitance. It has been mea

ithout any film, only with the electrodes deposited on
afer.
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Fig. 7. The equivalent circuit of samples A and B, for different RHs.

Table 1
Values of the equivalent electrical circuit parameters of sample A, for different RHs

RH (%) R1‖C1 R2‖C2 CPEel CPEpo Cgeo

R1 C1 R2 C2 Ael nel Apo npo

12 4.50E+6 8.00E−12 1.85E+6 5.20E−11 1.85E+6 0.20 – – 3.00E−12
17.5 3.40E+6 8.80E−12 1.50E+6 5.00E−11 1.80E+6 0.21 – – 3.00E−12
24.7 1.11E+6 8.20E−12 5.85E+5 4.00E−11 6.00E+5 0.25 – – 3.00E−12
54.7 2.00E+5 7.80E−12 1.02E+5 3.90E−11 1.45E+5 0.24 1.00E+5 0.8 3.00E−12
73.5 5.80E+4 7.00E−12 2.60E+4 5.00E−11 4.20E+4 0.22 1.60E+5 0.7 3.00E−12

100 1.16E+4 8.40E−12 4.00E+3 6.20E−11 9.90E+3 0.20 4.70E+4 0.62 3.00E−12

The parallelR1, C1 represents the hopping of hydronium
ions, H3O+, and the parallelR2, C2 the hopping of protons
H+. We believe that the charge carriers are correctly assigned,
because: (a)R1 is in all cases greater thanR2, since the acti-
vation energy of conduction for H3O+ is greater than that of
H+; (b) C2 is greater than C1 because H+ ions follow more
easily the variations of the alternating field than the H3O+

ions.
Diffusion causes a CPE behaviour[35], which is rein-

forced by inhomogeneities in the dimensions and shape of
the capillary pores. Surface roughness has also been consid-
ered as an important contributing factor[36].

In the filled pores, the mechanism is under diffusion con-
trol, as it is assumed that the kinetics of the charge transfer at
the water surface layer-filled pores interfaces is much faster
than the diffusion of H3O+ ions inside the pores[35]. In such
a case, the diffusional contribution to the impedance is of the
CPE-type.

The interfacial character of the impedance makes it partly
capacitive as well resistive in nature.

CPEel is related to the electrodes–water layer interface
with values ofnel around 0.2–0.25, and those ofAel decreas-
ing with the decrease of RH. CPEpo has to do with the contri-

bution of the pores: the values ofnpo andApo decrease with
the RH increase.

From Table 1, it can be seen that for the sample A,
a good fitting for the lower values of RH (12, 17.5, and
24.7%) can be obtained considering only CPEel. This means
that we always have the influence of the electrodes–water
layer interface diffusion, while the influence of the cap-
illary mesopores is only operative for the higher values
of RH, when water is condensed inside the mesopores,
what in our measurements occurs above the value of 54.7%
RH.

Tables 1 and 2show the best values obtained for the circuit
elements of samples A and B, respectively.

As an example, we show the Cole–Cole plots fittings
obtained for the sample B (Figs. 8–11), at 23◦C and at
87.5% RH: (a) in the range 0.1 Hz–40 MHz and (b) in the
range 100 Hz–40 MHz, to get a more visible discrimination
of the good fitting obtained at the higher frequencies, be-
tween 100 Hz and 40 MHz; and (c) the Bode plots in the
0.1 Hz–40 MHz range.

As a further confirmation of the attribution of CPEpo to
the charge transport related to the pores, we show inTable 3
for different RHs the maximum frequency, obtained by sim-

Table 2
V differen

R

11
11

1 11
alues of the equivalent electrical circuit parameters of sample B, for

H (%) R1‖C1 R2‖C2

R1 C1 R2 C2

78 1.70E+6 1.50E−11 1.20E+6 6.20E−
87.5 4.90E+5 1.70E−11 3.90E+5 6.10E−
00 1.20E+5 1.60E−11 1.00E+5 7.00E−
t RHs

CPEel CPEpo Cgeo

Ael nel Apo npo

9.10E+5 0.16 9.60E+5 0.69 3.00E−12
3.20E+5 0.17 5.20E+5 0.69 3.00E−12
1.15E+5 0.14 4.10E+5 0.67 3.00E−12
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Fig. 8. Sample B – Cole–Cole plots at 87.5% RH and 23◦C, for the frequency
range 100 Hz–40 MHz: (�) experimental points; (—) simulated response of
the equivalent circuit.

Fig. 9. Sample B – Cole–Cole plots at 87.5% RH and 23◦C, for the frequency
range 0.1 Hz–40 MHz: (�) experimental points; (—) simulated response of
the equivalent circuit.

ulation, at which the influence of the condensed water inside
the mesopores is detected.

Our interpretation of these results lies on the fact that for
higher RH, the Kelvin radius decreases which also decreases

Fig. 10. Sample B –– Bode plots at 87.5% RH and 23◦C, for the frequency
range 100 Hz–40 MHz: (�) experimental points; (—) simulated response of
the equivalent circuit.

Fig. 11. Sample B – Bode plots at 87.5% RH and 23◦C, for the frequency
range 0.1 Hz–40 MHz: (�) experimental points; (—) simulated response of
the equivalent circuit.

Table 3
Maximum frequency for different RHs at which the influence of the meso-
pores is detected

RH (%) Maximum frequency

≤24.7 <100 Hz
54.7 18.6 kHz
73.5 834 kHz

100 2.5 MHz

the diffusion time, and, consequently, implies the response at
higher frequencies.

4. Conclusion

Complex impedance data of two samples of titania thick
films were recorded, at various relative humidities (RHs)
and at the temperature of 23◦C, in the frequency range
0.1 Hz–40 MHz. A unique type of an equivalent electrical cir-
cuit was found to represent all the measurements performed.
It is very simple, confirms the charge transport mechanisms
related in the literature and is completely explained by the
chemical and physical processes related to the water adsorp-
tion on the surface of metal oxide ceramics. The equivalent
circuit comprehends twoRC parallel circuits which repre-
sent two different relaxation processes in series with two
constant-phase elements (CPEs) typical of ion diffusion and
electrolytic conduction within the water condensed inside the
mesopores. Cole–Cole and Bode plots are presented and in-
terpreted on the basis of: (a) the chemisorbed and physisorbed
layers of water molecules, varying with the relative humid-
ity (RH) of the surrounding atmosphere and (b) the various
transport mechanisms – ion hopping, ion diffusion and elec-
trolytic conduction – the contribution of which is a function
o ex-
a plain
t e hu-
m ion
a

f the number of water layers adsorbed. Investigations to
mine whether the same type of circuit is adequate to ex

he dependence of complex impedance data on relativ
idity (RH) in sensors with different chemical composit
re going on.
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