

João Alexandre Abreu Ferreira

Setembro de 2015

Real-time implementation of combined Ring-type

Magnitude Modulation and LINC techniques on SoC

Zynq-7000 Architecture

Dissertação submetida para obtenção do grau de Mestre em Engenharia Eletrotécnica e de Computadores, Área de

Especialização em Telecomunicações

Real-time implementation of combined Ring-Type Magnitude
Modulation and LINC techniques on SoC Zynq-7000

Architecture

João Alexandre Abreu Ferreira

Dissertação para obtenção do Grau de Mestre em
Engenharia Eletrotécnica e de Computadores

Orientador: Doutor Marco Alexandre Cravo Gomes
Co-Orientador: Doutor Vı́tor Manuel Mendes da Silva

Júri
Presidente: Doutora Maria do Carmo Raposo de Medeiros
Orientador: Doutor Marco Alexandre Cravo Gomes
Vogais: Doutor Mário João Simões Ferreira dos Santos

Setembro de 2015

Agradecimentos

Chegou ao fim mais uma etapa da minha vida. Este trabalho é precisamente o culminar
desta viagem que agora dá lugar a outra, a da vida profissional. Com isto, não posso deixar
de agradecer à minha famı́lia mais próxima, em especial aos meus pais é à ”mana”, que
estiveram sempre ao meu lado e me apoiaram ao longo desta jornada.

Agradeço também aos meus amigos e colegas de curso, que me acompanharam na
vida de estudante, quer tenha sido para a praxe, jantares, grandes maratonas de estudo ou
simples procissões à máquina do café, para 15 minutos de conversa.

Aos professores Marco Gomes e Vı́tor Silva, pelo tempo que me dedicaram ao longo
deste trabalho, especialmente quando parecia não haver soluções à vista, e também a
todos os professores do DEEC, pela dedicação e entrega que mostram todos os dias ao
leccionar este curso. Também à professora Natália Reis, pela ajuda que me deu para
melhorar a escrita em Inglês em todo este trabalho.

Aos meus colegas de laboratório, que estiveram sempre disponı́veis para ajudar.

A todos,
Muito Obrigado.

Abstract
The development of low-cost systems is a constant goal of Telecommunications engi-

neering, where bandwidth and transmitting power are resources that need to be optimized,
especially in mobile devices. In these cases, in which it is necessary to use power am-
plification (PA) for radio-frequencies (RF), power efficiency becomes one of the main
focuses. In most cases, amplification is achieved through high power amplifiers (HPA)
with a high level of linearity, which is a requirement in case the signals to transmit have
high peak-to-average-power ratio (PAPR), which is typical in signals with high spectral
efficiency. One way to avoid this problem is to use the Linear Amplification with Non-
linear Components (LINC) technique. However, digital LINC implementation has large
oversampling requirements, as well as its power efficiency gains are limited at the LINC’s
combiner stage by the PAPR of the signals to transmit.

In the project GLANCES (UID/EEA/50008/2013) from the Instituto de Telecomunicações,
a new transmitter front-end architecture was envisioned. Leveraging on the decomposi-
tion of high order constellations as a sum of offset-quadrature phase sift keying (OQPSK)
signals, is it possible to use LINC techniques on the separate amplification of each OQPSK
component, with considerable gains in efficiency due to the much lower OQPSK signal’s
PAPR. This performance can even be leverage by a new proposed Ring-Magnitude Mod-
ulation (RMM) technique, that warranties a perfect amplitude ring shape of a bandwidth
limited OQPSK signal at the input of the LINC amplifier.

This thesis aims to develop a proof of concept of the described system, working in real
time and supported by a field programmable gate array (FPGA) architecture: Zynq-7000
system on chip (SoC), to implement LINC techniques together with ring-type magnitude
modulation (RMM), with two different hardware approaches: 1) a look-up table (LUT)
based implementation for each of the LINC and RMM techniques and 2) a LUT based
implementation for RMM and a hardware module to perform the LINC decomposition,
based in its vectorial form.

Keywords
LINC, RMM, OQPSK, FPGA, SoC, LUT, Real Time, Signal Processing

Resumo
O desenvolvimento de sistemas de baixo custo é um marco constante na ciência das

Telecomunicações, onde a largura de banda e a energia dispendida para transmissão são
meios escassos que precisam de ser otimizados, principalmente em dispositivos móveis.
Nestes casos, em que é necessário recorrer a amplificação de potência para radio-frequências
(RF), a eficiência energética torna-se num dos principais focos de atenção. Na maioria dos
casos, a amplificação é conseguida através de amplificadores de alta potência (HPA) com
elevada linearidade, linearidade essa que é um requisito importante caso o sinal a trans-
mitir tenha uma elevada relação entre a potência de pico e a poteência média (PAPR), o
que é habitual em sinais com alta eficiência espectral. Uma das respostas a este prob-
lema é uma técnica chamada Amplificação Linear através de Componentes Não-Lineares
(LINC). No entanto, a implementação digital LINC tem requisitos elevados de sobre-
amostragem, e os seus ganhos de potência são limitados no combinador LINC pelo PAPR
dos sinais a transmitir. No projeto GLANCES (UID/EEA/50008/2013) do Instituto de
Telecomunicações, uma nova arquitectura de transmissores foi desenvolvida. Baseando-
se no facto de constelações de maior ordem poderem ser decompostas numa soma de
sinais com modulação digital de fase em quadratura OQPSK, mostra-se ser possı́vel usar
técnicas LINC na amplificação de cada uma das componentes OQPSK, com ganhos con-
sideráveis que se devem ao PAPR muito mais baixo apresentado por estas constelações.
Este desempenho pode ainda ser melhorado por uma técnica inovadora: Modulação de
Mangitude em Anel (RMM), que garante a forma anelar da amplitude de um sinal OQPSK
de banda limitada à entrada do amplificador LINC. Este projeto de tese pretende desen-
volver uma prova de conceito de um sistema de tempo real, suportado por uma arquite-
tura FPGA Zynq-7000 SoC para implementação conjunta de decomposição LINC e de
RMM, com duas aproximações diferentes ao problema, feitas em hardware: 1) um sis-
tema baseado em tabelas de consulta (LUT) para cada uma das técnicas LINC e RMM e
2) um sistema baseado em LUT para a implementação da RMM e um módulo de cálculo
em hardware para a decomposição LINC, na sua forma vetorial.

Palavras Chave
LINC, RMM, OQPSK, FPGA, SoC, LUT, Tempo Real, Processamento de Sinal

Contents

1 Introduction 1
1.1 Objectives . 5

1.2 Dissertation Outline . 6

1.3 Thesis framework and contributions . 6

2 LINC systems 7
2.1 Basic concepts for LINC systems . 8

2.1.1 Angle decomposition . 9

2.1.2 Vector decomposition . 10

2.1.3 LINC branches matching . 11

2.2 Digital LINC transmission system . 11

2.2.1 Parameter-imposed limits . 12

3 Magnitude Modulation 15
3.1 The Magnitude Modulation Principle . 16

3.1.1 Look-Up Table Based Approach 18

3.2 Ring-type Magnitude Modulation applied to OQPSK signals 19

3.2.1 LUT scheme . 19

3.2.2 Table size and parameters . 20

3.2.3 Symbol storage and search . 21

3.2.4 Final acknowledgments . 21

4 Architecture Design 23
4.1 Hardware and Workspace . 24

4.1.1 ZC702 . 24

4.1.2 FMC30RF . 25

4.1.3 Other equipment . 27

4.2 System Architecture and Implementations 28

4.2.1 Project backbone - Stellar IP . 29

4.2.2 RRC filter - Core Generator . 32

Contents

4.2.3 LINC and RMM - Vivado HLS 34

4.2.4 Complete project - Xilinx ISE 39

4.2.5 Board programming - Xilinx SDK 43

4.2.6 Board communication - Microsoft Visual Studio 44

4.2.7 External acquirements - GNU-Radio 45

5 Implementation and Simulation 47
5.1 ZC702 total resources’ capacity . 48

5.2 Blocks’ specifications and physical occupation 48

5.2.1 Generator with RMM and upscaling 49

5.2.1.A Timing and resources 51

5.2.1.B Bit rate . 51

5.2.2 Root-Raised Cosine Filter . 52

5.2.2.A Timing and resources 52

5.2.2.B Bit rate . 54

5.2.3 LINC decomposer . 54

5.2.3.A Timing and resources 54

5.2.3.B Bit rate . 55

5.3 Complete system . 56

5.3.1 Original system’ occupation . 56

5.3.2 System #1’s occupation and results 57

5.3.3 System #2’s occupation and results 58

5.4 Final comparison and observations . 59

6 Conclusions 61
6.1 Future work . 62

A Implemented ISE VHDL schematic 67

B FIR Filter Implementation 69

C LINC Look-Up Table 73

D C++ Code of the Implemented Blocks in HLS 75
D.1 LINC Calculator . 76

D.2 LUT LINC . 77

D.3 Generator . 78

Contents

E VHDL Code of the Implemented Snippets in ISE 81
E.1 Counter . 82
E.2 RMM activator . 83
E.3 Output channel selector . 83

i

Contents

ii

List of Figures

2.1 LINC decomposition technique using two different representations. . . . 8

2.2 Basic digital LINC transmission system. 12

3.1 Generic SC transmitter scheme. 16

3.2 Magnitude modulation principle. 16

3.3 MPMM principle. 17

3.4 Generic LUT-based Ring-type Magnitude Modulation transmitter scheme
[1]. 18

3.5 Considered buffer scheme . 21

3.6 Diagrams of the transition path between the constellation’s symbols of a
ring-type magnitude modulated OQPSK signal without RMM (3.6a) and
with RMM (3.6b). 21

4.1 Chosen boards. 25

4.2 High Level Block Diagram of Zynq-7000 XC7Z020 AP SoC. 26

4.3 High Level Block Diagram of FMC30RF. 26

4.4 FMC30RF supplied firmware schematic. 27

4.5 Complete diagram of the hardware setup. 28

4.6 System flow. 29

4.7 Complete software schematic. 29

4.8 Stellar IP workspace. 30

4.9 Generated Stellar IP design. 32

4.10 Vivado HLS workspace. 34

4.11 Vivado HLS main action buttons. 35

4.12 Generator block diagram. 36

4.13 LINC calculator block diagram. 37

4.14 LUT LINC block diagram. 38

4.15 Xilinx ISE workspace. 39

4.16 Graphic implementation of the Counter block. 40

4.17 Implemented code for left button. 41

iii

List of Figures

4.18 Implemented code for right button. 41
4.19 ZC702’s assigned buttons for the above mentioned code blocks. 42
4.20 Block-diagram of the implemented parts of the project. 42
4.21 Xilinx SDK environment. 43
4.22 Microsoft Visual Studio environment. 45
4.23 GNU-Radio project. 46

5.1 Histogram of RNG. 50
5.2 Comparison of filters #1 and #2 for the same random sequence. 53
5.3 Output of RRC filter - LUT implementation 57
5.4 Output of LINC left branch - LUT implementation 58
5.5 Output of RRC filter - Calculator implementation 59
5.6 Output of LINC left arm - Calculator implementation 59

A.1 Complete VHDL design, translated to RTL. 68

B.1 RRC filters details . 71
B.2 RRC filter implementation details. 71

iv

List of Tables

5.1 Available resources of ZC702’s programmable logic (XC7Z020) 48
5.2 Generator spent resources and timing . 51
5.3 RRCs’ spent resources and timing . 53
5.4 LINC calculator spent resources and timing 54
5.5 LINC LUT spent resources and timing 55
5.6 LINC implementations comparison . 55
5.7 Original system’s occupation . 57
5.8 Complete system #1’s occupation . 57
5.9 Complete system #2’s occupation . 58
5.10 Occupation and comparison of all systems 60
5.11 Expected vs. final occupation results . 60

B.1 FIR filter coefficients for Nsym = 5 . 70
B.2 FIR filter coefficients for Nsym = 7 . 72

C.1 LUT input addresses and corresponding output values 74

v

List of Tables

vi

List of Acronyms

DAC digital-to-analog converter

ADC analog-to-digital converter

FIR finite impulse response

FPGA field programmable gate array

HPA high power amplifier

LSB least-significant bit

LFSR linear feedback shift-register

RNG random number generator

WFM waveform memory

SDR software-defined radio

CORDIC Coordinate Rotation Digital Computer

LINC linear amplification with nonlinear components

LUT look-up table

FF flip-flop

RAM random access memory

GPIO general purpose input-output

MM magnitude modulation

MPMM multistage polyphase magnitude modulation

NL non-linear

vii

List of Tables

OQPSK offset quadrature phase shift keying

PAPR peak-to-average power ratio

RC rectangular clipping

RMM ring-type magnitude modulation

RRC root raised cosine

PLL phase-locked loop

VCO voltage controlled oscillator

HDL hardware description language

VHDL Very high speed integrated circuits Hardware Description Language

JTAG Joint Test Action Group

LED light-emitting diode

MUX multiplexer

SC single-carrier

RF radio-frequency

SoC system on chip

ASIC application-specific integrated circuit

DSP digital signal processor

MAC multiply and accumulate

PS processing system

PL programmable logic

FMC FPGA mezzanine card

LPC low-pin count

FIFO first-in first-out

HLS high level synthesis

viii

List of Tables

RTL register-transfer level

UART universal asynchronous transmitter/receiver

MIMO multiple input, multiple output

FFT fast Fourier transform

USB universal serial bus

ix

List of Tables

x

1
Introduction

1

1. Introduction

The need for information in our world grows as a daily basis, and it is mainly sup-
ported by Telecommunications. This rising demand is targeting the focus of communi-
cation engineers to optimize power and spectrum efficiency and transmission rates, while
minimizing systems’ costs [2]. In the design of generic wireless radio-frequency (RF)
transmitters, one of the components that need most attention is the high power ampli-
fier (HPA), since it is a critical component [3]; the HPAs (that can perform linear or
non-linear amplification) have direct influence on the overall cost, efficiency, bandwidth
and linearity of the transmitter.

However, although the HPA component has such an importance to the transmission
system, it does not mean that all the possible improvements that can be made have to
be implemented on the HPA itself; the delivered signal has also an important role on the
overall system performance. In fact, the signal’s characteristics dictate HPA’s features:
while constant envelope signals allow for the use of low-cost power efficient non-linear
(NL) amplifiers, typical modulated signals, with high spectral efficiency, present large
envelope fluctuations (i.e. an high peak-to-average power ratio (PAPR)) and so require
the use of expensive linear HPAs with poor power efficiency [3,4] in order to avoid signal
distortion at the amplification stage. This way of thinking opens a vast set of solutions
on signal conditioning (like PAPR reduction or envelope-control techniques [5, 6]), and
linear amplification with nonlinear components (LINC) decomposition [7] fits easily in
these requirements.

The LINC [3, 8] technique consists on decomposing a signal in two phase-modulated
signals (or branches) that have lower linearity requirements than the original; due to this,
the branches can be effectively amplified by NL amplifiers. This decomposition is clearly
an advantage over sending just the original signal without any processing because the sys-
tem can now benefit from low-cost and efficient signal amplification, rather than expen-
sive linear amplifiers. The NL amplifiers are cheaper, have higher amplification capacity
than linear amplifiers [4, 9], and are much more efficient. The original signal can be re-
produced again by combining the two LINC branches, taking into account that they need
to be synchronized and balanced [3, 7].

However, LINC is greedy in terms of spectrum [3], since the decomposition itself
mirrors the envelope of the original signal: a highly variable input produces outputs with
high phase content, which also contributes to spread the signal’s spectrum. On the other
hand, decreasing the decomposition angle θ to lower values can indeed increase the LINC
combination system efficiency [1]. Besides this, the LINC technique has some nuances
when implemented in digital domain: the non-linear phase variation of their branches
produces spectral regrowth, which is not desirable; for that reason, a high oversampling
rate is included in the system in order to minimize this effect. However, an a priori

2

excursion limiting on the LINC input signal can effectively reduce the high oversampling
requirements.

So, the objective at this point is to emulate at most an amplitude-limited signal, in
both upper and lower bounds. The modulation that is closer to bring such results per se

is OQPSK, which has a controlled envelope and smooth transitions, evades zero-crossing
and produces an inside gap. Choosing a modulation like OQPSK could be a severe lim-
itation for any current transmission system, since it has low spectral efficiency; however,
Dinis et al. [10] shows that any signal from a high-order spectral efficient modulation
can be seen as the sum of several OQPSK signals, so LINC limitations can actually be
easily surpassed without compromising transmission efficiency, and the LINC concept
itself can then be extended to high-order constellations. In fact, the proposed schemes
are considered as valuable solutions for improving power efficiency of next-generation
millimeter-wave communications where the use of multiple NL amplifiers and antennas
is foreseen [11].

Every transmission system of this type needs a pulse shaping filter (usually a root
raised cosine (RRC) [12]), in order to make the transmitting signal more adequate to
the communications channel, e.g., by limiting its bandwidth. An OQPSK, when filtered
by such a structure - that contributes to elevate the signal’s PAPR - looses a part of its
characteristics, namely the shape of the upper and lower bounds of the signal. One way to
evade this problem is to apply ring-type magnitude modulation (RMM), which arranges
the signal in a way that when it is passed by the RRC, the output assumes a ring-type
form, generating a properly conditioned input for LINC. The RMM technique does not
affect noticeably the transmission performance nor does it spread the transmitted signal’
spectrum, and can effectively reduce the PAPR and lower the bandwidth utilization [1].

So, a LINC system, applied through the amplification of bandwidth-limited OQPSK
signals, can clearly benefit from a joint implementation with RMM [13], since RMM ef-
fects will improve the conditioning of the input signal to the LINC technique1 and as so,
there will be lower oversampling requirements posed by performing LINC’s decomposi-
tion at digital domain, as well as improving LINC’s efficiency at the combination stage.

But how should this set of techniques be implemented in practice? There are some
possible ways such as: application-specific integrated circuit (ASIC)s, digital signal pro-
cessor (DSP)s, simple field programmable gate array (FPGA)s or even FPGAs with an
integrated processor (system on chip (SoC)s). Although all have strong and weak points.
For this proof-of-concept, the chosen platform should have the possibility to make fast
and accurate calculations, enough memory storage for all the look-up table (LUT) ta-

1Nowadays, multilevel LINC transmitters are also being tested with promising results concerning effi-
ciency on signals with high PAPR [14].

3

1. Introduction

bles that may be implemented and, above all, the capacity to transmit two RF complex
signals (with an operating frequency approximately at 1.2GHz 2), resulting from LINC
decomposition. Based on these requirements, it is time to choose which platform to use.

ASICs are usually very specific, and as so they are optimized in terms of power or
resource density [16]. However, this only makes sense when the application is already
tested and approved, since a new modification in hardware presents superior costs than
in other devices; due to this, ASIC design can be more expensive. In fact, although
ASICs are known to be low-cost devices, this advantage only occurs because they are
mass produced devices.

DSPs are very efficient and optimized processors when the main purpose is, for exam-
ple, to implement a finite impulse response (FIR) filter: its optimized multiply and accu-
mulate (MAC) structure provides a good option to choose from. Also, today’s DSPs have
simple and easy programming interfaces, and many have full MATLAB/Simulink [17]
integration, as well as FPGAs do. However, some DSPs may not still be the best in class
when compared to designs in FPGA that achieve massive parallelism [18]. Although cur-
rent DSP technology is heading to parallel implementations of algorithms [19], it is still
not enhanced as it is on FPGAs, which can imply lower processing speeds [18].

On the other hand, FPGAs provide the capability of designing a complete system
from scratch, tweak it and perfect it according to the user’s needs (power optimization,
area, speed or timing) more easily than in ASICs [16]; also, they are optimized to process
information in parallel at very high rates. In sum, FPGAs’ programmable logic (PL)
allows many degrees of freedom for the system designer. This is undoubtedly the best
choice for a proof-of-concept, whose needs can be broad and varied [16].

For our real-time system, the implementation is not limited to low-level parallel pro-
cessing, and, for example, a connection to a host PC can be an advantage, in order to
implement a master-slave control system. This can be achieved with an embedded pro-
cessor, which only a SoC can provide: full PL-processing system (PS) integration, where
parallel processing is achieved by the PL (FPGA) and sequential computation is done by
the PS (embedded chip). Ultimately, it is the best of two worlds in one place.

Consequently, the chosen platform was a SoC FPGA, more precisely a ZynqTM-7000
All Programmable SoC ZC702 [20] Evaluation Kit by Xilinx [21], due to its process-
ing capabilities and connections. However, this board does not include any RF trans-
mitters, which are essential to this proof-of-concept, but the existence of two low-pin
count (LPC) FPGA mezzanine card (FMC)3 connectors can surpass this problem, be-

2This operating frequency was specified by project GLANCES [15], where a part of this thesis work is
included.

3FMC is an ANSI/VITA standard [22] I/O connection designed to increase modularity in FPGA systems.
It was created to be used between FPGAs and daughter cards.

4

1.1 Objectives

cause there are many FMC compatible daughter cards designed to transmit in RF that
are ZC702-compatible. Taking this into account, and the RF transmitter frequency pro-
posed (1.2GHz), our choice fell on two FMC30RF4 [23] by 4DSP [24], on its frequency
range variant from 1.2GHz to 3.0GHz. This board is compliant with the VITA 57.1 stan-
dard [22, 23] and has a DAC transmission (Tx) IQ modulator, with a bandwidth up to
30MHz per channel.

Since the chosen environment was a SoC, the signal’s transformation will be fully-
digital, which is an advantage due to the flexibility of digital systems over analog ones (
[3,25,26]). However, the LINC decomposition can be made both digitally or analogically
[27, 28].

Some implementations on FPGA were made concerning LINC [29] and magnitude
modulation (MM) [30] 5 by using different approaches [31,32]. This work aims to present
a full LINC-RMM transmitter, built on a Zynq-7000 architecture and employing different
approaches rather than those widely used, with all the parameters optimized to get the
most of the implemented techniques, in order to prove that such a system is a suitable
candidate for highly efficient and low cost transmissions.

This thesis is also a part of an Instituto de Telecomunicações’ investigation project
GLANCES [15] which is the result of an intense collaboration between the Multimedia
Signal Processing Group from IT-Coimbra and the Wireless Communications Group from
IT-Lisbon, and whose final purpose is to investigate and create a power and spectrum ef-
ficient broadband wireless system, by studying signal processing methods and techniques
like LINC and by building a complete communications system based on that. Besides
the implemented transmission system, created in this thesis, an amplification system with
LINC branches combiner will be built in hardware, in Lisbon.

1.1 Objectives

This thesis proposes to create a working prototype of a real-time system, built on
a Zynq-7000 SoC architecture, that achieves a full RMM and LINC decomposition of
any offset quadrature phase shift keying (OQPSK) signal, ready for transmission. Two
different approaches to this problem were considered:

1. System with a LUT for both RMM and LINC blocks;

2. System with a LUT for the RMM block and a hardware calculation block for LINC;

4Model: FMC30RF 2-1-2-1
5This MM implementation was made by using its real-time variant MPMM, and not LUT-variant RMM.

5

1. Introduction

Both systems will be detailed and compared in terms of performance, FPGA resources
utilization and speed, in the subsequent chapters.

1.2 Dissertation Outline

This thesis is structured in six chapters. After the introduction, LINC transmission
systems will be explored in Chapter 2, and both MM and the used variant RMM will
be explained in Chapter 3. Following these, a concise explanation of all the software
and hardware architectures with some implementation choices will be given in Chapter
4, followed by a detailed description of the performed implementation and simulations
in Chapter 5. Finally, Chapter 6 discusses the main results and conclusions derived from
this thesis work and presents some ways to develop any future work on this subject.

1.3 Thesis framework and contributions

This thesis work was carried out under the project GLANCES [15] (Generalized Lin-
ear Amplification with Nonlinear Components for Power and Spectral Efficient Broad-
band Wireless Systems, supported by Instituto de Telecomunicações – IT). Also, it is
the proof-of-concept of the developed work by Simões [1], and so, the best approaches
considered by Simões will be applied here.

6

2
LINC systems

7

2. LINC systems

The choice of HPAs to a generic wireless transmission system is very dependent of
the requirements of power linearity, and it is known that linear HPAs have low energy
efficiency [4,9] when compared to NL HPAs. The LINC technique [3,7,8] makes the use
of highly efficient NL amplifiers in these transmission systems possible and still achieve
linear power amplification.

This chapter is focused on the description of the LINC technique, on the possible ways
to decompose a signal according to this method and the basics needed to implement such
a system in an FPGA.

2.1 Basic concepts for LINC systems

The LINC technique consists in decomposing a time-varying signal with non-constant
envelope as a sum of two constant envelope phase-modulated signals. This decomposition
can be made through two different representations: one is based on angle decomposition,
and the other is based on vector decomposition.

Our starting point is the generic representation of a signal, S(t), which is given by:

S(t) = r(t)e jφ(t) (2.1)

where both the instantaneous amplitude r(t) and phase φ(t) vary with time. The time-
varying amplitude can still be described as a constant amplitude phase modulated signal
with an angle θ(t):

(a) LINC concept using θ . (b) LINC concept using e(t).

Figure 2.1: LINC decomposition technique using two different representations.

8

2.1 Basic concepts for LINC systems

r(t) = rmaxcos(θ(t))

= rmax
e jθ(t)+ e− jθ(t)

2
(2.2)

where rmax is its maximum amplitude and θ(t) is known as the LINC branches’ decom-
position angle, as depicted in Figure 2.1. From now on, both the decompositions can be
derived from these main equations.

2.1.1 Angle decomposition

The angle decomposition is very straightforward; merging 2.1 with 2.2, thus obtain-
ing:

S(t) = rmax

[
e jθ(t)+ e− jθ(t)

2

]
e jφ(t)

=
rmax

2

[
e j(θ(t)+φ(t))+ e j(−θ(t)+φ(t))

]
(2.3)

From 2.3 it is possible to infer that S(t) has two distinct phase variations (θ(t) and
φ(t)), making it possible to describe 2.1 as the sum of two constant-envelope signals,
S1(t) and S2(t):

S1(t) =
rmax

2
e j(θ(t)+φ(t)) (2.4)

S2(t) =
rmax

2
e j(−θ(t)+φ(t)) (2.5)

where:
S(t) = S1(t)+S2(t) (2.6)

as depicted in Figure 2.1a. As this derivation has no restrictions, it was proven that any
signal can be described as a sum of two constant-envelope signals.

Computationally, in order to calculate LINC’s branches, it is only needed to set a
maximum value rmax and then compute the angle θ(t) from 2.2, which is given by:

θ(t) = arccos
(r(t)

rmax

)
(2.7)

Always having in mind that rmax should be chosen as the maximum amplitude value that
the signal can reach, or else some distortion will occur1.

1A workaround to this problem will be discussed shortly.

9

2. LINC systems

However, regarding the implementation in the FPGA of the LINC angle decomposi-
tion, it is hard to calculate this solution, due to the computational weight of the arc-cosine
function in conjunction with the implicit sines and cosines of Eqs. 2.4 and 2.5. Such
a solution would spend at least two instances of CORDIC [33] blocks to perform these
desired calculations2, since one instance only calculates one function.

2.1.2 Vector decomposition

It is also possible to calculate the LINC branches via vector decomposition, where a
vector 1± je(t) 3 is defined as the transformation factor of S(t) in S1(t) (plus sign) and
S2(t) (minus sign). Using the trigonometric identities:

cos(θ)+ jsin(θ) = e jθ (2.8)

sin(θ) = cos(θ)tan(θ) (2.9)

on Eq. 2.4, we obtain:

S1(t) =
rmax

2
e jφ(t)

[
cos(θ(t))+ jsin(θ(t))

]
=

rmax

2
e jφ(t)cos(θ(t))+ j

rmax

2
e jφ(t)cos(θ(t))tan(θ(t))

=
rmaxcos(θ(t))e jφ(t)

2

[
1+ jtan(θ)

]
=

S(t)
2

[
1+ jtan(θ(t))

]
(2.10)

A similar derivation can be made for Eq. 2.5, obtaining the following:

S2(t) =
S(t)

2

[
1− jtan(θ(t))

]
(2.11)

Regarding these mathematical expressions, it is easy to understand that e(t) is equiv-
alent to tan(θ(t)). Right now, the vectorial form seems to be no different of the angle
form, since it also uses an angle expression to describe LINC decomposition. However, a
closer look, with the aid of the mathematical expression:

2CORDICs are the reference HDL building blocks to perform angle calculation (such as sines, cosines,
tangents and their respective arcs), as well as square roots and polar-to-rectangular conversion and vice-
versa.

3 j the imaginary unit and e(t) an error vector that will be deduced shortly.

10

2.2 Digital LINC transmission system

tan(θ)2 =
1

cos(θ)2 −1 (2.12)

concatenated with the Equation 2.7, shows that e(t) can be described as:

e(t) =

√
r2

max
r(t)2 −1 (2.13)

dispensing the need of a direct angle calculation. Again, rmax should be previously defined
in order to calculate this expression.

Since vectorial representation only needs to implement one CORDIC block for the
square root (which in Chapter 5 will be compared to a simple memory unit (i.e., a LUT)
in terms of resources occupation, for simplicity), it does not use as much FPGA area and
resources as angle representation and it also allows to perform calculations with higher
precision. For this reason, vectorial representation is the chosen type for our approach.

As it is mathematically proven, S1(t) and S2(t) have constant envelopes, and this lead
to the possibility of using power-efficient non-linear amplifiers. So, indirectly, LINC
decomposition increases the overall efficiency of a wireless transmission system.

2.1.3 LINC branches matching

On the receptor side, both LINC branches can be added to generate an amplified
replica of S(t). In theory, the signal Sreceived(t) would be a perfect copy of S(t); how-
ever in practice, this combination requires some care: S1(t) and S2(t) have to be perfectly
synchronized and any unbalances between the transmitting branches can cause small de-
viations between the received signal and the transmitted signal.

The sets of equations (2.4) - (2.5) and (2.10) - (2.11) are mathematically equivalent;
however, one of the sets may outperform the other in a digital implementation of the
system, depending on how the two branches are physically generated [3, 25, 26]. As
stated earlier, vectorial representation will tend to be the most used because the involved
calculations are simpler and faster to execute on an FPGA4.

2.2 Digital LINC transmission system

As referred to in Chapter 1, this implementation will be fully-digital, which is a com-
mon choice [3, 25, 26] due to the offered flexibility. To contextualize, a generic digital
LINC transmitter is shown in figure 2.2.

4More on this topic will be presented in Chapter 4.

11

2. LINC systems

Digital
modulator

L
Pulse

shaping
filter

snxn
LINC

bits

DAC

DAC

sn
left

sn
right

RF
frontend

...

...

Figure 2.2: Basic digital LINC transmission system.

The entering information is assumed to be binary and it is coded by a digital modulator
that shapes the input bits to output symbols (xn). After this, the signal is oversampled by
a factor L and passed through an RRC filter (this process is usually called pulse-shaping,
which limits digitally the bandwidth of the signal to transmit). Finally, the digital signal
sn (equivalent to S(t) in analog analysis) is ready to be decomposed by LINC, and then
converted to analog to be amplified and transmitted.

The value of the oversampling factor L must be chosen wisely, since it will have di-
rect effect on the signal spectrum of the LINC’s components: an arbitrary choice that
does not take the LINC’s oversampling requirements [8] and the digital-to-analog con-
verter (DAC)’s reconstruction filter into account and it may provoke peak regrowth, which
is unwanted. A high oversampling rate avoid these problems, while lowers the needed
complexity of this reconstruction filter, and in consequence, its cost [12].

As stated in Simões [1], the value of L was chosen to be 8, along with other important
parameters for the design. This topic will be further discussed.

2.2.1 Parameter-imposed limits

When talking about the LINC’s discrete-time decomposition, it is needed to take into
account the DAC features (reconstruction filter characteristics and resolution) and the
HPAs’ saturation effect of θ(t) and e(t). These effects may compel the LINC’s input
signal sn to be clipped. In this case, θ and e are given by:

θ (rn) =

{
arccos

(
rn
sM

)
, rn ≤ sM

0, rn > sM
, (2.14)

e(rn) =

√(

sM
rn

)2
−1, rn ≤ sM

0, rn > sM

, (2.15)

where rn is the amplitude of the original digital signal, related to sample n and sM is the
LINC maximum amplitude level (or clipping level)5. As stated in [8], the polar clipping

5sM is the digital-equivalent of rmax, on the previous analog analysis.

12

2.2 Digital LINC transmission system

operation has a slightly superior performance, when compared to cartesian operation, this
being the reason why polar clipping was chosen.
Assuming ideally balanced amplifiers and perfect combining, we can determine the trans-
mitted signal sc using the following equation (assuming an amplifiers’ unit power gain):

sc = sn1 + sn2 =

{
sn, |sn| ≤ sM

sMe j arg(sn), |sn|> sM
. (2.16)

As stated earlier, such a system requires enough bandwidth to accommodate both
signal’s components, while it needs a perfectly balanced branch amplification in order to
cancel the complementary terms of sn1 and sn2, because any possible amplitude or phase
unbalances between the two branches may result in significant performance degradation
[1, 3, 8].

13

2. LINC systems

14

3
Magnitude Modulation

15

3. Magnitude Modulation

The HPA is a key component of the front-end of any RF transmission system, both for
its role and for the great amount of energy it consumes. The spent energy can be lowered
if proper conditioning is done to the transmitting signal, reducing the signal’s excursion
and, in consequence, its PAPR. On an OQPSK transmitting system that includes LINC
and a RRC, the RMM implementation also takes a major role in signal conditioning, sig-
nificantly improving the overall power and spectrum efficiencies. The RMM technique is
then presented as a solution to improve system performance, because it offers the possi-
bility to control the amplitude’s upper and lower bounds, thus increasing energy efficiency
for transmission without noticeable performance reduction, for any given input OQPSK
signal.

This Chapter will explain the model of the RMM method for single-carrier (SC),
thought to fit in the current transmission system.

3.1 The Magnitude Modulation Principle

Figure 3.1 shows a typical SC transmitter, composed by its basic building blocks.

digital
modulator

L H(z)

source
bitstream s[n] x[n]

DAC HPA
x(t) xt (t)

Discrete Time System

s [n]u RF
upconvert

pulse
shaping

Figure 3.1: Generic SC transmitter scheme [34].

The pulse-shaping filter used to limit bandwidth is the main contributor for the trans-
mitted signal high PAPR. In fact, as mentioned in Chapter 1, when the transmitted bits
are mapped in constant-envelope constellations, it is the only contributor for the signal’s
PAPR. This effect makes room for a symbol readjustment operation to limit the signal’s
excursion (prior filtering).

Modulator ↑L H(z)
bits s[n] x[n]

RRC filter
DAC
+

HPA

tx(t)

Pulse ShapingMagnitude Modulator

z
-D

n
s

n D
s

+
�

n D
s

−
�

Magnitude Modulation

Factor Computation

m[n]Memory

Delay Scaling m[n]s[n]

Figure 3.2: Magnitude modulation principle [34, 35].

16

3.1 The Magnitude Modulation Principle

The principles of MM are shown in more detail in Figure 3.2. The technique con-
jugates the knowledge of the pulse-shaping impulse response with the awareness of the
signal being transmitted, with the magnitude modulation factor m[n] that is applied to
each symbol s[n] being computed, taking into account s[n]’s closer neighbors.

Currently, there are two major techniques that are used to apply MM: one is the real-
time calculator MPMM, which implements the RRC on its polyphase representation. In
this method, the MM is as a cascade of basic blocks, as depicted in Figure 3.3, and only the
current symbol is considered for a MM calculation. The other case is the pre-calculated
LUT-based MM, whose implementation is reduced to a simple memory access1 and in
which a sequence of 2D+ 1 symbols is used to calculate only one MM coefficient - the
quantity of used symbols to calculate just one coefficient explains the complexity of the
process and the difficulty of implementing it in real-time.

x[n]
↑LE0(z) +

↑LE1(z) +

z
-1

z
-1

y0[n]

y1[n]

↑LEL-1(z) +

z
-1

yL-1[n]

RRC Filter

s[n]
G00(z)

G10(z)

X

z
-N-1

a0 [n]

b0 [n]
()f

m0 [n-N]

G01(z)

G11(z)

a1 [n]

b1 [n]
()f

m1 [n-N]

G0(L-1)(z)

G1(L-1)(z)

aL-1 [n]

bL-1 [n]
()f

mL-1[n-N]

m[n-N]z
-1

m[n-N-1]

s[n-N-1]

s
(1)

[n]

MPMM Block

min(m0,...,mL-1) Sampling RateSymbol Rate

ƒsampƒsymb

MPMM

Block

s
(k)

[n]

Stage k

Stage 1

Figure 3.3: MPMM system.

Since the real-time computation of the multistage polyphase magnitude modulation
(MPMM) coefficients require high processing rates and FPGA resources, the implemented
system would not benefit much nor would it be capable of having a MM calculator over
a LUT-based approach, due to the fact that the LUT system is far more efficient in terms
of speed and occupied resources.

But, when talking about OQPSK signals, a different MM scheme can be applied,
which is more adequate and provides PAPR reduction: it is the RMM. This technique is
very similar to the MM-LUT, having just one difference: in this case, a lower bound to
the signal’s amplitude is also implemented, in order to decrease the decomposition angle

1Since the calculation of the MM coefficients is computationally heavy and complex, a real-time version
of MM currently makes no sense.

17

3. Magnitude Modulation

θ and thus, prepare the signal for a more efficient LINC decomposition and addressing
its requirements, after pulse-shaping filtering. In our case, this method will be used by
employing a static memory (LUT) in the FPGA.

3.1.1 Look-Up Table Based Approach

The LUT-RMM method relies on a previous computation of all the coefficients, so
that the true effort of a system which implements this method becomes reduced to a
memory access. Figure 3.4 shows the implemented MM block, where 2-bit symbols enter
sequentially to the current set.

n-Dss … n 2Ds −…

Im

Qm

…

…

I
ns

Q
ns

2

π
∑

I
nm

Q
nm

Lookup Table

Lookup Table

n

LO

RRC

RRC

Envelope
Equalized

Shi� Register
bit

stream
Modulator

Figure 3.4: Generic LUT-based Ring-type Magnitude Modulation transmitter scheme [1].

The process of creation of the LUTs is described on Algorithm 1:

Algorithm 1 Concise Algorithm for Computation of RMM Coefficients’ LUT [34].

do {

STEP 0: Setup input data.
Input Data =

{
Signal to be MM ⇐ first iteration

MM signal from previous iteration ⇐ other iterations

STEP 1: Filter data using a RRC filter.

STEP 2: Limit the magnitude of the filtered signal to the specified thresholds Al and Au.

STEP 3: Filter the resulting signal using a match RRC filter.

STEP 4: Sample the resulting signal to obtain the RMM sequence corresponding to
the input data.

} while (Signal limitation occurs in STEP 2)

STEP 5: Output the RMM coefficients by performing the ratio of RMM signal from the
most recent iteration to the input original sequence to be RMM.

18

3.2 Ring-type Magnitude Modulation applied to OQPSK signals

In this algorithm, a channel with noiseless transmission is emulated. The starting MM
sequence is an all-ones vector, so that the algorithm’s first iteration does not include MM.
Then, the input sequence is upsampled, filtered through an RRC and evaluated according
to the algorithm’s clipping method. After this, the output signal is filtered again in a
matched RRC, and the corresponding symbols to the input data are obtained through
sampling. Finally, the quotient between the output and the input sequences is computed,
and this ratio is stored as a MM coefficient. The iterations are repeated until no more
clipping is applied.

3.2 Ring-type Magnitude Modulation applied to OQPSK
signals

The original MM procedures only limit the signal’s envelope maximum excursions,
since their appliance is made in SC transmissions that employ linear HPAs. However,
by using LINC techniques on the system, energy efficiency of the front-end is mainly
limited by the combiner’s efficiency [3, 36]. According to Simões [1], a reduction of
the decomposition angle θ can effectively increase the combiner’s efficiency and reduce
the signal’s PAPR. This can be translated to a lower bound limiting on the LINC input
signal’s amplitude.

The RMM technique appears as an effective excursion control method that can fit
those requirements: its lower and upper bounds limiting helps generate a properly condi-
tioned input for LINC, while not diminishing the transmission’s performance. However, it
would be desirable to have an initial signal that could be as approximate to these require-
ments as possible, in order to simplify the modulation methods. OQPSK appears as the
best candidate, since it has an upper and lower limited envelope, that evades zero-crossing
and has smooth transitions.

This technique was thought to fit a transmission system, which includes a pulse-
shaping filter (an RRC in this case): the final ring-shaped form is only obtained after
filtering, i.e., where the LINC decomposition technique is applied.

3.2.1 LUT scheme

The modulated symbols are stored sequentially in an array, with a total capacity of
2D+1 symbols. When symbol s[n] is first stored, it is used with the previous 2D samples
to calculate the amplitude factor of the symbol s[n−D], which is the current middle
symbol of the stored set, , i.e. the LUT-MM scheme introduces a processing delay of D
symbols. After this computation, all symbols advance one position in the stored array,

19

3. Magnitude Modulation

including s[n], thus making space for one new symbol, that is s[n+ 1]. Now, the scaling
factor obtained is multiplied by s[n−D+1], and the cycle continues endlessly. It is easy
to comprehend that for any finite D length and bits to represent a symbol, there will be a
limited number of possible cases, and in consequence, a limited number of scaling factors.
So, for a constellation with M symbols, this number of factors is equal to M2D+1, which
is equal to the number of entries of the necessary LUT to implement.

The value of D is not arbitrary; it should be chosen accordingly to the RRC filter’s
characteristics, namely roll-off and length, to make sure that all the symbols that con-
tribute for the signal’s amplitude are included in the calculations. The filter’s length is
given by the following expression:

lengthRRC = 2∗Nsym ∗Loversampling +1 (3.1)

where Nsym is the number of considered symbols and Loversampling is the oversampling
factor2. In order to perfectly match the designs of the RRC and the MM LUT, the number
of affected symbols must be the same; this means that Nsym = D. However, an implemen-
tation of the RRC filter with a value of Nsym superior than the perfectly-matched can also
bring similar results 3.

As this technique requires D symbols to be stored before they are actually used, the
RMM block inserts a time delay that is equivalent to the symbol time Tsymb multiplied by
D symbols.

3.2.2 Table size and parameters

As stated earlier, considering a LUT-MM memory of 2D+1 symbols and a constel-
lation of size M, the computed MM LUT will have M2D+1 entries. In our case, D was
chosen to be equal to 3, in order to have a reasonable contrast between the LUT states
and not an enormous table, to acknowledge system’s timings and resources. Also, the
implemented constellation is an OQPSK4, which leads to an M factor equal to 4; the
constellation size can never be neglected since it greatly affects the overall length of the
generated LUTs. These values originate two 16384-entries LUTs (one for I and one for
Q), where is being employed rectangular clipping (RC).

Regarding the RRC implementation with a specification of having a roll-off factor of
25%, a filter was designed (spreading over 7 past and future symbols) and an oversam-
pling factor L = 8.

2Note that the length of the RRC filter is always odd.
3It is taken as example the study made in Simões work [1], where D = 5 and Nsym = 7, without any loss

of performance; more on this topic will be developed on Chapter 5, Sub-chapter 5.2.2.
4Refer to project GLANCES [15].

20

3.2 Ring-type Magnitude Modulation applied to OQPSK signals

3.2.3 Symbol storage and search

The way symbols enter the shift-register is intrinsically connected to the MM table
algorithm. In the current case, and due to the method used to create the LUTs, any new
symbol is appended on the right, and all the symbols are composed by their quadrature
component (Q value), followed by their in-phase component (I value), in a right-to-left
scheme, as stated in figure 3.5. This value is implicitly casted to a 14-bit unsigned integer
(i.e., 2D+ 1 times 2 bits/symbol), being the bit In+D the least-significant bit (LSB); this
14-bit number is used as the input of the RMM LUTs, which gives the corresponding
coefficients to be multiplied by the current middle symbol.

IQ
n+Dn+D

...... IQ
nn

IQ
n-Dn-D

input symbols
(as bits)

Figure 3.5: Considered buffer scheme.

3.2.4 Final acknowledgments

The expected result of ring-type magnitude modulation on an OQPSK modulated sig-
nal is illustrated as an example in Figure 3.6 ([1]). It is shown that the samples that
overpass the imposed amplitude threshold are uniformized and that the inner gap is wider.

(a) (b)

Figure 3.6: Diagrams of the transition path between the constellation’s symbols of a ring-
type magnitude modulated OQPSK signal without RMM (3.6a) and with RMM (3.6b).

According to Simões [1], Al and Au will be set to 0.8 and 1.1 (which are the applied
thresholds on Figure 3.6b), respectively; this choice is corroborated by Simões work [1]
on LINC acceptance of various lower and upper bounds testings.

21

3. Magnitude Modulation

22

4
Architecture Design

23

4. Architecture Design

In the previous chapters, both LINC techniques and RMM were theoretically ex-
plained, always having in mind the final purpose of this thesis. However, some develop-
ments and equations that seem rather easy to develop in theory, become quite complex to
implement on FPGAs (for example, LINC angle representation would require CORDIC
blocks to compute sines, cosines and arc-tangents, which are more resources consum-
ing than vector’s representation, which only needs a square-root calculation). Also, it is
always necessary to know that all the resources are limited, which conditions the devel-
opment of optimal code to maximize operation speed and minimize the occupied area.

This chapter aims to explain the developed implementation, both in hardware terms
(devices used and testing workspace) and in software terms (utilized programs and im-
plementations). This chapter opens the way to Chapter 5, where a more complete overall
implementation will be discussed, along with the obtained results.

4.1 Hardware and Workspace

As referred to in Chapter 1, some generic requirements would be necessary (e.g. high
processing power and speed), in order to accomplish all the stages of the transmission
system correctly. The selected board was a ZynqTM-7000 All Programmable SoC ZC702
[20] Evaluation Kit by Xilinx [21] 1, with two FMC30RF2 boards [23] by 4DSP [24],
on its’ frequency range variant from 1.2GHz to 3.0GHz, because the system was thought
to be operating with a 1.2GHz carrier RF frequency3. A photo of the utilized boards is
shown in Figure 4.1.

4.1.1 ZC702

The ZC702 is the main board of the hardware setup: it is here that all implementa-
tions are deployed and whose physical resources are used. The ZC702’s features include
a JTAG interface for communication and bitstream upload, an Ethernet interface via a RJ-
45 connector, a USB-to-UART bridge, an I2C bus [37], two FMC LPC connectors, 1GB
DDR3 component memory and general purpose input-output (GPIO); also, the SoC con-
tains an integrated PS and PL (depicted in Figure 4.2), whose both parts run independently
and the PS holds two ARM CortexTM-A9 application processors, internal memories and
external memory interface and peripherals such as the ones mentioned above. This thesis
will only step through the most relevant board details; however, a more complete descrip-
tion is available in [38].

1Zynq SoC device reference: XC7Z020-1CLG484C.
2Model: FMC30RF 2-1-2-1.
3From now on, the selected FPGA will just be called ZC702, and the daughter cards will be called

FMC30RF, for simplicity.

24

4.1 Hardware and Workspace

Figure 4.1: Board set.

This board’s PL has a 200MHz system clock source and programmable user clocks.
For the implemented design, a 100MHz clock is generated to feed all the hardware com-
ponents. Also, it has a PS clock source, working at a frequency of 33.3MHz. Our system
will be completely developed inside the PL, since all the created blocks work in VHDL.

4.1.2 FMC30RF

The FMC30RF boards are RF transceivers with a dual DAC transmitter IQ modu-
lator with up to 30MHz bandwidth for each channel4 and a dual analog-to-digital con-
verter (ADC) receiver IQ demodulator, with an on-board PLL/VCO. The DAC offers a
transmission rate up to 250Msamples/s with a 12-bit precision. A high level block dia-
gram is shown in Figure 4.3, and a broader description of this board is available in [40].

The original firmware schematic of the board is also presented, where the created
structures are depicted with more detail, like the reception FIFO or the transmission
WFM, which is a memory block used to store the values before transmission. This block
works like a FIFO, but with slight differences: here, the values are only refreshed if a
direct command is sent to the block. While that does not happen, the WFM keeps send-

4Although 4DSP announces up to 60 MHz of bandwidth, this value is a sum of both the I and Q band-
widths, as stated in [39].

25

4. Architecture Design

Figure 4.2: High Level Block Diagram of Zynq-7000 XC7Z020 AP SoC.

Figure 4.3: High Level Block Diagram of FMC30RF.

26

4.1 Hardware and Workspace

ing the same set of data continuously, working as a circular FIFO. This could become a
problem if the objective is to generate a transmission channel; however, it has a simple
solution, as it will be discussed in Sub-chapter 4.2.5.

Figure 4.4: FMC30RF supplied firmware schematic.

4.1.3 Other equipment

Besides the above mentioned boards, some equipment was used to test and acquire the
output signals, namely an HP 8591E Spectrum Analyzer, which has a range that covers the
chosen RF transmission frequency, and a USRP B210 software-defined radio (SDR) board
[41], which is a transceiver board that also supports the reception of the desired frequency.
Both equipments present evaluations in real-time. Host computer-board interaction was
also used to acquire directly the generated data from the RRC and LINC blocks’ outputs,
which is considered to be more reliable to see if the blocks are working correctly.

The hardware setup is depicted in Figure 4.5. The first equipment was used to ana-
lyze the spectrum and test in part the validity of the output signals that came from both
FMC30RF boards (LINC branches), and the second one was used to see the same out-
puts, but in both time and frequency domains and the constellation of the signal. While
the spectrum analyzer requires no software, the USRP board needs a host computer with
USB5 that runs GNU-Radio [42]. GNU-Radio is an open-source software that works

5Preferably, USB 3.0 or better to provide decent dataflow speeds (USB 2.0 will also work).

27

4. Architecture Design

Acquiring equipment Transmi�ng equipment

Host computer

Figure 4.5: Complete diagram of the hardware setup.

based on a programming block environment to manage compatible SDR boards. How-
ever, since this material was only used to measure and acquire some signals’ elements, a
detailed explanation on its working will not be given on this thesis.

4.2 System Architecture and Implementations

The focus of this work is to build in FPGA an efficient OQPSK transmitter system
with its power efficiency leveraged through the use of RMM and LINC amplification
techniques. Figure 4.6 shows the architecture of this system, that is composed by: a
pseudo-random OQPSK symbol generator, the ring-type magnitude modulation block,
an upsampler and the pulse-shaping RRC filter, the LINC decomposer and a transmitter
front-end that is capable of reproducing the two output branches of LINC. Ideally, a
signal sink connected to some of these elements would be an advantage, since it would
allow capturing intermediate values, for more accurate testings. This evaluation will be
performed by connecting the outputs of the ”transmission via RF” block to the acquiring
equipment previously mentioned.

Hardware implementation was mainly supported by software tools; like most of the
actual platforms on the market, each of the above described hardware parts have a pro-
prietary software included to increase systems design’s speed. The manufacturers of
FMC30RF offer a software which is compliant with one of the available design suites
from Xilinx, so software compatibility should not be a problem. For the different stages

28

4.2 System Architecture and Implementations

Signal source RMM Upscaler RRC filter LINC
RF

transmission

Project Backbone

Figure 4.6: Projected data flow.

of this design, the used programming/software languages were VHDL in Xilinx ISE [43],
C/C++/System C in Vivado HLS [44] and in Visual Studio [45], and the block-based
programming Stellar IP [46]. Since several different programs were used during the de-
signing process, a simple schematic is presented on Figure 4.7 to unveil a small part of all
the stages that have been undertaken.

RF front-end

Backbone

RRC filter

Generator
LINC

RMM

Stellar IP
project

ISE project

Vivado HLS

Core Generator

SDK project

bitstream

ZC702
board

Visual Studio
project

generates creates
blocks for

deploys to interacts with

Figure 4.7: Complete software schematic of the design process.

4.2.1 Project backbone - Stellar IP

The starting point of the transmitter’ software architecture is the base firmware that
came with the FMC30RF boards - a Stellar IP project. This project does not really pro-
gram anything; it simply creates the backbone of the complete project, and arranges the
fundamental building blocks of the design, like the hardware description language (HDL)
files which configure the hardware of the FMC boards or the ZC702 main board. This part
can be seen as the lowest level in programming terms, since these blocks describe directly
the utilized hardware structures. Stellar IP6 is a proprietary software, produced by 4DSP,
that builds a Very high speed integrated circuits Hardware Description Language (VHDL)
project from their building blocks environment.

6Version used: 1.2.0.0.

29

4. Architecture Design

Stellar IP

The workspace is depicted in Figure 4.8; it is very clean and simple, and it functions in
a pick-and-place way: the system designer only needs to select the necessary components,
drop them in the main design window from the left pane of blocks, and finally wire them.
However, this simple aspect can be tricky to a newcomer: errors are not well documented,
and the tool itself provides almost no feedback on how to solve them. For example, the
simple act of putting an extra block and connecting it correctly on any original design will
trigger an error, unless some intrinsic parameters are altered before this change.

Figure 4.8: Stellar IP workspace.

The original Stellar IP project was prepared to receive the transmitting signal from
the host computer to the board via Ethernet, and to send the acquired signal from the
board to the host via the same protocol, which is equivalent to say that, originally, the
signal source would be the host computer. However, the boards producer states that the
original firmware does not support very high downlink speeds and may not be reliable in
timings as the designer wishes [47], which is a major weakness if working at high clock
frequencies is a necessity. Because of this situation, our design method was rethought
and the employed solution was to generate a signal’s source in VHDL to be implemented
inside the main board, i.e., the ZC702. This would solve any possible timing problems,
since it is the board itself that is generating the input, instead of an external source.

In addition, the original firmware was only designed to handle a single FMC daughter
card with a single ZC702 board, with one RF reception and one RF transmission channel.
But, in our case, two output branches are needed for LINC; a single FMC30RF card is

30

4.2 System Architecture and Implementations

not able to emit them simultaneously, so two boards are needed. This was indeed the
principal and most challenging alteration made on the original design: add a second FMC
block and connect it to the rest of the diagram, working with both the transmission and
reception channels - this is the design flow of a multiple input, multiple output (MIMO)
system.

However, in order for this diagram to work, more than 100% of the available resources
of the ZC702 would be needed, which means that the MIMO system would not be fea-
sible. So, a workaround was employed: since the important part of a transmitter is its
transmission channels, the receiving ports of both the boards were disconnected from the
main board, thus deactivating for now the entire reception part on the block diagram.

Block diagram

Figure 4.9 depicts the final block diagram achieved in Stellar IP for this system. As
mentioned, there were two FMC30RF parts (3) used, a ZC702 part (5), and some control
parts: a command multiplexer (MUX) (4) where the control signals of all the blocks are
multiplexed, in order to connect them to the ZC702; an I2C [37] master (2) which handles
some control signals of the ZC702 board itself; and a block to store all the necessary info
about the design like the number of blocks or their memory indexes: the Constellation ID
block (1). It is possible to observe in the FMC30RF blocks that the rx pin is disconnected,
to accomplish the deactivation of the reception part of the design. The rx port handles the
FMC30RF’s gathered values from the ADC.

As it can be seen in Figure 4.9, the transmitting ports of the FMC30RFs are connected
to an output port of the ZC702 board, which means that, by now, the main board is con-
sidered to be the signal source for our future design. This topic will be further evaluated.

When it is completed, the design can then be generated and a VHDL project is built,
to be used in Xilinx ISE software [43] 7.

New structures placing

Once the fundamentals of the transmitter are concluded, the software blocks (RMM,
RRC and LINC) can then be developed. The obvious place where these structures should
be inserted is between the signal source and the transmitting port of the FMC30RF.
But first, more important questions arise: these implementations should be described
in VHDL, in order to fit in the existing backbone, but building such complex designs

7Although Xilinx has already a newer and more complete suite of design tools, i.e., Vivado Design
Suite [48], Stellar IP does not support Vivado project generation for any FMC30RF design, neither the
company plans to support it in the near future whatsoever [49].

31

4. Architecture Design

cmdclk_in

cmd_in

rst

cmd_out

sip_cid
cmdclk_out

cmd_out

cmd_in

clkout

rst_out

in_data

out_data

sip_zc702_host_if

clk

rst

cmdclk_in

cmd_in

cmd_out

sip_i2c_master

cmdclk_in

cmd0_in

cmd1_in

cmd2_in

cmd3_in

cmd4_in

cmd5_in

cmd6_in

cmd7_in

cmd8_in

cmd9_in

cmd10_in

cmd11_in

cmd_out

sip_cmd12_mux

clk

rst

cmdclk_in

cmd_in

cmd_out

rx

tx

sip_fmc30rf

tiedto0

tiedto0

tiedto0

tiedto0

tiedto0

tiedto0

tiedto0

tiedto0

clk

rst

cmdclk_in

cmd_in

cmd_out

rx

tx

sip_fmc30rf

tiedto0

tiedto0

tiedto0

1

2

3

3

4

5

Figure 4.9: Generated Stellar IP design.

in VHDL by hand would be very problematic, even if the designer has solid skills in
hardware description languages.

Fortunately, there are some tools that automatically construct VHDL blocks from a
set of existing designs from where the user can choose, like Xilinx Core Generator [50],
that are very optimized and are widely used (like filters, FFT blocks or FIFOs). In case
the designer wants something very specific, and because of that it is not available in these
predefined libraries, there are some other tools that can build VHDL structures from code
in other languages, such as C or C++; these are the high level synthesis (HLS) tools,
and in this case, a wide range of software is available, such as Xilinx Vivado HLS [44],
Bluespec [51] or PandA [52].

In our transmitter’s case, both these needs apply. Since an RRC filter in our design
is needed, a tool, as the first type mentioned, is used, which is the Core Generator [50].
Also, the offered set of designs from Core Generator do not hold blocks that perform
neither LINC decomposition nor RMM, so for these implementations, a second-like tool
will be used: Vivado HLS [44]. Both these tools are developed by Xilinx, this being the
main reason of their choice, to avoid having integration problems.

4.2.2 RRC filter - Core Generator

The pulse-shaping filter, in this case an RRC, is one of the key elements of any RF
transceiver, since it limits the signal bandwidth and adapts it to the characteristics of

32

4.2 System Architecture and Implementations

the communications channel, in the digital domain. Filters are common components of
communication systems (and signal processing systems in general), and thus they are
already built and optimized to be synthesized in hardware. Indeed, Core Generator [50]
has a FIR filter implementation in its library, so it is only necessary to personalize it
according to our needs.

In our architecture, an OQPSK-modulated complex signal is provided at the entrance
of this block, and so the filter has to employ two single-rate channels (one for the in-
phase component and another for the quadrature). In Sub-chapter 3.2.1, an explanation
was given on the relation that should exist between the number of taps to implement on
the filter and the quantity of affected symbols from the RMM: the RMM LUT tables
size should follow the number of the filter’s Nsym, which in our case is equal to 7. How-
ever, Simões [1] used an RMM table with just 5 affected symbols, since a table with 7
affected symbols would have a size of approximately 109 entries (refer to Sub-chapter
5.2.2) and is computationally extremely heavy to create. This shrink of the RMM tables
was successful, because there was not any apparent loss of performance in his system.

In our case, and since the tables are being implemented in an FPGA with limited
resources, even the use of RMM LUT tables with 5 affected symbols was not feasible,
since it occupied more than 100% of the ZC702 LUT’s resources; this problem motivated
a new reduction in the size of the RMM tables, using just 3 symbols, instead of 5 used
by Simões [1]. This increased gap between the number of affected symbols by the RRC
filter and the RMM LUTs motivated some testing, to understand if an RRC filter with the
factor 7 and the RMM implementation with the factor 3 would work well together, or if
instead a filter with a lower factor, i.e. 5 affected symbols, would perform better, due to
the smaller difference between factors. The resulting comparisons show that the smaller
RMM table implementation was successful and that both filters perform similarly; the
results are presented on Sub-chapter 5.2.2, whose filters’ details are shown in Annex B.

Filter implementation

Therefore, regarding the filter implementation, Simões [1] approach will be followed:
the implemented filter will have 113 taps, generated in MATLAB [17] with a roll-off fac-
tor of 25%. The FIR block also offers the possibility of upsampling the input sequence
by a constant factor, which would be desirable; however, this upsampling does not sup-
port OQPSK, since it is not possible to specify a time shift between the implemented
single-rate channels, i.e., the in-phase and quadrature components. Because of that, the
upsampling is performed outside the RRC filter block.

Finally, at the input, a set of two fixed-point signed values are expected (one for I and

33

4. Architecture Design

one for Q) with a format of Q4.188, and all the calculations inside the block are done
in fixed-point arithmetics: the coefficients are stored in a fixed-point format of Q0.16 in
a complements of 2 arithmetic. At the output, signed Q7.9 values are expected at each
channel, and an output rounding mode of truncating LSB is performed.

4.2.3 LINC and RMM - Vivado HLS

Due to their specificity and novelty (as for RMM), the core blocks of our transmitter,
namely LINC decomposition and RMM, are not implemented in the Core Generator li-
braries; the same happen to the OQPSK signal source and the upsampler, which need to
be implemented to surpass the original system limitations. A solution that is followed is
to create them in Vivado HLS v2015.2, which is a C-to-HDL synthesizer [44]. Using this
type of tools, much time can be spared in system designing over direct VHDL writing,
because whether the design is big, complex or hard to describe in hardware language, the
software will automatize all the programming sequence and build an accurate machine
model, discarding the user of all this work.

Vivado HLS

Vivado HLS workspace is shown in Figure 4.10. On the left pane, there is a file
explorer of the open project, and in the middle is the language editor.

Figure 4.10: Vivado HLS workspace.

8Notation: Q BitsInteger.BitsFractional .

34

4.2 System Architecture and Implementations

On top (refer to Figure 4.11 to better understand this explanation), it is possible to syn-
thesize the code (2), to run a C simulation (1), to co-simulate C and RTL (3) for a more
precise report on the behavior of the design, and to export the design (4), so it can be used
on ISE [43], for example. All these actions, except the last one mentioned, produce a
block and timing report in terms of clock cycles, function of the board operating frequen-
cy/period, chosen in the project properties. These reports detail the main resources and
the minimum amount of time that the block needs to function properly, and so they are
very important to the designer since it is possible to preview if one block will fit the main
design constraints or not.

Figure 4.11: Vivado HLS main action buttons.

Implemented blocks in Vivado HLS

In this thesis, three different blocks were built in Vivado HLS [44]. The first two
refer to the LINC decomposer, comparing two different approaches in terms of speed and
calculations accuracy in the implementation of the vectorial decomposition equations (see
Section 2.1.2). The first block performs it by calculating all the stages, while the second
uses a LUT where the calculation of the error vector 9 is performed with a memory block.

The third block holds the RMM. However, since it was also necessary to create a
signal source and to upsample the RMM output in order to prepare it for filtering, all
these functions were combined in just one block. So, this major block will internally
generate an OQPSK signal, perform RMM on it and then upsample the resulting signal,
making it ready to pass through the RRC. Due to the quantity of different operations
that this block has to perform, it will just be called ”Generator”. A block diagram of this
system is depicted in Figure 4.12.

Generator block implementation

The Generator uses a fast algorithm (based on the fast C algorithms from [53], which
will be discussed in detail in Chapter 5) in C to create random10 numbers of two bits
between 0 and 3, since the employed modulation is OQPSK, i.e., one bit for the in-phase
part and other for the quadrature part. Next, the generated symbols enter sequentially a

9Refer to Eq. 2.13.
10Almost none of the random number generator (RNG) algorithms can generate ”true” randomness,

unless they use external random variables.

35

4. Architecture Design

nsn Ds + … n Ds −…

Im

Qm

…

…

I
ns

Q
ns

I
nm

Q
nm

RNG
0 ~ 3

N

N I

Q

Figure 4.12: Generator block diagram.

zero-initialized register with size of 14 bits (i.e., 7 symbols) 11 and this register is used as
an integer to access the RMM-LUTs, in order to find the correct coefficients to apply to
the middle symbol of the register. All the RMM coefficients are signed and were stored
in a fixed-point arithmetics of type Q2.1812; the intermediate calculations are also made
in this arithmetic and with a wrapped saturation.

Next, the resulting values are multiplied by a factor of
√

N, in order to maintain the
signal’s average power after interpolation, and then upsampled by this N factor, in which
N is coherent with the number of affected symbols of the RRC filter. In this case, since
the upsampling is fixed for all the implementations, it would not make sense to perform
a real-time computation of

√
N because it would consume many resources. Thus, this

value was calculated outside the HLS environment and then included as a constant in the
code of type Q3.18, to be multiplied by the samples. Finally, floating point values of type
Q4.18 are released from this block. As stated in Simões [1] work, N must be chosen to be
at least equal to 8 to fit in the oversampling requirements of digital LINC implementation.
For our case, the upsampling factor was chosen to be precisely N = 8.

In this block, a small detail was also implemented, in order to allow the final user to
have more control on what is happening inside the block: a binary input was created to
turn on and off the RMM code snippet, i.e., to activate and deactivate the RMM appliance
on the signal. This topic will be discussed shortly.

LINC decomposition block implementation - 1st design

Regarding the LINC decomposition block, it takes 2 complex symbols at a time, i.e.,
four Q16.0 values (one in-phase and one quadrature sample for each complex symbol of

11Refer to Sub-section 3.2.2.
12Notation: Q BitsInteger.BitsFractional .

36

4.2 System Architecture and Implementations

the digital input signal at the arbitrary time sample n: s[n] and s[n+1]) for each cycle and
apply LINC, whose decomposition of one complex value results in two complex samples
(one for each branch). It also receives as input the maximum admissible value for LINC,
which is an unsigned 32-bit integer. Although the outputs of the RRC block are Q7.9
fixed-point values, they are being implicitly casted as 16-bit integers, which in our case is
equivalent to multiply the samples by 29. This happens because the output of this block
needs to be a 16-bit integer, to connect correctly with the DACs, and since an initial scale
is being done.

This block was built this way because the original design structured the arrival of new
samples to the DAC in sets of 2 adjacent values, i.e., for each clock cycle, the in-phase
and quadrature components of the signal on an arbitrary time n would arrive, followed
by their adjacent in-phase and quadrature components of the signal on the time n+1. In
order to simplify the introduction of new blocks to the original design, it was chosen to
use the existing structures, like the signal FIFOs that deliver the signal this way, instead
of altering them, since they are compatible with the DACs, which need to receive values
in this configuration.

The decomposition made on the LINC calculator implementation is represented by a
block diagram on Figure 4.13, which includes the numeric representations of their intern
stages. Here, the I and Q samples of the same time slot are acquired, and the computation
of the quadratic modulus is performed; if this value surpasses the maximum, then it is
reduced to the threshold. Finally, the square root is applied and the output samples are
computed. Note that the quadratic modulus is stored inside a C++ double-type variable
and the result of the square-root is stored inside a C++ float variable; it allows for a flexible
computation and storage of the obtained values, although it may need more resources than
a fixed-point architecture. In this case, an upper and lower saturated arithmetic was used.

x2

x2

+

I

Q

sum > MAX ? MAX : sum

MAX

..
-

1

x

x

-

-

+

+

real

real

imaginary

imaginary

}

}

left

right

branch

branch

Q16.0

Q16.0

C++
double

Q32.0 C++
float C++

float Q16.0

Q16.0

Figure 4.13: LINC calculator block diagram.

LINC decomposition block implementation - 2nd design

The memory block implementation performs a similar set of operations, but instead of
having the quadratic modulus assertion with MAX and the square-root calculator, it has a

37

4. Architecture Design

4096-entries LUT. The index for gathering a value from the LUT is achieved by applying
a mask to the quadratic modulus, in order to obtain a 12-bit value. The chosen 12 bits are
the 22th to the 11th. This may be an odd choice; however, some analysis on the output
values of the RRC, i.e., the input values of the LINC LUT block show that these values
never surpass a threshold of approximately 700 units, so a tailored solution was made
to cover the most significant bits of this maximum value. This LUT outputs Q6.1413

fixed-point values, which hold a reasonable precision for the necessary calculations.
Contrarily to the calculator implementation, the LUT LINC block was designed with

very tight bit representation, i.e., the numeric formats were closely drawn to minimize bit
wasting. Figure 4.14 displays the implemented design.

x2

x2

+

I

Q

x

x

-

-

+

+

real

real

imaginary

imaginary

}

}

left

right

branch

branch

Q16.0

Q16.0

Q32.0

Q6.14 Q16.0

Q16.0

LUT

bits 31 to 23

bits 10 to 0

bits 22 to 11

Figure 4.14: LUT LINC block diagram.

Although the structure of this implementation can make it faster than the homologous
calculator (due to the substitution of the square-root block by a LUT), it may have less
precision 14. In Annex C, further information is presented pertaining to this LUT.

Vivado HLS code directives

The C++ code of all the blocks designed in Vivado HLS [44] is presented in Annex
D. Note that this is a FPGA implementation, whose parallelization is a great advantage.
All these blocks were designed to work in pipeline, speeding up the calculation processes.
This can be done with easiness just by applying this line of code in the beginning of the
C++ code:

#pragma HLS PIPELINE

With this, Vivado HLS [44] will try to parallelize at most the design, allowing for faster
processing rates in these blocks. This directive, along with other Vivado HLS details,
such as saturation and arithmetics architecture, were consulted in [54].

With all the blocks finished, it is now necessary to insert them in the backbone design.
All the VHDL blocks created in Vivado HLS have extra control ports, apart from the

13Notation: Q BitsInteger.BitsFractional .
14This observation will be further detailed on Chapter 5.

38

4.2 System Architecture and Implementations

inputs and outputs that are generated from code translating. These extra control ports will
have a very important role on fitting the corresponding blocks in the complete design,
since they can start the activity, acknowledge the stop and indicate the readiness of the
blocks.

4.2.4 Complete project - Xilinx ISE

All the building blocks individually implemented were, in a second phase, connected
in the backbone project. ISE 14.7 is the software that can handle the project as a whole,
synthesize it and generating a bitstream, which is the core piece of the implementation
in ZC702. Its workspace is presented in Figure 4.15. On the upper left pane, the HDL
hierarchy is presented, and in the middle left there are the possible activities, like syn-
thesis and FPGA mapping. The right pane holds the text editor, where the HDL files are
presented.

Figure 4.15: Xilinx ISE workspace.

Control signals and timing requirements

When designing, in any HDL, it is necessary to take into account all the control sig-
nals and timings; these are not only useful to the system designer, but also needed to
implement a correct work dynamics between the code snippets. In our design, the first
and second blocks (the Generator and the RRC, respectively) are both external blocks that
have their own control signals, and whose data connection between them have different

39

4. Architecture Design

rates. Bearing this in mind, a Counter was implemented to synchronize the Generator and
the RRC filter, due to the disparity of their input and output latencies15, since the first
block outputs 32 values and the second only receives two per cycle. The Counter was
made to certify that a block only starts working when there is available information from
the back; no block will start with erroneous information, and with this, the integrity of the
whole system is ensured.

The Counter is clocked at 100MHz, like all the other blocks, and activates an incre-
ment register for each cycle (starting at 0) when an input enable is activated; this effect
triggers an enable signal to the output. When the counter reaches 31, the output enabled
signal is deactivated and the counter resets. This block was implemented because the
structure that sends the enabling trigger has 32 data values to dispatch for each finished
operation, and the receiving structure only accepts two values per cycle. A graphic im-
plementation of the Counter is shown in Figure 4.16.

COUNT=0;
RRC_START=0;
if GEN_DONE then
 while COUNT < 32
 RRC_START=1;
 COUNT++;

GEN_DONE RRC_START

Figure 4.16: Graphic implementation of the Counter block.

User-controllable options

Apart from this, another two fractions of code were designed directly in VHDL. One
was built to make it possible to activate or deactivate RMM and it is depicted in Figure
4.17, where the block is represented by a pseudo-code of the implementation. This func-
tion is controlled by a ZC702’s pushbutton and the RMM initial state is 0 (deactivated).
The assigned button is the ZC702’s user pushbutton SW5 (left), and is represented in
Figure 4.19 with the number 1.

The other code snippet (depicted in Figure 4.18) works as a channel selector and
connects the input port of the output data FIFO (which originally stores values that are
then sent to the host computer) to one of the following outputs: the out port of the RRC
or the output of the LINC left arm. It is also controlled by a button, the ZC702’s user
pushbutton SW7 (right), which is represented in Figure 4.19 with the number 2.

It was said before than both the receiving ports that connects the input of the FMC30RF
to the ZC702 (and from there to the host computer, via Ethernet) were disabled in Stellar

15One block’s output will be connected to other’s input; this implementation serves to clock-enable the
receiving block while there is any available output from the other.

40

4.2 System Architecture and Implementations

GEN
(HLS)

MM=0;
if PUSH then
 MM=not(MM);

MMPUSH

Figure 4.17: Graphic implementation and pseudo-code for RMM activation.

IP, due to the over occupation of the resources. However, the limit occupation is only
exceeded if the two receiving channels are enabled. Using just one receiving path will not
occupy all the available resources, and so, a shunt was made in one of the paths, in order
to be used to give feedback of the data operations inside the main board, like the output of
the RRC filter or LINC. This code snippet is the part that handles whether this feedback
channel connects, to send information to the host computer.

Output
Data
FIFO

PUSH

RRC

LINC
...

...

le�

Figure 4.18: Graphic implementation of the output channel selector.

However, due to the fast PL clock speed, one can not precisely know which is the
current mode when a pushbutton is pressed, and so, some of the ZC702’s available LEDs
were used to acknowledge the state change (highlighted in Figure 4.19): the two on top
turn on when RMM is activated and turn off when the opposite happens; the second pair
activates when the output comes from the RRC and deactivates when the output is the
LINC left branch. The other LEDs simply mimic the pushbuttons, and do not maintain
their state like the above mentioned LEDs.

Blocks pairing

Finally, a word on the overall implementation. As stated before, all the HLS-based
blocks have direct input and output connections to start, acknowledge the end and the
readiness of a new operation. These signals are extremely important to put the system
correctly working, and then some care was taken on how to connect them all. The used
approach was to include built-in FIFOs on the output of all the blocks, except the LINC
block (which is the last of the chain), and also to include input FIFOs before the input

41

4. Architecture Design

Figure 4.19: ZC702’s assigned buttons for the above mentioned code blocks.

ports of every block (except the first block - the Generator), in order to nullify any bit rate
differences between the blocks and to guarantee that all the blocks will have available
information before they start operating.

A simple block-diagram of the implemented connections between all the created
blocks is shown in Figure 4.20.

GEN RMM Upscaler RRC

Counter

LINC

data

done start

data

control control

to host

to RF
frontend

Figure 4.20: Block-diagram of the implemented parts of the project.

The complete design includes not only the Stellar IP backbone project (synthesized to
VHDL), but also this Counter and the generated blocks in Vivado HLS and Core Gener-
ator16. The code for these small snippets is available in Annex E. The complete design
can then be synthesized, with all the components mapped in the FPGA, and when these
processes are complete, ISE generates a bitstream to program the board; the programming
process is then delivered to Xilinx SDK.

16Due to the size of the schematic of the design, it will be presented in Annex A.

42

4.2 System Architecture and Implementations

4.2.5 Board programming - Xilinx SDK

When the synthesis and mapping processes are complete for the PL resources, a bit-
stream is created to program the ZC702 board’s logic. This bitstream is then sent to the
SDK to be deployed. This software (presented in Figure 4.21) manages all the board pro-
gramming, both for PL and for PS, although its main focus is the latter. Here, the coding
task is made in C or C++, and the developing environment is based on Eclipse [55].

Figure 4.21: Xilinx SDK environment.

In order to program the board correctly, it is necessary to plug in two USB cables
from the host computer to the board, one being the USB-to-UART bridge and the other
the JTAG programming connector. It is necessary to first deploy the bitstream (4) and only
then to program the ARM processor (that can be done in Debug mode (1) or in normal
Run mode (2). There is also last build mode to recall the last programming mode (3)).
Note that the SDK only programs the board, and the application that runs on the ZC702
board behaves as a slave to the host computer.

Initially, our system was designed to perform all the operations mentioned above in the
logic part, except the LINC decomposition, that would be processed in the ARM proces-
sor, and then returned again to the logic part, to be transmitted. The LINC decomposition
was initially implemented in the processor part in C/C++, but eventually this idea was
dropped in detriment of a full PL implementation. Since the programming language that
was used to compute the LINC decomposition in Vivado HLS was C++, the code that was

43

4. Architecture Design

previously written for the processor was just used as the base for the Vivado HLS project,
with some performance directives added, to be synthesized in VHDL.

At this point, the given software was just altered to constantly refresh the DAC waveform
memory (WFM)17. Originally, the design was built in a way that the host computer would
send the values to the board, and it would need to send a refreshing command for each
time new data was sent; while no new data comes to the board, the old data keeps be-
ing repeatedly transmitted, which would not emulate a true telecommunications channel.
Also, 4DSP support stated that it would not be possible to send large amounts of data
in small time intervals [47] (i.e., no real-time transmission of data from the host to the
board). For these reasons, and due to the main objectives of this thesis, the signal was
generated inside the board (to dispense an overloaded transmission of control signals and
data from the host) and the WFM discrete state was unlocked to constantly refresh the
stored data of 16k values (taking into account the data generation rate - the WFM only
cleans the samples when they are sent to the DACs).

4.2.6 Board communication - Microsoft Visual Studio

This is the end of the programming line on the host computer. Microsoft Visual Stu-
dio18 runs an application (also given in Stellar IP software package) in the host computer
and works as the master of the board. After the board is programmed, it is necessary to
connect the host computer and the ZC702 by an Ethernet cable, and define a static IP for
both the host and the board; only then will the host program work. The host software al-
lows the user to personalize and setup the board and the daughter cards widely at register
level, and to send control, data and probing commands.

Here, the FMC30RF daughter cards are powered up through registers, and all the
RF boards’ frequencies are set, as the PLL frequency (set to 491.52MHz) and the DACs
operating frequency (set to 122.88MHz, equal to f reqPLL/4).

Although the operation states of the components of the FMC30RFs are accessible
and tunable through registers, they do not all seem to work properly when changing the
registers freely19, more precisely the frequency registers. In fact, we wanted to be able to
change DAC operating frequency, e.g. for loosing design time constraints in low bit-rate
transmission. Some tests were done in this regard according to the documentation [56] in
order to change the provided design by 4DSP. However, we arrived to the conclusion that
the claimed flexibility didn’t exist, and a single sub-multiple of the default 122.88MHz

17Refer to Figure 4.4.
18Version: Visual Studio Express 2012 for Windows.
19Freely is stated here as the change of registers inside a range of possible values, which are supposed to

be supported, as described in the data sheets [56] of the used components of the FMC30RF.

44

4.2 System Architecture and Implementations

Figure 4.22: Microsoft Visual Studio environment.

was not supported.
Since the WFM was unlocked to constantly gather new data, the host only needs to

startup the boards and to activate DAC transmission, simplifying the overall function calls
and minimizing packets communication via Ethernet.

4.2.7 External acquirements - GNU-Radio

The system outputs can be measured in varied forms, such as internal board acquire-
ments, where samples are gathered before they being sent to the DACs and directed to
the host computer to be analyzed via MATLAB [17], or external signal acquirements,
such as the HP spectrum analyzer or GNU-Radio software [42], as stated in Sub-chapter
4.1.3. Although the first cited process is considered to have more precision, GNU-Radio
is also good to use, since it offers wide signal analysis methods, like time, spectrum and
constellation views.

GNU-Radio and USRP B210 were used to gather the output signals and view them.
For that, a software project was made, in block programming, to set correctly the acquir-
ing parameters. Figure 4.23 shows the created block project:

The RF transmission frequency used to acquire the output signal was 1.2GHz, with a
sampling rate of 60M samples/s. An input gain of 10 dB is applied in order to see in more
detail the gathered data.

45

4. Architecture Design

Figure 4.23: GNU-Radio block project.

46

5
Implementation and Simulation

47

5. Implementation and Simulation

Some background on the workspace was given in the previous chapter. Now, im-
plementation, simulation details and obtained results concerning hardware, timings and
output signals’ precision are explored.

5.1 ZC702 total resources’ capacity

ZC702 board can be decomposed in its base resources (such as look-up tables, flip-
flops, RAM blocks and DSPs), which are the considered elements whose synthesis occu-
pation is compared to in programs like Vivado HLS [44]. Table 5.1 depicts the availability
of those main resources on the considered board:

Table 5.1: Available resources of ZC702’s programmable logic (XC7Z020)

Resources units
LUTs 53 200
FFs 106 400

Block RAMs 140
DSP blocks 220

The considered RAM blocks are 36 kB wide and build a total of 560 kB of space; a
RAM block can be divided into two 18 kB blocks if needed (this process is automatically
handled by Vivado HLS in any C-to-HDL implementation). Also, each DSPs have a
18*25 MAC calculations capacity and its peak performance was calculated to be of 276
GMAC calculations for a symmetric FIR filter [57] (max performance of 1.25 GMACs
per DSP block).

These values will serve as a reference for the HLS occupation results and for the final
ISE project.

5.2 Blocks’ specifications and physical occupation

Three implementations were made in Vivado HLS; two of them are relative to LINC
decomposition and the third one is the Generator block (that implements the bit generator
with RMM and upscaling), being all them described previously in section 4.2.3. The
ZC702 occupancy and some code specifications for each of these blocks will now be
discussed.

48

5.2 Blocks’ specifications and physical occupation

5.2.1 Generator with RMM and upscaling

This block consists in an approximately uniform bit generator, followed by a RMM
block (which can be turned on or off via an input bit) and an upscaler by the factor of 8,
which also includes sample multiplication by

√
8.

The bit generator was first designed with a LFSR algorithm, but it was leading to very
awkward results in conjunction with the RMM part1. Because of this, it was discarded and
a new algorithm was thought of for this system, adapted from an example given in [53]
for pseudo-random number generation with uniform distribution. It works on a multiply-
and-sum base, where a random initial seed is recalculated by such a type of operation in
every iteration, as follows:

seedi+1 =
(

seedi ∗m+ s
)

%T (5.1)

where i represents the current iteration, m is the multiplier constant, s is the sum constant,
and T is the maximum value allowed for the seed. % represents the remainder operation.
The random number is then obtained by the operation:

rand = low+

(
(high− low+1)∗ seedi

)
T

(5.2)

where low represents the lower bound for the RNG, and high represents the higher bound.

Since the seed is always calculated to be a number between 0 and T − 1, then the
division operation will always return a value between 0 and (high− low), which implies
that rand will take a value between low and high.

Please note that this random generation process will not create ”true” randomness, be-
cause the generation process is fully predictable, i.e., not based on a true random variable.
However, for the sake of this implementation, such a process that generates a uniform
distribution of numbers will serve the purpose.

In order to be uniform, the constant values must be chosen wisely; they should not
be small, and some of them must be relatively primes (more precisely, m should be the
closest prime of

(
1
2 −

√
3

6

)
∗T) [53].

In order to create randomness as long as possible, a set of numbers were chosen to
overflow only at 232, which is the size of a C-type integer 2. The implemented values are
T = 714025, m = 4096 and s = 150889. The initial seed was chosen to be seed0 = 357,

1The LFSR algorithm can uniformly generate all symbols from a n−bit vector, except one: the all-zeros
vector. In the current case - generation of all of the four OQPSK possible symbols -, this would lead to a
very non-uniform system, and for that it was abandoned.

2C refers to the programming language C.

49

5. Implementation and Simulation

and since an OQPSK constellation is being used, with two bits per symbol, values are
generated within a range that goes from 0 to 3.

An histogram for 64000 samples with the initial seed presented above was calculated
in MATLAB [17] and is shown in Figure 5.1.

Figure 5.1: Histogram of the random number generator.

The new symbols (constituted by the Q bit, followed by the I bit3) are then modulated
according to QPSK, ensuring an amplitude value of 1 for each symbol (i.e., 1 ∠θ). Due
to the implemented algorithms, a 1 bit will lead to − 1√

2
, and a 0 bit will lead to + 1√

2
.

Next, the symbols enter sequentially the RMM shift-register and, in this stage, the design
is done in a way that RMM can be chosen to be turned on or off, defined by an input
single-bit port; if this port is set high, then RMM is applied.

The RMM is applied as stated in Sub-chapter 3.1: for each new symbol, the buffer is
implicitly casted to a 14-bit unsigned integer. This value is then used to search in RMM
tables for the corresponding multiplication factors for both in-phase and quadrature values
of the QPSK-modulated symbol.

Finally, the upsampling is done, and the offset from OQPSK is also implemented. The
upsampling factor L is then used, and the output will follow Eq. 5.3. In this case, that
L = 8, sQ will be delayed 4 samples relatively to the corresponding sI value.

3The integrity of the system depends on it; refer to Sub-chapter 3.2.3.

50

5.2 Blocks’ specifications and physical occupation

s[n] = sI[n]+ sQ[n− k
L
2
] (5.3)

In order to continue the sequence generation correctly, the generator block has input
and output ports specially reserved to transport the last states of the RMM shift-register
and the last calculated seed. This is a security feature that assures the continuity of this
block, in case of stopping.

5.2.1.A Timing and resources

The used resources of this block are presented in Table 5.2. In subtable 5.2a, the
maximum time lapse of the block is presented, relatively to the main board clock (fclock =

100MHz, which is equivalent to Tclock = 10ns). Also, the total latency (number of cycles
needed for the block to an input be reflected on the output) and the input latency (number
of cycles needed for the block to accept new inputs4) are shown.

Table 5.2: Generator spent resources and timing

(a)

Timing (ns)
Estimated Required

8.47 10.00
Latency (cycles)
Total Input
144 32

(b)

Resources units % of Total
LUTs 8 601 16.17
FFs 8 570 8.05

Block RAMs 20 14.29
DSP blocks 40 18.18

By observing this data, it is possible to see that the timings are met and the resources
do not occupy much space (less than 20 % in the worst case - DSP blocks).

5.2.1.B Bit rate

Regarding the Generator bit rate, the RNG algorithm produces four dibit symbols for
each 144 cycles , in order to generate 32 samples at the output (including the upsampling
by 8). According to the FPGA clock frequency of 100MHz (or mega clock cycles per
second) that feeds this block, the 2-bit symbol generation can be translated to a symbolic
bit rate of approximately 5.56Mbit/s for the RNG algorithm. The full block takes 144
cycles to produce 32 samples (16 samples for I and 16 samples for Q) of 22 bits each,
which gives a total bit rate of 488.89Mbit/s.

4If this number is smaller than the total, it indicates that the block is working in pipelining.

51

5. Implementation and Simulation

However, due to the implemented pipelining, during its activity the Generator pro-
duces 32 new outputs every 32 cycles, making an effective throughput of 1 output per
cycle. This leads to a total effective bit rate of 2.2Gbit/s.

5.2.2 Root-Raised Cosine Filter

The RRC filter was generated in Core Generator [50], and consists in a FIR filter with
the MATLAB [17] generated taps for a RRC. As stated earlier in Sub-chapter 3.2.1, the
number of affected symbols of the RMM LUT table D should be equal to the number
of symbols affected by the RRC Nsym; however, in our case, the number that are being
used are slightly different, due to implementation problems: D is being used equal to 3
and Nsym is being used equal to 7, which could lead to a matching problem. However,
Simões [1] used a different ratio on these values (D = 5 and Nsym = 7), without any
apparent loss of information. This motivated a comparison, in order to understand if a
larger gap between these values would affect noticeably or not the obtained results, so
two filters’ performances were tested and compared: one with Nsym = 5 and other with
Nsym = 7. This Sub-chapter aims to compare both situations in results and hardware
occupation’s terms, unveiling strong points and major drawbacks.

The taps of both RRC filters were generated using MATLAB [17] and can be con-
sulted in Annex B. Case #1 will be described with the parameter Nsym = 5 and case #2
will be described with the parameter Nsym = 7. The values of L and rollo f f are 8 and
25% respectively, as stated in Sub-chapter 3.2.2.

Both filters’ behaviors were simulated in MATLAB [17] with the same uniformly
random binary sequence, similar to the sequence implemented in practice, where OQPSK
modulation and RMM were applied. The result of each filtering is compared in Figure
5.2:

According to the Figure, the filters present small differences for the same sequence,
but these changes do not seem to be significant. Therefore, it can be concluded that in
terms of results, both filters can be used.

5.2.2.A Timing and resources

Relative to hardware occupation, both filters were synthesized in Core Generator [50].
The obtained results are displayed in Table 5.3:

52

5.2 Blocks’ specifications and physical occupation

Figure 5.2: Comparison of filters #1 and #2 for the same pseudo-random sequence.

Table 5.3: RRCs’ spent resources and timing

(a)

Timing (ns)
Estimated Required

#1 N.A. 10.00
#2 N.A. 10.00

Latency (cycles)
Total Input

#1 48 1
#2 64 1

(b) a

Resources #1
units

#1
(%)

#2
units

#2
(%)

Block RAMs 0 00.00 0 00.00
DSP blocks 82 37.27 114 51.82

aNote that only block RAMs and DSP blocks are
displayed here because Core Generator only supports
resource occupation’s preview for these two types of
units.

This comparison can be of greater help for the system designer since there are some
relevant differences between both filters. Whether the designer’s concern is more focused
on area or speed optimization, then the RRC filter #1 is the better option since it produces
accurate results with less FPGA space; however, it is proven that a wider filter (like #2)
also provides similar results, although it uses more resources and spends more time. Since
the following Simões [1] approach is one of the main focuses of this work, filter #2 will
be used in implementation.

53

5. Implementation and Simulation

5.2.2.B Bit rate

Filter #2’s input and output bit rates were computed: since the filter has two channels
(one for I and one for Q samples), it can handle 2 input values of 22 bits for each 50 cy-
cles, which translates to an input bit rate of 88Mbit/s. However, due to the implemented
pipeline, which makes it possible to acquire 2 inputs of 22 bits each for each cycle, the op-
erating input rate effectively ascends to 4.4Gbit/s, which is superior than the Generator’s
output rate, thus not having any loss of information.

The output rate is simple: it would require 50 cycles to transform an input of 2 val-
ues of 22 bits into an output of 2 values with 16 bits each, so the output rate would be
64Mbit/s, but the pipelining inserts a new arrangement, on which the filter presents 2 new
values each cycle. This generates a effective output of 3.2Gbit/s (the decrease of the rate
between the input and the output can be explained with the decrease of bits in each output
sample, relative to the bit number in each input).

5.2.3 LINC decomposer

This block consists in a LINC decomposer of an input signal. Two approaches were
taken for this element: the first is a complete LINC calculator - which from now on will
be called ”LINC calculator” - where all the steps are fully calculated, and the second is a
LUT-based method - which will be called ”LINC LUT” - that is used to perform the most
expensive arithmetic operation in LINC’s decomposition, which is (in terms of resources)
the square-root5. Although two different approaches are being used, the results should be
approximately the same, and in both cases, for each complex sample that enters the block,
two complex samples are generated, one for the left branch and one for the right branch.

5.2.3.A Timing and resources

The utilized resources of LINC calculator are stated in Table 5.4.

Table 5.4: LINC calculator spent resources and timing

(a)

Timing (ns)
Estimated Required

8.62 10.00
Latency (cycles)
Total Input

75 1

(b)

Resources units % of Total
LUTs 25 595 48.11
FFs 16 266 15.29

Block RAMs 0 00.00
DSP blocks 36 16.36

5See Eq. 2.13 from Chapter 2.

54

5.2 Blocks’ specifications and physical occupation

Next, the utilized resources of the LINC LUT are presented, in Table 5.5. The LUT
was built in MATLAB [17], with fixed-point values Q6.146, which can be consulted on
Annex C.

Table 5.5: LINC LUT spent resources and timing

(a)

Timing (ns)
Estimated Required

8.77 10.00
Latency (cycles)
Total Input

4 1

(b)

Resources units % of Total
LUTs 552 1.04
FFs 485 0.46

Block RAMs 3 2.14
DSP blocks 8 3.64

By comparing these two approaches, one can easily relate the LUT implementation to
a faster and cheaper way of decomposing a signal into LINC, against the Calculator. The
only resource where the LUT overpasses the Calculator are the RAM blocks, since this
approach uses stored values. Yet, it only uses about 1,8% of the total, which is almost not
representative for the final design.

However, using a LUT instead of real-time calculation has drawbacks: the fact that
the LUT has limited entries (and, in consequence, limited outputs) and the stored values
have non-infinite precision (in this case, minimum variations of 2−14), some imprecisions
on the output signals can be inserted.

Table 5.6 displays the percentages of both LINC implementations, and compares them
with colors (green highlights the cell that contains the less used quantity of a resource;
red highlights the opposite).

Table 5.6: LINC implementations comparison

Resources % LUT % Calculator
LUTs 1.04 48.11
FFs 0.46 15.29
Block RAMs 2.14 0.00
DSP blocks 3.64 16.36

5.2.3.B Bit rate

Although both blocks implement LINC decomposition, one spends less time than the
other to generate an output. For this reason, bit rate will be computed for both approaches,
with a final comparison between them.

6Notation: Q BitsInteger.BitsFractional .

55

5. Implementation and Simulation

For the Calculator block, 75 cycles are needed to transform an input into an out-
put. This block receives 4 values of 16 bits each, which is equal to an input bit rate
of 85.33Mbit/s; the implemented pipeline makes possible to receive 4 new values each
cycle, thus providing a effective bit rate of 6.4Gbit/s, when in constant operation. Re-
garding the output, this block releases 4 16-bit values, which is the same that it receives
in the input. Due to this, the output bit rates are equal to the input ones, thus not being
necessary to calculate them again.

On the other hand, the LUT block also receives 4 16-bit values, but needs only 4
cycles to calculate an output from an input. In this case, an input bit rate of 1.6Gbit/s

is achievable. Due to pipelining, this bit rate can be increased up to 6.4Gbit/s when in
constant operation, since it latency passes to 1 cycle. Like in the Calculator block, in the
LUT block the number of released bits in the output is equal to the number in the input
side. This leads us to the same conclusion of the Calculator: the input and output rates
are equal for this block.

It should be noted that, once again, the input bit rate of the generic LINC decompo-
sition block is greater than the output bit rate of the RRC filter, which is the preceding
block. Because of this, it can be stated that no information is lost when the system is
constantly operating.

5.3 Complete system

The study of all the building blocks mentioned above was introduced previously so the
reader could have an idea of which parts are faster in terms of latency or more expensive
to implement. In the first part of this final section, the basic occupation of the complete
system7 without all these building blocks will be presented, i.e., just the original trans-
mission system, altered to include two FMC30RF cards at the same time.

5.3.1 Original system’ occupation

Table 5.7 depicts the original system’ occupation.

By looking at these values, it is easy to see that the original design leaves more space
for any extra blocks that could be implemented; however, the block RAMs are mostly
used, and only about 49% of space is left unused.

As stated in Chapter 1 (Sub-chapter 1.1), in order to reach the proposed objective of
this thesis, two identical systems were created, based on two different approaches:

7The final system was built in ISE, which produces more detailed occupation summaries than Vivado
HLS or Core Generator; however, to keep it simple, just the previously analyzed data will be transcribed to
the tables.

56

5.3 Complete system

Table 5.7: Original system’s occupation

Resources units % of Total
LUTs 6 072 11.41
FFs 8 091 7.60
Block RAMs 71 50.71
DSP blocks 0 0.00

• Complete system #1: LUTs for each of the RMM and LINC blocks;

• Complete system #2: a LUT for the RMM block and a hardware calculation block
for LINC;

Both systems will now be evaluated in terms of occupation, timings and output signals.

5.3.2 System #1’s occupation and results

The complete system #1 is composed by the original design, plus one Generator with
RMM and Upscaling, one RRC filter and one LINC Decomposer (LUT form). The im-
plementation details are shown in Table 5.8:

Table 5.8: Complete system #1’s occupation

Resources units % of Total
LUTs 27 623 51.24
FFs 19 061 17.91
Block RAMs 71 50.71
DSP blocks 146 66.36

(a) without RMM (b) with RMM

Figure 5.3: Output of RRC filter - LUT implementation

57

5. Implementation and Simulation

Apart from this, the output signals from the RRC and the LINC blocks were gathered,
in order to understand if the generation and decomposition were being made correctly.
Figure 5.3 shows those results for the RRC out port and Figure 5.4 shows them for the
LINC block (it is only shown the left arm because the right LINC arm has a similar
behavior).

(a) without RMM (b) with RMM

Figure 5.4: Output of LINC left branch - LUT implementation

5.3.3 System #2’s occupation and results

The complete system #2 is composed by the original design, plus one Bit Generator
with RMM and Upscaling, one RRC filter and one LINC Decomposer (Calculator form).
The implementation details are shown in Table 5.9:

Table 5.9: Complete system #2’s occupation

Resources units % of Total
LUTs 38 172 71.75
FFs 29 764 27.97
Block RAMs 71 50.71
DSP blocks 174 79.09

Data was also acquired from transmission tests, from the host-to-board connection.
Figure 5.5 shows the gathered outputs from the RRC out port, with and without RMM,
for a random bitstream.

58

5.4 Final comparison and observations

(a) without RMM (b) with RMM

Figure 5.5: Output of RRC filter - Calculator implementation

The output of the LINC left branch was also acquired, with and without RMM, for a
random bitstream. Results are shown in Figure 5.6.

(a) without RMM (b) with RMM

Figure 5.6: Output of LINC left arm - Calculator implementation

5.4 Final comparison and observations

A simple analysis of this data shows what was expected: the full-LUT system (#1)
does not spend as many resources as the calculator system (#2), at the cost of less-
precision operations, resulting in a less accurate LINC decomposition.

However, a more detailed comparison with the above presented numbers shows that
the predicted occupation for all the HLS-generated blocks does not match with the fi-
nal occupation numbers, especially when looking to block RAM values, whose expected
growth for System #1 and #2 should be 16.43% and 14.29%, respectively.

59

5. Implementation and Simulation

Table 5.10: Occupation and comparison of all systems

Original
System System #1 System #2

Resources % of Total % of Total % of Increase % of Total % of Increase
LUTs 11.41 51.24 +39.83 71.75 +60.34
FFs 7.60 17.91 +10.31 27.97 +20.37
Block RAMs 50.71 50.71 +0.00 50.71 +0.00
DSP blocks 0.00 66.36 +66.36 79.09 +79.09

This can be explained with a possible inaccuracy of Vivado HLS to predict the used
resources, possibly giving a worst-case estimate, or it can be ISE itself, that optimizes
resource utilization when synthesizing the full design: some blocks can being used simul-
taneously for different operations, for example.

Table 5.11: Expected vs. final occupation results

System #1 System #2
Resources % Final % Expected % Final % Expected
LUTs 51.24 28.62 71.75 75.69
FFs 17.91 16.11 27.97 30.94
Block RAMs 50.71 66.43 50.71 65.00
DSP blocks 66.36 73.64 79.09 86.36

In system #1, it is noticeable the overestimation of block RAMs and DSP blocks,
while LUTs and FFs are underestimated. On the other hand, system #2 is overestimated
in all parameters.

60

6
Conclusions

61

6. Conclusions

This thesis is a culminating point of the project GLANCES [15], whose one objective
was to build a real-time SC transmitter with LINC-RMM in FPGA environment, and also
the proof-of-concept of the system developed by Simões [1], whose results were very
promising and were successfully replicated in practice.

The focus of this work was, since the beginning, to engineer a complete, optimized
and entirely new system that could embrace two types of signal decomposition’s state
of the art techniques, and implement it, showing their feasibility in real-world problems.
The applications of this project are broad, but can be greatly used in mobile systems, since
RMM and LINC can effectively pair up to reduce mainly a system’s cost and PAPR.

Two implementations were made, concerning this arrangement: one implements real-
time LINC decomposition and the other makes use of a precomputed memory block. Both
systems have their advantages, one being of the first its precision calculations, making it
suited for critical applications. The second is in its quickness and low resource utilization,
although its results are less accurate than in the first system, being the latter best suited for
low-cost applications. However, in terms of optimization, this system can be considered
yet in its first steps, and much more can be done regarding this subject.

6.1 Future work

Both implemented systems work well. However, a more profound study on what
computed LUTs work better on the LINC-LUT system would be needed to tune it up,
since the low quantity of bits assigned to the integer part of the stored values can greatly
affect the overall performance in some cases. Also, a different approach on how to build
the LINC-LUT system could bring better results than the ones presented in this thesis.

Regarding the Generator block, a more uniform bit generation algorithm that does not
use time.h C package can be studied, since the current algorithm still has some deviations,
although it serves the purpose.

Also, a deeper analysis of both LINC branches’ synchronization would be desirable,
since it was always done by software and FPGA signaling, assuming that the refreshing
signals would arrive exactly at the same time. As there is a possibility that this synchro-
nization may not being done the right way, the utilization of an external clock source
would be advised in this study, as it has never been done through this work.

Besides this, this implementation did not use all FPGA’s resources, which mean that
there is still space available to implement more systems, or to optimize the current ones.

Finally, the same system could be implemented, but with some parts working in the
PS, i.e., inside the ARM processor, and then compare them to the systems implemented
here, in terms of resources and timing, to see if there are any relevant gains.

62

Bibliography

[1] A. Simões, “Ring-type magnitude modulation for LINC: Paving the road for better
efficiency,” M.Sc. dissertation, Universidade de Coimbra, Portugal, 2014.

[2] G. Li, Z. Xu, C. Xiong, C. Yang, S. Zhang, Y. Chen, and S. Xu, “Energy-efficient
wireless communications: tutorial, survey, and open issues,” Wireless Communica-

tions, IEEE, vol. 18, no. 6, pp. 28–35, December 2011.

[3] A. Birafane, M. El-Asmar, A. Kouki, M. Helaoui, and F. Ghannouchi, “Analyzing
LINC systems,” Microwave Magazine, IEEE, vol. 11, no. 5, pp. 59–71, Aug 2010.

[4] P. Reynaert and M. Steyaert, RF Power Amplifiers for Mobile Communications.
Springer, 2006.

[5] M. Hunton, “System and method for post-filtering peak power reduction in commu-
nications systems,” US Patent 7 170 952 B2, 2007.

[6] N. Lashkarian, E. Hemphill, H. Tarn, H. Parekh, and C. Dick, “Reconfigurable dig-
ital front-end hardware for wireless base-station transmitters: Analysis, design and
FPGA implementation,” IEEE Transactions on Circuits and Systems I: Regular Pa-

pers, vol. 54, no. 8, pp. 1666–1677, Aug. 2007.

[7] D. Cox, “Linear amplification with nonlinear components,” Communications, IEEE

Transactions on, vol. 22, no. 12, pp. 1942–1945, Dec 1974.

[8] R. Dinis and A. Gusmão, “Nonlinear signal processing schemes for OFDM modu-
lations within conventional or LINC transmitter structures,” European Transactions

on Telecommunications, vol. 19, no. 3, pp. 257–271, 2008.

[9] S. Cripps, “RF power amplifiers for wireless communications,” Microwave Maga-

zine, IEEE, vol. 1, no. 1, pp. 64–64, Mar 2000.

[10] R. Dinis, P. Montezuma, N. Souto, and J. Silva, “Iterative frequency-domain equal-
ization for general constellations,” in Sarnoff Symposium, 2010 IEEE, April 2010.

63

Bibliography

[11] P. Bento, M. Gomes, V. Silva, R. Dinis, and P. Montezuma, “A multi-antenna tech-
nique for mm-wave communications with large constellations and strongly nonlin-
ear amplifiers,” German Microwave Conference, pp. 284–287, March 2015.

[12] F. J. Harris, Multirate Signal Processing for Communication Systems. Prentice Hall
PTR, 2004.

[13] A. Simões, M. Gomes, R. Dinis, V. Silva, and F. Cercas, “Magnitude modulation
applied to LINC transmitters: Paving the road for better efficiency,” IEEE 80th Ve-

hicular Technology Conference: VTC2014-Fall, Sep 2014.

[14] A. Aref, A. Askar, A. Nafe, M. Tarar, and R. Negra, “Efficient amplification of
signals with high papr using a novel multilevel linc transmitter architecture,” 7th

European Microwave Integrated Circuits Conference (EuMIC), pp. 655–658, Oct.
2012.

[15] http://www.it.pt/project detail p.asp?ID=1939, August 2015.

[16] H. Phoon, M. Yap, and C. Chai, “A highly compatible architecture design for opti-
mum fpga to structured-asic migration,” International Conference on Semiconductor

Electronics, IEEE, pp. 506–510, October 2006.

[17] http://www.mathworks.com/products/matlab/, August 2015.

[18] R. Duren, J. Stevenson, and M. Thompson, “A comparison of fpga and dsp devel-
opment environments and performance for acoustic array processing,” MWSCAS,

IEEE, pp. 1177–1180, 2007.

[19] R. Sernec, M. Zajc, and J. Tasic, “The evolution of dsp architectures: Towards par-
allelism exploitation,” MELECON, IEEE, vol. 2, pp. 782–785, 2000.

[20] http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html, August 2015.

[21] http://www.xilinx.com/, August 2015.

[22] http://www.vita.com/Specifications, August 2015.

[23] http://www.4dsp.com/FMC30RF.php, August 2015.

[24] http://www.4dsp.com/, August 2015.

[25] L. Sundstrom, “The effect of quantization in a digital signal component separator
for LINC transmitters,” Vehicular Technology, IEEE Transactions on, vol. 45, no. 2,
pp. 346–352, May 1996.

64

http://www.it.pt/project_detail_p.asp?ID=1939
http://www.mathworks.com/products/matlab/
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-g.html
http://www.xilinx.com/
http://www.vita.com/Specifications
http://www.4dsp.com/FMC30RF.php
http://www.4dsp.com/

Bibliography

[26] S. A. Hetzel, A. Bateman, and J. McGeehan, “A LINC transmitter,” in Vehicular

Technology Conference, 1991. Gateway to the Future Technology in Motion., 41st

IEEE, May 1991, pp. 133–137.

[27] P. Colantonio, F. Giannini, and M. Rossi, “Rf experimental implementation of linc
technique,” European Microwave Conference, pp. 56–59, Oct. 2007.

[28] L. Panseri, L. Roman’o, S. Levantino, C. Samori, and A. Lacaita, “Low-power all-
analog component separator for an 802.11 a/g linc transmitter,” Proceedings of the

32nd European Solid-State Circuits Conference, pp. 271–274, Sep. 2007.

[29] Y. Tian, O. Hammi, S. Boumaiza, and F. Ghannouchi, “Design and optimization of
digital signal components separator of linc using fpga processors,” IEEE Interna-

tional Conference on Signal Processing and Communications, pp. 836–839, Nov.
2007.

[30] R. Ferrão, M. Gomes, and V. Silva, “International conference on field programmable
logic and applications,” IEEE Trans. Commun., pp. 1–4, Sep. 2013.

[31] Y. Chabaane, “Développement d’une plateforme matérielle pour l’implémentation
des techniques de décomposition de signaux pour les amplificateurs depuissance à
deux branches,” M.Sc. dissertation, Université du Québec, Canadá, 2011.

[32] P. Vizarreta, P. Gilabert, G. Montoro, and J. Berenguer, “Implementación de un
transmisor linc en un procesador fpga,” XXV Simposium Nacional de la Unión

Cientı́fica Internacional de Radio, pp. 1–4, 2011.

[33] http://www.xilinx.com/products/intellectual-property/cordic.html, August 2015.

[34] M. Gomes, “Magnitude modulation for peak power control in single carrier com-
munication systems,” Ph.D. dissertation, Universidade de Coimbra, Portugal, 2010.

[35] M. Gomes, V. Silva, F. Cercas, and M. Tomlinson, “Power efficient back-off reduc-
tion through polyphase filtering magnitude modulation,” Communications Letters,

IEEE, vol. 13, no. 8, pp. 606–608, August 2009.

[36] A. Birafane and A. Kouki, “On the linearity and efficiency of outphasing microwave
amplifiers,” Microwave Theory and Techniques, IEEE Transactions on, vol. 52,
no. 7, pp. 1702–1708, July 2004.

[37] http://www.i2c-bus.org/, August 2015.

65

http://www.xilinx.com/products/intellectual-property/cordic.html
http://www.i2c-bus.org/

Bibliography

[38] http://www.xilinx.com/support/documentation/boards and kits/zc702 zvik/
ug850-zc702-eval-bd.pdf, August 2015.

[39] http://support.4dsp.com/support/discussions/topics/5000039830, August 2015.

[40] http://www.4dsp.com/pdf/FMC30RF data sheet.pdf, August 2015.

[41] http://www.ettus.com/product/details/UB210-KIT, August 2015.

[42] http://gnuradio.org/redmine/projects/gnuradio/wiki, August 2015.

[43] http://www.xilinx.com/products/design-tools/ise-design-suite.html, August 2015.

[44] http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html,
August 2015.

[45] https://www.visualstudio.com/, August 2015.

[46] http://www.4dsp.com/software stellar.php, August 2015.

[47] http://support.4dsp.com/support/discussions/topics/5000039870, August 2015.

[48] http://www.xilinx.com/products/design-tools/vivado.html, August 2015.

[49] http://support.4dsp.com/support/discussions/topics/5000039678, August 2015.

[50] http://www.xilinx.com/tools/coregen.htm, August 2015.

[51] http://www.bluespec.com/high-level-synthesis-tools.html, August 2015.

[52] http://panda.dei.polimi.it/, August 2015.

[53] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C -

The Art of Scientific Computing. Cambridge University Press, 2002.

[54] http://www.xilinx.com/support/documentation/sw manuals/xilinx2014 1/
ug902-vivado-high-level-synthesis.pdf, August 2015.

[55] http://www.xilinx.com/tools/sdk.htm, August 2015.

[56] D. L. USA, FMC30RF Star - A/D Daughter Card, 2014.

[57] http://www.xilinx.com/support/documentation/selection-guides/
zynq7000-product-table.pdf, September 2015.

66

http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pdf
http://support.4dsp.com/support/discussions/topics/5000039830
http://www.4dsp.com/pdf/FMC30RF_data_sheet.pdf
http://www.ettus.com/product/details/UB210-KIT
http://gnuradio.org/redmine/projects/gnuradio/wiki
http://www.xilinx.com/products/design-tools/ise-design-suite.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.visualstudio.com/
http://www.4dsp.com/software_stellar.php
http://support.4dsp.com/support/discussions/topics/5000039870
http://www.xilinx.com/products/design-tools/vivado.html
http://support.4dsp.com/support/discussions/topics/5000039678
http://www.xilinx.com/tools/coregen.htm
http://www.bluespec.com/high-level-synthesis-tools.html
http://panda.dei.polimi.it/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com/support/documentation/selection-guides/zynq7000-product-table.pdf
http://www.xilinx.com/support/documentation/selection-guides/zynq7000-product-table.pdf

A
Implemented ISE VHDL schematic

67

A. Implemented ISE VHDL schematic

This section displays the complete ISE VHDL schematic in register-transfer
level (RTL). There is only one block missing, which is the implemented FIR filter. This
filter was designed in Core Generator and was included inside the ISE project; however,
the tool cannot represent Core Generator blocks inside RTL designs.

sip_cid

sip_cid_0

cmd_in_cmdin(63:0)

rst_rstin(31:0)

cmdclk_in_cmdclk

cmd_in_cmdin_val

cmd_out_cmdout(63:0)

cmd_out_cmdout_val

calculator

i_calc

MAX(31:0)

x1(15:0)

x2(15:0)

y1(15:0)

y2(15:0)

ap_clk

ap_rst

ap_start

Sc1_address0(0:0)

Sc1_d0(15:0)

Sc2_address0(0:0)

Sc2_d0(15:0)

Sc3_address0(0:0)

Sc3_d0(15:0)

Sc4_address0(0:0)

Sc4_d0(15:0)

Sr1_address0(0:0)

Sr1_d0(15:0)

Sr2_address0(0:0)

Sr2_d0(15:0)

Sr3_address0(0:0)

Sr3_d0(15:0)

Sr4_address0(0:0)

Sr4_d0(15:0)

ap_done

ap_idle

ap_ready

Sc1_ce0

Sc1_we0

Sc2_ce0

Sc2_we0

Sc3_ce0

Sc3_we0

Sc4_ce0

Sc4_we0

Sr1_ce0

Sr1_we0

Sr2_ce0

Sr2_we0

Sr3_ce0

Sr3_we0

Sr4_ce0

Sr4_we0

sip_cmd12_mux

sip_cmd12_mux_0

cmd0_in_cmdin(63:0)

cmd1_in_cmdin(63:0)

cmd2_in_cmdin(63:0)

cmd3_in_cmdin(63:0)

cmd4_in_cmdin(63:0)

cmd5_in_cmdin(63:0)

cmd6_in_cmdin(63:0)

cmd7_in_cmdin(63:0)

cmd8_in_cmdin(63:0)

cmd9_in_cmdin(63:0)

cmd10_in_cmdin(63:0)

cmd11_in_cmdin(63:0)

cmdclk_in_cmdclk

cmd0_in_cmdin_val

cmd1_in_cmdin_val

cmd2_in_cmdin_val

cmd3_in_cmdin_val

cmd4_in_cmdin_val

cmd5_in_cmdin_val

cmd6_in_cmdin_val

cmd7_in_cmdin_val

cmd8_in_cmdin_val

cmd9_in_cmdin_val

cmd10_in_cmdin_val

cmd11_in_cmdin_val

cmd_out_cmdout(63:0)

cmd_out_cmdout_val

counter32

i_count

CLK

INPUT_GEN

OUTPUT_RRC

gerador

i_gen

lfsr_in(15:0)

num_in(15:0)

ap_clk

ap_rst

ap_start

MM_onoff

saida_x_V_full_n

saida_y_V_full_n

lfsr_out_address0(0:0)

lfsr_out_d0(15:0)

num_out_address0(0:0)

num_out_d0(15:0)

saida_x_V_din(21:0)

saida_y_V_din(21:0)

ap_done

ap_idle

ap_ready

lfsr_out_ce0

lfsr_out_we0

num_out_ce0

num_out_we0

saida_x_V_write

saida_y_V_write

sip_fmc30rf_1

sip_fmc30rf_0

adca_data_n(1:0)

adca_data_p(1:0)

adcb_data_n(1:0)

adcb_data_p(1:0)

clk_clkin(31:0)

cmd_in_cmdin(63:0)

rst_rstin(31:0)

tx_in_data(63:0)

adc_dclkout_n

adc_dclkout_p

adc_fclkout_n

adc_fclkout_p

afe7225_sdout

amc7823_galr_n

amc7823_sdout

cdce62005_lock

cdce62005_sdout

clk_to_fpga_n

clk_to_fpga_p

cmdclk_in_cmdclk

cmd_in_cmdin_val

prsnt_m2c_l

rx_out_stop

trf3711_sdout

trf3720_lock

trf3720_sdout

trf3765_lock

trf3765_sdout

tx_in_dval

cmd_out_cmdout(63:0)

daca_data_n(1:0)

daca_data_p(1:0)

dacb_data_n(1:0)

dacb_data_p(1:0)

rf_att_v(4:0)

rx_out_data(63:0)

trf3711_gain_b(2:0)

afe7225_cs_n

afe7225_pd

afe7225_reset

amc7823_cs_n

amc7823_reset_n

cdce62005_cs_n

cdce62005_pd_n

cdce62005_refen

cdce62005_sync_n

cmd_out_cmdout_val

dac_dclkin_n

dac_dclkin_p

dac_fclkin_n

dac_fclkin_p

dac_syncin_n

dac_syncin_p

lna_bypass_ctrl

rx_out_dval

rx_vco_ctrl

sclk

sdata

trf3711_cs_n

trf3711_pd_n

trf3720_cs_n

trf3720_ps

trf3765_cs_n

trx_switch_ctrl

tx_in_stop

tx_vco_ctrl

sip_fmc30rf_2

sip_fmc30rf_1

adca_data_n(1:0)

adca_data_p(1:0)

adcb_data_n(1:0)

adcb_data_p(1:0)

clk_clkin(31:0)

cmd_in_cmdin(63:0)

rst_rstin(31:0)

tx_in_data(63:0)

adc_dclkout_n

adc_dclkout_p

adc_fclkout_n

adc_fclkout_p

afe7225_sdout

amc7823_galr_n

amc7823_sdout

cdce62005_lock

cdce62005_sdout

clk_to_fpga_n

clk_to_fpga_p

cmdclk_in_cmdclk

cmd_in_cmdin_val

prsnt_m2c_l

rx_out_stop

trf3711_sdout

trf3720_lock

trf3720_sdout

trf3765_lock

trf3765_sdout

tx_in_dval

cmd_out_cmdout(63:0)

daca_data_n(1:0)

daca_data_p(1:0)

dacb_data_n(1:0)

dacb_data_p(1:0)

rf_att_v(4:0)

rx_out_data(63:0)

trf3711_gain_b(2:0)

afe7225_cs_n

afe7225_pd

afe7225_reset

amc7823_cs_n

amc7823_reset_n

cdce62005_cs_n

cdce62005_pd_n

cdce62005_refen

cdce62005_sync_n

cmd_out_cmdout_val

dac_dclkin_n

dac_dclkin_p

dac_fclkin_n

dac_fclkin_p

dac_syncin_n

dac_syncin_p

lna_bypass_ctrl

rx_out_dval

rx_vco_ctrl

sclk

sdata

trf3711_cs_n

trf3711_pd_n

trf3720_cs_n

trf3720_ps

trf3765_cs_n

trx_switch_ctrl

tx_in_stop

tx_vco_ctrl

sip_i2c_master

sip_i2c_master_0

clk_clkin(31:0)

cmd_in_cmdin(63:0)

rst_rstin(31:0)

cmdclk_in_cmdclk

cmd_in_cmdin_val

cmd_out_cmdout(63:0)

cmd_out_cmdout_val

i2c_scl

i2c_sda

sip_zc702_host_if

sip_zc702_host_if_0

cmd_in_cmdin(63:0)

in_data_in_data(63:0)

in_to_out_data_in_data(31:0)

clk

cmd_in_cmdin_val

in_data_in_dval

in_to_out_data_in_dval

out_data_out_stop

por

rst

sysclk_n

sysclk_p

clkout_clkout(31:0)

cmd_out_cmdout(63:0)

out_data_out_data(63:0)

rst_out_rstout(31:0)

cmdclk_out_cmdclk

cmd_out_cmdout_val

ddr_web

in_data_in_stop

in_to_out_data_in_stop

out_data_out_dval

ddr_addr(14:0)

ddr_ba(2:0)

ddr_dm(3:0)

ddr_dq(31:0)

ddr_dqs(3:0)

ddr_dqs_n(3:0)

mio(53:0)

ddr_cas_n

ddr_cke

ddr_clk

ddr_clk_n

ddr_cs_n

ddr_drstb

ddr_odt

ddr_ras_n

ddr_vrn

ddr_vrp

adca_data_n_0(1:0)

adca_data_p_0(1:0)

adcb_data_n_0(1:0)

adcb_data_p_0(1:0)

adc_dclkout_n_0

adc_dclkout_p_0

adc_fclkout_n_0

adc_fclkout_p_0

afe7225_sdout_0

amc7823_galr_n_0

amc7823_sdout_0

cdce62005_lock_0

cdce62005_sdout_0

clk_to_fpga_n_0

clk_to_fpga_p_0

prsnt_m2c_l_0

trf3711_sdout_0

trf3720_lock_0

trf3720_sdout_0

trf3765_lock_0

trf3765_sdout_0

adca_data_n_1(1:0)

adca_data_p_1(1:0)

adcb_data_n_1(1:0)

adcb_data_p_1(1:0)

adc_dclkout_n_1

adc_dclkout_p_1

adc_fclkout_n_1

adc_fclkout_p_1

afe7225_sdout_1

amc7823_galr_n_1

amc7823_sdout_1

cdce62005_lock_1

cdce62005_sdout_1

clk_to_fpga_n_1

clk_to_fpga_p_1

trf3711_sdout_1

trf3720_lock_1

trf3720_sdout_1

trf3765_lock_1

trf3765_sdout_1

clk_0

por_0

rst_0

sysclk_n_0

sysclk_p_0

pmod2_2_ls

pmod1_0_ls

daca_data_n_0(1:0)

daca_data_p_0(1:0)

dacb_data_n_0(1:0)

dacb_data_p_0(1:0)

rf_att_v_0(4:0)

trf3711_gain_b_0(2:0)

afe7225_cs_n_0

afe7225_pd_0

afe7225_reset_0

amc7823_cs_n_0

amc7823_reset_n_0

cdce62005_cs_n_0

cdce62005_pd_n_0

cdce62005_refen_0

cdce62005_sync_n_0

dac_dclkin_n_0

dac_dclkin_p_0

dac_fclkin_n_0

dac_fclkin_p_0

dac_syncin_n_0

dac_syncin_p_0

lna_bypass_ctrl_0

rx_vco_ctrl_0

sclk_0

sdata_0

trf3711_cs_n_0

trf3711_pd_n_0

trf3720_cs_n_0

trf3720_ps_0

trf3765_cs_n_0

trx_switch_ctrl_0

tx_vco_ctrl_0

daca_data_n_1(1:0)

daca_data_p_1(1:0)

dacb_data_n_1(1:0)

dacb_data_p_1(1:0)

rf_att_v_1(4:0)

trf3711_gain_b_1(2:0)

afe7225_cs_n_1

afe7225_pd_1

afe7225_reset_1

amc7823_cs_n_1

amc7823_reset_n_1

cdce62005_cs_n_1

cdce62005_pd_n_1

cdce62005_refen_1

cdce62005_sync_n_1

dac_dclkin_n_1

dac_dclkin_p_1

dac_fclkin_n_1

dac_fclkin_p_1

dac_syncin_n_1

dac_syncin_p_1

lna_bypass_ctrl_1

rx_vco_ctrl_1

sclk_1

sdata_1

trf3711_cs_n_1

trf3711_pd_n_1

trf3720_cs_n_1

trf3720_ps_1

trf3765_cs_n_1

trx_switch_ctrl_1

tx_vco_ctrl_1

i2c_scl_0

i2c_sda_0

ddr_web_0

ddr_addr_0(14:0)

ddr_ba_0(2:0)

ddr_dm_0(3:0)

ddr_dq_0(31:0)

ddr_dqs_0(3:0)

ddr_dqs_n_0(3:0)

mio_0(53:0)

ddr_cas_n_0

ddr_cke_0

ddr_clk_0

ddr_clk_n_0

ddr_cs_n_0

ddr_drstb_0

ddr_odt_0

ddr_ras_n_0

ddr_vrn_0

ddr_vrp_0

Figure A.1: Complete VHDL design, translated to RTL.

68

B
FIR Filter Implementation

69

B. FIR Filter Implementation

This section adds some information about the FIR filter implementation and
includes some images to help understanding the design. The first presented filter has
Nsym = 5, and the second has Nsym = 7; both have even coefficients’ symmetry. In both
implementations, a fixed-point representation of the coefficients was used, of type Q0.161;
bits are being interpreted in 2’s complements and none of them represent an integer part
of the number.

Table B.1: FIR filter coefficients for Nsym = 5

1 -0.0026526 22 0.0306119 43 0.3334593 64 -0.0070360

2 -0.0038362 23 0.0332705 44 0.2827816 65 -0.0132629

3 -0.0040413 24 0.0295055 45 0.2198386 66 -0.0159092

4 -0.0030788 25 0.0187566 46 0.1513058 67 -0.0150943

5 -0.0010370 26 0.0017434 47 0.0840969 68 -0.0115661

6 0.0017042 27 -0.0194438 48 0.0244740 69 -0.0064688

7 0.0045266 28 -0.0414858 49 -0.0227113 70 -0.0010681

8 0.0066916 29 -0.0602093 50 -0.0545421 71 0.0035101

9 0.0075026 30 -0.0711544 51 -0.0702572 72 0.0064799

10 0.0064799 31 -0.0702572 52 -0.0711544 73 0.0075026

11 0.0035101 32 -0.0545421 53 -0.0602093 74 0.0066916

12 -0.0010681 33 -0.0227113 54 -0.0414858 75 0.0045266

13 -0.0064688 34 0.0244740 55 -0.0194438 76 0.0017042

14 -0.0115661 35 0.0840969 56 0.0017434 77 -0.0010370

15 -0.0150943 36 0.1513058 57 0.0187566 78 -0.0030788

16 -0.0159092 37 0.2198386 58 0.0295055 79 -0.0040413

17 -0.0132629 38 0.2827816 59 0.0332705 80 -0.0038362

18 -0.0070360 39 0.3334593 60 0.0306119 81 -0.0026526

19 0.0021290 40 0.3663228 61 0.0230857

20 0.0128334 41 0.3777046 62 0.0128334

21 0.0230857 42 0.3663228 63 0.0021290

The filter is an RRC, that was first designed using MATLAB [17] and whose

1Notation: Q BitsInteger.BitsFractional .

70

coefficients are presented on Table B.1. The used parameters are Nsym = 5, L = 8 and
rollo f f = 0.25, which produced a filter with lengthRRC = 2∗Nsym ∗L+1 = 81 taps. This
filter has a band-pass magnitude of approximately 9 dB, with a -3 dB cutoff frequency at
approximately 0.125∗π radians/s, as seen in Figure B.1a.

The second filter is also an RRC, with MATLAB-designed coefficients [17] in
Table B.2. All the parameters are the same as the first filter, except Nsym, which is equal to
7. The filter size is then obtained as lengthRRC = 2∗Nsym∗L+1= 113. Bandwidth-related
details of this filter are the same of the first one, as it can be seen on Figure B.1b.

(a) Nsym = 5 (b) Nsym = 7

Figure B.1: RRC filters details

Both filters receive type Q4.182 inputs and transmit Q7.9 type outputs. The tool
used to generate this core for the final project was Core Generator. It is very simple to use
and provides a graphic relation between the ideal implemented filter and the expected one
after software quantization, as depicted in Figure B.2.

Figure B.2: RRC filter implementation details.

2Notation: Q BitsInteger.BitsFractional .

71

B. FIR Filter Implementation

Table B.2: FIR filter coefficients for Nsym = 7

1 0.0018947 30 -0.0115661 59 0.3334593 88 0.0064799

2 0.0008729 31 -0.0150943 60 0.2827816 89 0.0075026

3 -0.0004197 32 -0.0159092 61 0.2198386 90 0.0066916

4 -0.0017034 33 -0.0132629 62 0.1513058 91 0.0045266

5 -0.0026812 34 -0.0070360 63 0.0840969 92 0.0017042

6 -0.0031078 35 0.0021290 64 0.0244740 93 -0.0010370

7 -0.0028518 36 0.0128334 65 -0.0227113 94 -0.0030788

8 -0.0019343 37 0.0230857 66 -0.0545421 95 -0.0040413

9 -0.0005359 38 0.0306119 67 -0.0702572 96 -0.0038362

10 0.0010359 39 0.0332705 68 -0.0711544 97 -0.0026526

11 0.0024109 40 0.0295055 69 -0.0602093 98 -0.0008833

12 0.0032410 41 0.0187566 70 -0.0414858 99 0.0009840

13 0.0032869 42 0.0017434 71 -0.0194438 100 0.0024862

14 0.0024862 43 -0.0194438 72 0.0017434 101 0.0032869

15 0.0009840 44 -0.0414858 73 0.0187566 102 0.0032410

16 -0.0008833 45 -0.0602093 74 0.0295055 103 0.0024109

17 -0.0026526 46 -0.0711544 75 0.0332705 104 0.0010359

18 -0.0038362 47 -0.0702572 76 0.0306119 105 -0.0005359

19 -0.0040413 48 -0.0545421 77 0.0230857 106 -0.0019343

20 -0.0030788 49 -0.0227113 78 0.0128334 107 -0.0028518

21 -0.0010370 50 0.0244740 79 0.0021290 108 -0.0031078

22 0.0017042 51 0.0840969 80 -0.0070360 109 -0.0026812

23 0.0045266 52 0.1513058 81 -0.0132629 110 -0.0017034

24 0.0066916 53 0.2198386 82 -0.0159092 111 -0.0004197

25 0.0075026 54 0.2827816 83 -0.0150943 112 0.0008729

26 0.0064799 55 0.3334593 84 -0.0115661 113 0.0018947

27 0.0035101 56 0.3663228 85 -0.0064688

28 -0.0010681 57 0.3777046 86 -0.0010681

29 -0.0064688 58 0.3663228 87 0.0035101

72

C
LINC Look-Up Table

73

C. LINC Look-Up Table

This section adds some information about the LINC LUT implementation. The
values were obtained in MATLAB according with the function:

out put =

√
r2

max
input

−1 (C.1)

where rmax is the maximum amplitude threshold and input = I2 +Q2, being I and Q the
input in-phase and quadrature components, respectively.

The LUT was designed to have 4096 entries (from index 0 to 212), with fixed-
point values, of type Q6.141. In order to compute the LUT with a simpler approach
in MATLAB, r2

max was assigned to 4095, and the 4096 entries were created by setting
input = i, i ∈ {0,1,2, ...,4094,4095}. The beginning and the end of the table are tran-
scribed in Table C.1.

Table C.1: LUT input addresses and corresponding output values

Address Value Address Value

0 11111111111111111111

1 11111111111100000000 4088 00000000001010100110

2 10110100111101000000 4089 00000000001001110100

3 10010011101110101100 4090 00000000001000111101

4 01111111111011000000 4091 00000000001000000000

5 01110010011001110010 4092 00000000000110111100

6 01101000011011000001 4093 00000000000101101010

7 01100000101010100001 4094 00000000000100000000

... ... 4095 00000000000000000000

1Notation: Q BitsInteger.BitsFractional .

74

D
C++ Code of the Implemented Blocks in

HLS

75

D. C++ Code of the Implemented Blocks in HLS

This section presents the developed code for the HLS-designed blocks, in C++,
namely the LINC Calculator, the LUT LINC and the Generator, which includes the RMM
and the Upsampler.

D.1 LINC Calculator

#include "hls_math.h"

#include "ap_int.h"

#include <stdio.h>

#include <stdlib.h>

void calculator(short int x1, short int y1, short int x2, short int y2, unsigned int

MAX, short int Sr1[1], short int Sr2[1], short int Sc1[1], short int Sc2[1], short

int Sr3[1], short int Sr4[1], short int Sc3[1], short int Sc4[1]){

#pragma HLS PIPELINE

#pragma HLS INTERFACE ap_none port=x1,y1,x2,y2

float div[2];

double u=x1*x1+y1*y1;

if((x1==0 && y1==0) || u>MAX)

div[0]=1; //if over the limit, set equal to 1 so the final sqrt() value is 0

else

div[0]=(float) MAX/u;

u=x2*x2+y2*y2;

if((x2==0 && y2==0) || u>MAX)

div[1]=1; //if over the limit, set equal to 1 so the final sqrt() value is 0

else

div[1]=(float) MAX/u;

div[0]-=1;

div[0]=hls::sqrtf(div[0]);

div[1]-=1;

div[1]=hls::sqrtf(div[1]);

Sr1[0] = ((int) (x1-div[0]*y1))>>1; //S1r - left (1st sample)

Sc1[0] = ((int) (y1+div[0]*x1))>>1; //S1c - left (1st sample)

Sr2[0] = ((int) (x1+div[0]*y1))>>1; //S2r - right (1st sample)

Sc2[0] = ((int) (y1-div[0]*x1))>>1; //S2c - right (1st sample)

76

D.2 LUT LINC

Sr3[0] = ((int) (x2-div[1]*y2))>>1; //S1r - left (2nd sample)

Sc3[0] = ((int) (y2+div[1]*x2))>>1; //S1c - left (2nd sample)

Sr4[0] = ((int) (x2+div[1]*y2))>>1; //S2r - right (2nd sample)

Sc4[0] = ((int) (y2-div[1]*x2))>>1; //S2c - right (2nd sample)

}

D.2 LUT LINC

#include "ap_fixed.h"

ap_ufixed<20,6> xk[4096]={

//values of the implemented LINC LUT

//which will not be transcribed

};

void tabela(ap_int<16> x1, ap_int<16> y1, ap_int<16> x2, ap_int<16> y2, ap_int<16>

Sr1[1], ap_int<16> Sc1[1], ap_int<16> Sr2[1], ap_int<16> Sc2[1], ap_int<16> Sr3[1],

ap_int<16> Sc3[1], ap_int<16> Sr4[1], ap_int<16> Sc4[1]){

#pragma HLS PIPELINE

#pragma HLS INTERFACE ap_none port=x1,x1,y1,y2,Sr1,Sc1,Sr2,Sc2,Sr3,Sc3,Sr4,Sc4

ap_uint<32> sum=(x1*x1+y1*y1)(31,11);

ap_int<16> sum_disc=sum & 4095;

ap_ufixed<20,6, AP_RND_CONV, AP_SAT> div[2];

div[0]= xk[sum_disc]; //search the LUT

sum=(x2*x2+y2*y2)(31,11);

sum_disc=sum & 4095;

div[1]= xk[sum_disc]; //search the LUT

//the division by 2 is already considered in the bit separation

Sr1[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)x1-(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[0]*y1)(24,9); //S1r - left (1st sample)

Sc1[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)y1+(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[0]*x1)(24,9); //S1c - left (1st sample)

Sr2[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)x1+(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[0]*y1)(24,9); //S2r - left (1st sample)

77

D. C++ Code of the Implemented Blocks in HLS

Sc2[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)y1-(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[0]*x1)(24,9); //S2c - left (1st sample)

Sr3[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)x2-(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[1]*y2)(24,9); //S1r - right (2nd sample)

Sc3[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)y2+(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[1]*x2)(24,9); //S1c - right (2nd sample)

Sr4[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)x2+(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[1]*y2)(24,9); //S2r - right (2nd sample)

Sc4[0] = 10* ((ap_fixed<25,16, AP_RND_CONV, AP_SAT>)y2-(ap_fixed<25,16, AP_RND_CONV,

AP_SAT>)div[1]*x2)(24,9); //S2c - right (2nd sample)*/

}

D.3 Generator

#include "ap_fixed.h"

#include "hls_math.h"

ap_fixed<20,2> table_MM_LUT_i[16384]={

//values of the implemented RMM I table

//which will not be transcribed

};

ap_fixed<20,2> table_MM_LUT_q[16384]={

//values of the implemented RMM Q table

//which will not be transcribed

};

void gerador(ap_uint<20> jran_out[1], ap_uint<20> jran_in, unsigned short num_out[1],

unsigned short int num_in, bool MM_onoff, ap_fixed<22,4> saida_x[32],

ap_fixed<22,4> saida_y[32]){

#pragma HLS INTERFACE ap_fifo depth=64 port=saida_x,saida_y

#pragma HLS PIPELINE

//JRAN must be initialized between 0 and (im-1) //numerical recipes based

ap_uint<13> ia=4096;

ap_uint<4> j=0;

ap_uint<20> ic=150889, im=714025;

ap_uint<32> jran=357;//612359;

static unsigned short int Nsym=8;

static unsigned short int upscale=8;

78

D.3 Generator

unsigned bit;

ap_uint<2> value[8]; //HLS does not accept value[Nsym]

short int i=0;

unsigned short int num=0;

ap_fixed<20,2> MagMod_i, MagMod_q;

ap_fixed<22,4> *x=&saida_x[0], *y=&saida_y[0];

if(jran_in!=0)

jran=jran_in;

if(num_in!=0)

num=num_in;

//rand

for (i=0;i<Nsym/2;i++){

j= (ap_uint<24>) (4*jran)/im; //floor rounding is intended

jran=(ap_uint<32>) (jran*ia+ic)%im;

value[i]= j & 0x0003;

}

jran_out[0]=jran;

//mm+upscale

for(i=0; i<Nsym/2; i++){

#pragma HLS unroll

/*

* NEW BITS ENTER LIKE THIS

* +-----+--+--+--+--+--+--+

* | ... |Q0|I0|Q1|I1|Q2|I2| = I1 and Q1 are more recent than I0 e Q0

* +-----+--+--+--+--+--+--+

* <----------------

*/

num=(unsigned short int) (num<<2) | value[i];

num=num & 0x3FFF;

//num=short int = 16bits(=2bytes) => only the right 14 bits

//so => 0011 1111 1111 1111 = 3FFF

//Send temp[] array to LUT table

if(MM_onoff){

MagMod_i=table_MM_LUT_i[num];

MagMod_q=table_MM_LUT_q[num];

}

else{

MagMod_i=(ap_fixed<20,2>) 1;

MagMod_q=(ap_fixed<20,2>) 1;

}

79

D. C++ Code of the Implemented Blocks in HLS

MagMod_i *= (ap_fixed<20,2>)0.707106781;

if(((num>>6) & 1)==1) //I

MagMod_i*= (ap_fixed<20,2>) -1;

MagMod_q*= (ap_fixed<20,2>) 0.707106781;

if(((num>>7) & 1)==1) //Q

MagMod_q*= (ap_fixed<20,2>) -1; // MagMod* sqrt(8) *

//upscaling factor => 8 (OQPSK)

for(int j=0; j<upscale;j++){

#pragma HLS unroll

if(j==0)

(x++)=(ap_fixed<22,4>) (MagMod_i(ap_fixed<21,3>)2.8284271247);

//2.82...=sqrt(upscaling factor)

else

*(x++)=0;

if(j==upscale/2)

(y++)=(ap_fixed<22,4>) (MagMod_q(ap_fixed<21,3>)2.8284271247);

//2.82...=sqrt(upscaling factor)

else

*(y++)=0;

}

}

num_out[0]=num;

}

80

E
VHDL Code of the Implemented

Snippets in ISE

81

E. VHDL Code of the Implemented Snippets in ISE

This section presents the developed code for the ISE-designed blocks in VHDL,
namely the Counter, the RMM Activator and the Output channel selector.

E.1 Counter

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

use ieee.numeric_std.all;

entity counter32 is

Port (CLK : in STD_LOGIC;

INPUT_GEN : in std_logic;

OUTPUT_RRC : out STD_LOGIC

);

end counter32;

architecture Behavioral of counter32 is

signal counter : STD_LOGIC_VECTOR(7 downto 0) := (others => ’0’);

signal out_time : std_logic := ’0’;

begin

OUTPUT_RRC <= out_time;

count_process: process(CLK, INPUT_GEN, out_time)

begin

if rising_edge(CLK) then

if out_time=’1’ then

counter <= counter + 1;

elsif counter > 31 then

counter <= (others => ’0’);

out_time <= ’0’;

elsif INPUT_GEN=’1’ then

counter <= counter + 1;

out_time <= ’1’;

end if;

end if;

end process;

end Behavioral;

82

E.2 RMM activator

E.2 RMM activator

LEFT_BUTTON: process(sip_zc702_host_if_0_cmdclk_out_cmdclk, gpio_sw_n)

--MAGNITUDE MODULATION ON/OFF

begin

if rising_edge(sip_zc702_host_if_0_cmdclk_out_cmdclk) then

if gpio_sw_n = ’1’ then

MM <= not MM;

for t in 1 to 1000000 loop

end loop;

-- waiting process to reduce button sensitivity

end if;

end if;

end process;

E.3 Output channel selector

RIGHT_BUTTON: process(sip_zc702_host_if_0_cmdclk_out_cmdclk, gpio_sw_s, connect_stop)

--RRC OUT / LINC OUT

variable onoff : std_logic := ’0’;

begin

if rising_edge(sip_zc702_host_if_0_cmdclk_out_cmdclk) then

if gpio_sw_s = ’1’ then

onoff := not onoff;

pmod2_0_ls <= onoff;

pmod2_1_ls <= onoff;

for t in 1 to 1000000 loop

end loop;

-- waiting process to reduce button sensitivity

end if;

if connect_stop=’0’ then

if onoff = ’1’ then

connect_dval <= calculator_0_tx_dval;

connect_data <= calculator_0_tx_data;

else

connect_dval <= out_rrc_valid;

connect_data <= out_rrc_data & out_rrc_data;

end if;

else

connect_dval <= ’0’;

connect_data <= (others=>’0’);

end if;

end if;

end process;

83

E. VHDL Code of the Implemented Snippets in ISE

84

	Titlepage
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Objectives
	1.2 Dissertation Outline
	1.3 Thesis framework and contributions

	2 LINC systems
	2.1 Basic concepts for LINC systems
	2.1.1 Angle decomposition
	2.1.2 Vector decomposition
	2.1.3 LINC branches matching

	2.2 Digital LINC transmission system
	2.2.1 Parameter-imposed limits

	3 Magnitude Modulation
	3.1 The Magnitude Modulation Principle
	3.1.1 Look-Up Table Based Approach

	3.2 Ring-type Magnitude Modulation applied to OQPSK signals
	3.2.1 LUT scheme
	3.2.2 Table size and parameters
	3.2.3 Symbol storage and search
	3.2.4 Final acknowledgments

	4 Architecture Design
	4.1 Hardware and Workspace
	4.1.1 ZC702
	4.1.2 FMC30RF
	4.1.3 Other equipment

	4.2 System Architecture and Implementations
	4.2.1 Project backbone - Stellar IP
	4.2.2 RRC filter - Core Generator
	4.2.3 LINC and RMM - Vivado HLS
	4.2.4 Complete project - Xilinx ISE
	4.2.5 Board programming - Xilinx SDK
	4.2.6 Board communication - Microsoft Visual Studio
	4.2.7 External acquirements - GNU-Radio

	5 Implementation and Simulation
	5.1 ZC702 total resources' capacity
	5.2 Blocks' specifications and physical occupation
	5.2.1 Generator with RMM and upscaling
	5.2.1.A Timing and resources
	5.2.1.B Bit rate

	5.2.2 Root-Raised Cosine Filter
	5.2.2.A Timing and resources
	5.2.2.B Bit rate

	5.2.3 LINC decomposer
	5.2.3.A Timing and resources
	5.2.3.B Bit rate

	5.3 Complete system
	5.3.1 Original system' occupation
	5.3.2 System #1's occupation and results
	5.3.3 System #2's occupation and results

	5.4 Final comparison and observations

	6 Conclusions
	6.1 Future work

	Bibliography
	A Implemented ISE VHDL schematic
	B FIR Filter Implementation
	C LINC Look-Up Table
	D C++ Code of the Implemented Blocks in HLS
	D.1 LINC Calculator
	D.2 LUT LINC
	D.3 Generator

	E VHDL Code of the Implemented Snippets in ISE
	E.1 Counter
	E.2 RMM activator
	E.3 Output channel selector

