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Abstract

A new approach is described for building 3D grid-based representations of the sur-
rounding environment of a mobile robot, having the input data in the form of 3D point
cloud. Such point clouds may be generated by 3D sensors like LIDAR, moving laserscan-
ner and RGB-D sensors (e.g. Kinect). The proposed approach results in a fast method
for 3D space representation. The proposed approach is based in a 2D grid. Around the
2D grid, variable sized rectangular structures are generated to map the occupancy of a
given area in 3D. This method can also provide the most usual environment representa-
tions used in mobile robotics, which are: 2D occupancy grids, 2.5D grids (elevation or
height maps), and the 3D voxel representation. The implementations presented here have
been developed on the Robot Operating System (ROS) software thus, it can be used in the
large majority of robotic platforms.
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Resumo

Nesta dissertação é apresentada uma nova abordagem para a construção de modelos
de representação do espaço 3D baseados em grelhas, tendo por entrada nuvens de pontos
3D. As nuvens de pontos podem ser obtidas por meio de sensores 3D como por exem-
plo LIDAR, laserscanner ou sensores RGB-D (e.g. Kinect). A abordagem descrita nesta
dissertação de Mestrado consiste num método rápido para a representação do espaço 3D.
A flexibilidade da abordagem permite também obter as diferentes tipologias de represen-
tação baseadas em grelhas utilizadas na robótica móvel: Grelhas de ocupação 2D , grelhas
2.5D (mapas de elevação) e a representação voxel 3D. Os métodos aqui descritos foram
implementados em ambiente ROS e serão disponibilizados à comunidade científica.

Palavras Chave

Representação em Grelha, Mapa de Ocupação, Kinect, Nuvem de Pontos, Robotics
Operating System (ROS).
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1. Introduction

1.1 Motivation

The main requirement for a ground-based mobile robot is to move in its surrounding
environment without collision with static or moving obstacles. In other words, a mobile
robot should be able to travel and reach its destination safely, without damaging itself,
other robots, harming humans or any other kind of life form that can lay in its path or
moving around it. Over the years, many solutions have been proposed for environment
representation in mobile robotics applications. Firstly, two dimensions maps were used,
which can be categorized into topological maps that use graph structures to represent
the environment. On those maps, only vital information remains and unnecessary detail
has been removed. These maps lack scale, hence distance and direction are subject to
change and variation, but the relationship between points is maintained. More widely
used are the metric maps referenced in [Elfes, 1989,Thrun, 2003,Thrun, 2002] and [Fer-
reira and Dias, 2014] which capture the area (2D) or the volume (3D) of the surrounding
space with metric coordinates. Merging the benefits from both maps have been studied
by [Thrun, 1998]. The more common and widely used way to represent maps are the
discrete Cartesian-grids which can be easily quantified and can divide the space in a reg-
ular and tractable form. Other kind of grids have been considered, such as the polar grids
[Premebida et al., 2015] that are based on polar coordinates of the space to create the grid
cells. This approach makes sense when using rotary sensors like laser range finders that
returns the observed points in polar coordinates or in "spherical-like" coordinates. With
the need of better space perception, the 2D representation have been extended to a method
that also accept the height of the tallest object laying in that cell - the elevation maps or
also known as 2.5D maps [Herbert et al., 1989]. However, the information provided from
2D and 2.5D maps lead to limitations from vertically overlapping features such as tun-
nels and bridges in outdoor environment, to tables, stairs or inclined walls indoor. Even
if the height of the terrain as well as the robot were taken into account, those problems
would continue to happen. A more detailed explanation of these and others representation
methods is provided in chapter 2.

1.2 Objectives

The work in this thesis explores an accurate and flexible 3D representation of sur-
rounding space for mobile robotics applications. A grid based representation seems to be
the best approach since they are easy to build, represent and maintain. Such representation
should also be able to provide 2D, 2.5D and 3D occupancy maps because not all applica-

2



1.3 Main Contributions

tions require a 3D map and the processing of that additional data might be impossible in
real-time in some robotic platforms. That information can then be used for path planning,
obstacle avoidance and possible simultaneous localization and mapping (SLAM).

1.3 Main Contributions

The main goal of this work is to improve environment representation and evaluation
of occupied space. The main contributions of the proposed method are:

• Ability to work with point clouds from various ROS formats such as: PointCloud
and PointCloud2. Those point clouds can also be loaded from ROS bag files or
standard PCD file format;

• Height definition is preserved from the source point cloud;

• The resulting data structure is scalable and flexible in the sense that 3D, 2.5D, and
2D representations can be easily obtained for future applications if needed;

• Not only height (Z) can be preserved. This method and its algorithms can also be
used in depth (X) and in width (Y) if needed but the main focus of this work will
rely on Z-axis.

1.4 Dissertation Outline

Diagram 1.1 demonstrates the main processing modules necessary to achieve the 3D
representation developed in this thesis. This Master Thesis has eight chapters structured
as follows:

• Chapter 2: Introduction of the existing methods of space representation and oc-
cupancy, describing them with some examples and pictures, pointing their benefits
and liabilities;

• Chapter 3: Provides an overview of some essential algorithms to be the devel-
opment of this work. It focuses on the Sort & Unique module as shown in figure
1.1;

• Chapter 4: Presents a formulation of the problem addressed in this dissertation,
and details the proposed solution. The Data Indexing as well as the Clustering

from figure 1.1 are detailed.

3



1. Introduction

• Chapter 5: An overview of the hardware and software used and developed to
achieve the proposed objectives are described. Moreover, experimental results are
presented and discussed.

• Chapter 6: This chapter contains the conclusions of this work, and provides a path
for future work in this field.

Figure 1.1: Data flow diagram from point cloud to the representation method.

4
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2. Related Work

In this chapter some of the most used representation methods will be reviewed, point-
ing out their qualities and weaknesses for future usage. In particular, the section 2.3 of this
chapter will give emphasis to seven different grid-based representations using 3D point
cloud as input data.

2.1 Direct Representation
The direct representation of the environment can be used when depth sensors are

present, such as laser scanners or stereo-cameras. This method considers the measures
returned directly by the sensor to represent the environment, without extracting any char-
acteristics about it. This type of map can be constructed simply by aggregating the mea-
sured points to lead to a representation of the environment similar to a cloud of points.
The direct usage of that point cloud have been considered by [Cole and Newman, 2006]
and [Nüchter et al., 2007], but this method does not model the free and unknown space.
Instead, those points are directly taken from the sensor and require very high accuracy.
Moreover, the size of the map grows linearly and without an upper bound with the number
of sensor readings.

2.2 Topological Representation

Figure 2.1: Left: Critical points, points where the clearance of all points in its neigh-
bourhood is not smaller than the point itself. Right: Each value corresponds to a region
between nodes, and each critical line to an arc. From [Thrun, 1998].

Topological approaches, represent robot environments by graphs as illustrated in Fig-
ure 2.1. Nodes in such graphs correspond to distinct situations, places, or landmarks.
They are connected by arcs if there exists a direct path between them. Topological ap-
proaches determine the position of the robot relative to the model primarily based on
landmarks or distinct, momentary sensor features. The key advantage of topological rep-
resentation is their compactness. The resolution of topological maps corresponds directly
to the complexity of the environment. That compactness gives them three key advan-
tages over grid-based approaches,they permit fast planning, facilitate interfacing to sym-
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2.3 Grid Based Representations

bolic planners and problem-solvers, and, they provide more natural interfaces for human
instructions. Since topological approaches usually do not require the exact determina-
tion of the robot’s position, they often recover better from drift and slippage-phenomena
which is a problem that should constantly be monitored and compensated in grid-based
approaches. Finally, both paradigms have pro ans cons, as summarized in table 2.1.

Grid-based (metric) approaches Topological approaches
+ easy to build, represent, and maintain + permits efficient planning, low space

+ recognition of places (based on geometry) complexity (resolution depends on the

is non-ambiguous and view point-independent complexity of the environment)

+ facilitates computation of shortest paths + does not require accurate determination

of the robot’s position

- inefficient planning, space-consuming + convenient representation for symbolic

(resolution does not depend on the planner/problem solver, natural language

complexity of the environment)

- requires accurate determination of the - difficult to construct and maintain in

robot’s position large-scale environments if sensor

- poor interface for most symbolic problem information is ambiguous

solvers - recognition of places often difficult,

sensitive to the point of view

- may yield suboptimal paths

Table 2.1: Advantages and disadvantages of grid-based and topological approaches to
map building. From [Thrun, 1998].

2.3 Grid Based Representations
In this type of representation, the environment is subdivided into a set of cells that

form the metric grid, where the resolution depends on the cell size. The grid is usually
square in shape and, when extended to three-dimensional space, it takes cubic form as we
will see in subsection 2.3.4. Other shapes of grid can be considered for specific usages as
presented in subsection 2.3.2. The positive and negative aspects of this representation are
presented in table 2.1.

2.3.1 2D Occupancy Map
Most used 2D occupancy maps are probabilistic, this means that each cell contains

a probability of occupancy, where values near to zero corresponds a free cell and values

7



2. Related Work

near to one an occupied cell (with high certainty). The probability in between could result
from multiple sensor readings, increasing or decreasing that probability if an object or a
person was entering or leaving a cell. This method was first introduced by Alberto Elfes
and Hans Moravec in [Moravec and Elfes, 1985], further development and testing were
then presented in [Elfes, 1989]. Years later, Sebastian Thrun, at first with [Thrun, 2002]
and then in his article [Thrun, 2003], brought contribution to this method, introducing an
algorithm where the occupancy of each grid cell is dependent of its neighbours in both
two dimensions. This improvement reduced erroneous readings from sensors due to noise
or superposed readings, typical for example with sonars, resulting in maps more accurate
than those generated using traditional techniques.

2.3.2 2.5D Elevation Map

Figure 2.2: Left: 2.5D in polar grid of urban environment from [Premebida et al., 2015].
Right: Elevation map of rough terrain with space-carving kernels from [Hadsell et al.,
2009].

The 2.5D or also known as elevation map was introduced to map non-flat surfaces,
giving the height of obstacles or irregular terrain. This method is in all similar to the
traditional 2D map but with additional information of height on each grid cell. One of
the first applications of this method was intended to be for a planetary rover to Mars
[Herbert et al., 1989]. Another interesting implementation of this method is presented
in [Premebida et al., 2015] where polar grids were used due to the rotary laser range
finder that returns points in polar or "spherical-like" coordinates. The decrease in density
of points with the increase of distance, resulting from that kind of sensors is discussed
and improved by [Hadsell et al., 2009] for posterior mapping of rough terrain in elevation
maps. Two images of this representation are provided in figure 2.2.

2.3.3 Log-Spherical Representation

This representation, presented by [Ferreira et al., 2008], consists in a spherical rep-
resentation of space centred in the sensor or group of sensors. The generated maps are

8



2.3 Grid Based Representations

called by the author: "Bayesian Volumetric Maps" or (BVM). As demonstrated in figure
2.3, each BVM cell is defined by two limiting log-distances, logb ρmin and logb ρmax,
two limiting azimuth angles, θmin and θmax, and two limiting elevation angles, φmin and
φmax. The value b is calculated and it value depend on the number of cells needed for a
given application.

Figure 2.3: Log-Spherical space representation.

The logarithmic progression allows more precision for objects closer to the observer.
A great advantage of the BVM over Cartesian implementations of occupancy maps is the
fact that the log-spherical configuration avoids the need for time consuming ray-casting
techniques when computing a gaze direction for active exploration, since the log-spherical
space is already defined based on directions ( θ ,φ ). The BVM have a strong probabilistic
background for processing both empty and occupied space, map update and sensor data
fusion. This approach is interesting in applications where the sensors may only rotate
around the egocentric origin and the whole perceptual system is not allowed to perform
any translation. Map matching may prove very difficult or even impossible if any transla-
tion of the sensor is performed. The processing of this representation and mapping method
have also been applied by the authors in a Graphics Processing Unit (GPU) in [Ferreira
et al., 2011], greatly improving the the time to process the data. Further development of
this work can also be consulted in [Ferreira et al., 2013].

2.3.4 3D Regular Cubic
More recently, there has been some research from 2D and 2.5D maps to a 3D repre-

sentation of the surrounding space, mostly using a Cartesian-grid as the reference plane.
The technology based on the Velodyne and the Kinect sensors, for example, provides
wider point clouds and more dense ones, respectively. Dense point clouds can also be
provided by stereoscopic vision as used by [Moravec, 1996]. This factor shifted the focus
of the robotics research community from 2D and 2.5D towards 3D representation and oc-
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2. Related Work

cupancy maps. One of the first to develop a partition of space into a 3D matrix of cubic
voxels were [Roth-Tabak and Jain, 1989], allowing each cell with one of three different
states: 0 for an empty voxel, 0.5 for unknown state and 1 for occupied. With the use of
those dense point clouds a solid algorithm was needed for the update of the probabilistic
spatial occupancy grid map and a good solution is provided by [Pathak et al., 2007].

In order to store multi-resolution maps, a specific data structure have been developed
by [Guttman, 1984], called the R-Tree. The key idea of this data structure is to group
nearby objects and represent them with their minimum bounding rectangle in the next
higher level of the tree. The "R" in R-Tree is for rectangle. Since all objects lie within this
bounding rectangle, a query that does not intersect the bounding rectangle also can not
intersect with any of the contained objects. At the leaf level, each rectangle describes a
single object. At higher levels the aggregation of an increasing number of objects. R-tree
is a balanced search tree so all leaf nodes are at the same height. Another type of tree
structure is presented by [Einhorn et al., 2011], it consists in a mapping technique that
chooses the resolution of each cell adaptively by merging and splitting cells depending
on the measurements. It is called Nd- tree, for example if N=2 and d=3, means that each
node or voxel in this case, is divided by 2 in its 3 dimensions, what leads to 23 = 8 smaller
voxels, this specific type of division is called an octree.

Octrees have been widely used over the past two decades and was firstly introduced
by [Meagher, 1982]. The storage and access of this data structure can prevent useless
traversal of regions of little interest, but can also add consumption both in time and space,
a study of these aspects is found in [Wilhelms and Van Gelder, 1992]. An effective method
to avoid numerical computation of probabilities for a range sensor with Gaussian error
distribution is presented in [Payeur et al., 1997], improving that way performance and
compactness. Implementations of this data structure are vast such as mapping urban en-
vironments with a stereo camera combined with a laser scanner rotating in a screw-like
pattern is found in [Fournier et al., 2007] or real-time SLAM with octree for exploration
of underwater tunnels with submersible sonars. A demonstration of the division of a voxel
and its matching tree is provided in figure 2.4.

The octomap developed by [Wurm et al., 2010] and updated in [Hornung et al., 2013]
provides an explanation of existing octree approaches, and how issues such as map update,
map overconfidence, and compression are addressed. Octomap achieves probabilistic and
compact 3D maps. Its tree structure allows multi-resolution and also process free space
mapping. The framework is available as an open-source C++ library and has already
been applied in several robotics projects. The representation of this and other methods
are illustrated in figure 2.5.
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Figure 2.4: Example of an octree storing, free (shaded white) and occupied (black) cells.
The volumetric model is shown on the left and the corresponding tree representation on
the right. From [Hornung et al., 2013].

Figure 2.5: 3D representations of a tree scanned with a laser range sensor (from left
to right): Point cloud, elevation map, multi-level surface map, and volumetric (voxel)
representation of occupied space only. Image from [Hornung et al., 2013].

2.3.5 Multi Level Surface

[Triebel et al., 2006] and [Rivadeneyra et al., 2009] made an effort to create a com-
pact data structure with the introduction of multi-level surface maps (Multi Level Sur-

face (MLS)). Similarly to elevation maps discussed earlier, MLS maps represent 3D struc-
tures as height values over a horizontal grid, but allow for the storage of vertically over-
lapping objects. The vertical space on top of each grid cell is divided in intervals and those
intervals are only merged if they are closer than the size of the robot, this greatly limits the
application of this representation for indoor navigation. This method greatly reduces the
memory requirement but it only records occupancy. It does not provide a mechanism for
decreasing the occupancy value of objects located on the map nor any information about
free space. Thus, any erroneous readings such as false sensor positives are never removed
from the map. The third image from left to right of figure 2.5 depicts MLS representation
method.

2.3.6 Normal Distributions Transform Occupancy Map

Normal Distributions Transform Occupancy Map from [Saarinen et al., 2013a] is an
extension of Normal Distributions Transform (NDT), which is a grid based representa-
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tion, much like the well known 2D occupancy grid map, but capable of obtaining similar
accuracy while using a larger cell size. The basic idea is to first accumulate sensor mea-
surements into grid cells and then use them to compute a sample mean and a covariance
for each cell, in other words, a set of Gaussian probability distributions. NDT Occupancy
Map (Normal Distributions Transform Occupancy Map (NDT-OM)) is a 3D spatial model
which concurrently estimates both the occupancy and the shape distribution in each cell.
This process is divided into two stages. At first it is performed an estimation of the mean
and covariance over time and then an estimation of consistency of the distribution, for-
mulated as probabilistic occupancy estimation. Further explanation and results of this
method have been updated in [Saarinen et al., 2013b]. A representation of the results
returned by this method are presented in figure 2.6.

Figure 2.6: Sample from [Saarinen et al., 2013b] occupancy map of an industrial environ-
ment

.

2.3.7 Adaptive Rectangular Cuboids or RMAP

The RMAP by [Khan et al., 2014] uses axis aligned rectangular cuboids (Rectangular
Cuboid (RC)). It relies on occupancy grid and on RC obtained based on point cloud den-
sity. The RMAP occupancy grid is based on the R-tree data structure which is composed
of a hierarchy of RC in a tree structure with root, leaves and inner nodes. Initially all
grid cells i.e. leaf branches of the R-tree occupancy grid are of cubic volume based on
the chosen resolution of the grid as explained in subsection 2.3.4. The insertion of new
rectangles into the R-tree is made through the process of least expansion. This process
requires a search for inner branches in the hierarchy that lead to the minimum expansion
of the minimum bounding axis aligned rectangles. The merging process of voxels only
happen if they have the same probability of occupation within a threshold. When that
condition is met, the merging can occur first in x direction and only in y direction if x is
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not possible. Only then, z is taken into consideration if the two others directions were
not possible. When merging a cuboid already merged in a previous step, it always try to
assemble them increasing its bigger side if possible. More information and results about
the merging process can be found in the updated version [Khan et al., ]. An image of the
resulting representation is provided in figure 2.7.

Figure 2.7: Visualization of fused occupied grid cells on the Freiburg campus dataset
(colors have been assigned for the ease of visualization) From: [Khan et al., ]

.

2.3.8 Multi Volume Occupancy Grids
The model developed by [Dryanovski et al., 2010] named multi-volume occupancy

grids (Multi Volume Occupancy Grids (MVOG)) is the closest work to this thesis. But
being a model for micro aerial vehicles, it holds some serious limitations. It is strictly
related to multi-level surface maps. Likewise MLS, MVOG uses continuous vertical vol-
umes placed over a horizontal grid of fixed resolution. Though, unlike MLS, MVOG
record both positive and negative readings, combining them into distinct positive (obsta-
cle) and negative volumes (free space). This method uses a rasterization algorithm to
obtain which grid cells a line or in this case a beam of a laser range-finder crosses. Know-
ing that the beam passed through that space without finding any obstacle, that volume is
then considered free. Strangely a positive and a negative volume can be superposed and
when that occurs, a calculation of occupancy probability is performed. Since each volume
has its own "weight" of probability depending on its height.

2.4 Summary
In table 2.2 the strengths and weaknesses of the previously explained methods are

summarized.
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Methods Advantages Disadvantages

2D Occupancy
Map

- Fast updability
and access
- Simplicity

- only applicable in planar
environments

2.5D Elevation
Map

- Same as 2D
occupancy map

- Problems from vertically
overlapping features
- Only one structure per cell

Log-Spherical
Representation

- Log distance allows
more precision for
close objects
-Strong probabilistic
background
-Ray-tracing not needed
due to its ( θ ,φ ) nature

- Map matching after a
translation seem difficult
or even impossible

3D Regular
Cubic

- Support all the algorithms
developed for 2D
- Tree datastructures
allow multi-resolution
and fast access

- Large memory requirements
- Dense amount of structures
depending on grid size

Multi Level
Surface

- Allow fine multi-
resolution on height

- Impossible to decrease
occupancy
- Do not map free space
- Merging ability depend on
aplication

NDT-OM
- Efficient mapping of
large-scale dynamic
environment

- Gaussian shaped structures are
hard to perceive.
- High number of variables per
structure (11), makes it slower
than octomap with the
same grid size. (Information
from [Saarinen et al., 2013a])

RMAP

- Might offer less
consumption of resources
than standard 3D due to
its merging ability

- Merging ability is more favorable
for x and then y and lastly z.
- R-tree is a balanced tree, so most
of nodes will tend to be empty,
increasing research time

MVOGs
- Optimal definition
of height

- Minimum height greater than or
equal to 1
- The gap between any two volumes
in the same list is greater than 1
- Volumes from different lists can
overlap, this means that different
structures can map the same space.

Table 2.2: Advantages and disadvantages of mapping methods.
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In this chapter different sorting algorithms will be discussed, motivated by their use-
fulness in simplifying our data structure and keeping it organized in sorted order. Various
methods are presented since, the efficiency of a sorting algorithm greatly depend on the
order of the input data. Some of the most efficient algorithms presented here will be im-
plemented as stated in chapter 4. On the last section, a small explanation of the unique
algorithm is made, due to its ability to reduce the number of points with equal value in a
given set.

3.1 Sorting Algorithms
Introduction

In this section, an overview of different sorting algorithms is provided„ pointing the
benefits with regard to the approximate number of operations (O) of each method. The
methods presented in the sequel are commonly used to work with lists and most of them
can be extended to use with vectors.

Vectors from C++ (std::vector) are sequence containers representing arrays that can
change in size. Vectors use contiguous storage locations for their elements, which means
that their elements can also be accessed using offsets on regular pointers to its elements,
and just as efficiently as in arrays. But unlike arrays, their size can change dynamically,
with their storage being handled automatically by the container. On the other hand, linked
lists (std::list) can store each of the elements they contain in different and unrelated storage
locations, being that way easier to insert or delete any point on the list. That advantage
also brigs the disadvantage of higher access time since the elements are not contiguous in
memory.

3.1.1 Bubble Sort

The bubble sort makes multiple passes through a list. It compares adjacent items and
exchanges those that are out of order. Each pass through the list places the next largest
value in its proper place. In essence, each item “bubbles” up to the location where it
belongs.

If there are n items in the list, then there are n-1 pairs of items that need to be compared
on the first pass. It is important to note that once the largest value in the list is part of a
pair, it will continually be moved along until the pass is complete. At the start of the
second pass, the largest value is now in place. There are n-1 items left to sort, meaning
that there will be n-2 pairs. Since each pass places the next largest value in place, the total
number of passes necessary will be n-1. After completing the n-1 passes, the smallest
item must be in the correct position with no further processing required.
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To analyse the bubble sort, we should note that regardless of how the items are ar-
ranged in the initial list, n-1 passes will be made to sort a list of size n. The total number
of comparisons is the sum of the first n-1 integers. The sum of the comparisons made to or-

der the list is
n−1
∑

x=1
(n−x) which results in the following partial sums formula 1

2n2− 1
2n. This

is still O(n2) comparisons. In the best case, if the list is already ordered, no exchanges
will be made. However, in the worst case, every comparison will cause an exchange. On
average, we exchange half of the time.

A bubble sort is often considered the most inefficient sorting method since it must ex-
change items before the final location is known. These “wasted” exchange operations are
very costly. However, because the bubble sort makes passes through the entire unsorted
portion of the list, it has the capability to do something most sorting algorithms cannot.
In particular, if during a pass there are no exchanges, then we know that the list must be
sorted. A bubble sort can be modified to stop early if it finds that the list has become
sorted. This means that for lists that require just a few passes, a bubble sort may have an
advantage in that it will recognize the sorted list and stop.

3.1.2 Selection Sort

The selection sort improves on the bubble sort by making only one exchange for every
pass through the list. In order to do this, a selection sort looks for the largest value as it
makes a pass and, after completing the pass, places it in the proper location. As with a
bubble sort, after the first pass, the largest item is in the correct place. After the second
pass, the next largest is in place. This process continues and requires n-1 passes to sort n
items, since the final item must be in place after the (n−1)th pass.

The selection sort makes the same number of comparisons as the bubble sort and is
therefore also O(n2). However, due to the reduction in the number of exchanges, the
selection sort typically executes faster in benchmark studies.

3.1.3 Insertion Sort

The insertion sort, although still O(n2), works in a slightly different way. It always
maintains a sorted sub-list in the lower positions of the list. Each new item is then “in-

serted” back into the previous sub-list such that the sorted sub-list is one item larger.

With Insertion Sort there are again n-1 passes to sort n items. The iteration starts at
the first position and moves through position n-1, as these are the items that need to be
inserted back into the sorted sub-list. It performs shift operations that moves a value up
one position in the list, making room behind it for the insertion. Remember that this is
not a complete exchange as performed in the previous algorithms.
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Figure 3.1: Example of insertion.

The maximum number of comparisons for an insertion sort is the sum of the first n-1

integers. Again, this is O(n2). However, in the best case, only one comparison needs to
be done on each pass. This would be the case for an already sorted list.

One note about shifting versus exchanging is also important. In general, a shift op-
eration requires approximately a third of the processing work of an exchange since only
one assignment is performed. In benchmark studies, insertion sort will show very good
performance.

3.1.4 Shell Sort
The shell sort, sometimes called the “diminishing increment sort”, improves on the

insertion sort by breaking the original list into a number of smaller sub-lists, each of
which is sorted using an insertion sort. The unique way that these sub-lists are chosen is
the key to the shell sort. Instead of breaking the list into sub-lists of contiguous items, the
shell sort uses an increment i, sometimes called the gap, to create a sub-list by choosing
all items that are i items apart. The way in which the increments are chosen is the unique
feature of the shell sort.

Figure 3.2: Data selection with increments of three.

One may think that a shell sort cannot be better than an insertion sort, since it does a
complete insertion sort as the last step. It turns out, however, that this final insertion sort
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Figure 3.3: A Shell Sort after sorting each sublist.

does not need to do very many comparisons nor shifts since the list has been pre-sorted by
earlier incremental insertion sorts, as described above. In other words, each pass produces
a list that is “more sorted” than the previous one. This makes the final pass very efficient.

Although a general analysis of the shell sort is well beyond the scope of this text, we
can say that it tends to fall somewhere between O(n) and O(n2), based on the behaviour
described above.

Several “gap” methods are presented in literature and we will highlight three of them
for a sample with N equal to 100:

• Shell Sequence: floor( N
2k ) < N,k ∈ N0; gaps: [100, 50, 25, 12, 6, 3, 1] [Shell,

1959]

• Pratt Sequence: (2k < N) ∪ (3k < N),k ∈ N0; gaps: [96, 81, 72, 64, 54, 48, 36,
32, 27, 24, 18, 16, 12, 9, 8, 6, 4, 3, 2, 1] [Pratt, 1972]

• Knuth Sequence:(3k−1
2 )< N, k ∈ N; gaps: [40, 13, 4, 1] [Knuth, 1968]

3.1.5 Merge Sort
This method adopted a divide and conquer strategy as a way to improve the perfor-

mance of sorting algorithms. Merge sort is a recursive algorithm that continually splits a
list in half. If the list is empty or has one item, it is sorted by definition. If the list has
more than one item, we split the list and recursively invoke a merge sort on both halves.
Once the two halves are sorted, the fundamental operation, called a merge, is performed.
Merging is the process of taking two smaller sorted lists and combining them together
into a single, sorted, new list.

First, the list is split into halves. We already computed that we can divide a list in half
log2(n) times where n is the length of the list. The second process is the merge. Each
item in the list will eventually be processed and placed on the sorted list. So the merge
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Figure 3.4: The two essential parts of merge sort.

operation which results in a list of size n requires n operations. The result of this analysis
is that log2(n) splits, each of which costs n for a total of nlog2(n) operations. A merge
sort is an O(nlog2(n)) algorithm.

It is important to mention that an additional number of operations O(k) can be added
by the slicing operator k which is the size of the slice. This is possible to avoid if we
simply pass the starting and ending indices of each slice along with the list when we
make the recursive call.

It is important to notice that the merge sort function requires extra space to hold the
two halves as they are extracted with the slicing operations. This additional space can be
a critical factor if the list is large and can make this sort problematic when working on
large data sets.

3.1.6 Quick Sort

The quick sort also uses divide and conquer to gain the same advantages as the merge
sort, while not using additional storage. As a trade-off, however, it is possible that the
list may not be divided in half. When this happens, we will see that performance is
diminished.

A quick sort first selects a value, which is called the pivot value. There are many
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different ways to choose the pivot value, we will simply use the first item in the list as an
example. The role of the pivot value is to assist with splitting the list. The actual position
where the pivot value belongs in the final sorted list, commonly called the split point, will
be used to divide the list for subsequent calls to the quick sort. While finding the split
point it will at the same time move other items to the appropriate side of the list, either
less than or greater than the pivot value.

Partitioning begins by locating two position markers, let’s call them left-mark and
right-mark at the beginning and end of the remaining items in the list. The goal of the
partition process is to move items that are on the wrong side with respect to the pivot
value while also converging on the split point.

We begin by incrementing left-mark until we locate a value that is greater than the
pivot value. We then decrement right-mark until we find a value that is less than the pivot
value. At this point we have discovered two items that are out of place with respect to the
eventual split point. We can exchange these two items and then repeat the process again.

At the point where right-mark becomes less than left-mark, we stop. The position of
right-mark is now the split point. The pivot value can be exchanged with the contents of
the split point and the pivot value is now in place. In addition, all the items to the left
of the split point are less than the pivot value, and all the items to the right of the split
point are greater than the pivot value. The list can now be divided at the split point and
the quick sort can be invoked recursively on the two halves.

Figure 3.5: Quick sort first iteration, finding split point.

The quick sort function invokes a recursive function which begins with the same base
case as the merge sort. If the length of the list is less than or equal to one, it is already
sorted. If it is greater, then it can be partitioned and recursively sorted.

To analyse the quick sort function, note that for a list of length n, if the partition always
occurs in the middle of the list, there will again be log2(n) divisions. In order to find the
split point, each of the n items needs to be checked against the pivot value. The result is
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nlog2(n). In addition, there is no need for additional memory as in the merge sort process.
Unfortunately, in the worst case, the split points may not be in the middle and can be

very skewed to the left or the right, leaving a very uneven division. In this case, sorting
a list of n items divides into sorting a list of 0 items and a list of n-1 items. Then sorting
a list of n-1 divides into a list of size 0 and a list of size n-2, and so on. The result is an
O(n2) sort with all of the overhead that recursion requires.

As mentioned earlier, there are different ways to choose the pivot value. In particular,
we can attempt to alleviate some of the potential for an uneven division by using a tech-
nique called median of three. To choose the pivot value, we will consider the first, the
middle, and the last element in the list. Then we pick the median value and use it for the
pivot value. The idea is that in the case where the the first item in the list does not belong
toward the middle of the list, the median of three will choose a better “middle” value.
This will be particularly useful when the original list is somewhat sorted to begin with.

3.2 Unique Algorithm
After the acquisition of a sorted vector or array, it is of great interest removing all

equal values. Reducing the number of repeated values will reduce the amount of data to
process. Those equal values, after the chosen sort method applied, are positioned next to
each other. That way, it is easy to compare a value to its next and evaluate if they are
equal. If they are, only that value is kept. If they are not, the next value is compared
to its next one. Those comparisons proceed until the end of the array or list is reached.
The implementations and coding, of the Std::unique from C++ library has been used to
perform this task since, from its definition, it removes all but the first element from every
consecutive group of equivalent elements in a given vector or array.

22



4
Proposed Representation Method

Contents
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Data Indexing and Clustering . . . . . . . . . . . . . . . . . . . . . . 24

23



4. Proposed Representation Method

4.1 Overview
In this chapter, a detailed description of a method for 3D environment representation is

provided. The increasing density of points obtained by recent sensors turned the real time
processing of those points into a very challenging task. The approach introduced here
aims to reduce the input point cloud in terms of "x-y" coordinates (i.e., down-sampling
with regard to the grid map), while maintaining the complete definition of the input point
cloud regarding the "z" (vertical) elements. In order to keep the process fast, the number
of operations and calculations had to be as small as possible. All implementations were
carried out in ROS software and C++ programming language. The functional block di-
agram, showing the information flow from the input to the final representation is given
in figure 4.1. An explanation of the "Data Indexing" and "Clustering" modules ("Sort &

Unique" was detailed in Chapter 3 ) will be provided in this chapter as well as it capability
to generalize to other representations is demonstrated in figure 4.3.

Figure 4.1: Data flow diagram of the proposed method.

4.2 Data Indexing and Clustering
The proposed method is based on a 2D grid G of square cells Ci j, i, j ∈ N0 lying in

the xy-plane. Any point p = [px, py, pz]T , p ∈ R3 from the point cloud is projected onto a
grid cell Ci j. Two situations may happen: cells without points, or cells with one or more
points. In order to store more than one point on a cell, each Ci j has a corresponding array
Ai j = {A0,A1, · · · ,An}i j, where n is the number of points on that given Ci j cell. In order to
index the point cloud coordinate system (world reference system) values to our grid and
vice versa, the functions expressed by 4.2.1, 4.2.2, and 4.2.3 are considered.

Val =
(

f loor
(

RawData× 1
cellSize

)
× cellSize

)
+

cellSize
2

(4.2.1)

The equation 4.2.1 collects a point coordinate X or Y in the point cloud (referenced
as RawData), one by one, and maps them into their respective cell centre Val in the world
coordinate system.

Coord = f loor
(

Val +Centre
cellSize

−1
)

(4.2.2)
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Equation 4.2.2 calculates the cell address (i.e., the integer and unique location in the
grid) from the real value obtained in 4.2.1. This address is used for storage in the "3D
vector", which is in this implementation the combination of three C++ "std::vector" as fol-
lows, V ∈ vector<vector<vector<float>>> , so a point Am from cell Ci j can be accessed
with V[i][j][Am]. Since the first address of a vector is 0 (zero), one unit ( -1 in equation
4.2.2 ) is subtracted in order to use that space in memory. "Centre" is the coordinate of
the sensor with respect to the world reference system. So, Coord can either be i or j of Ci j

if Val is X or Y respectively. All Z values are stored in their respective Ai j vector without
any modification.

Val = ((Coord +1.5)× cellSize)−Centre (4.2.3)

Finally, equation 4.2.3 is the opposite of equation 4.2.2 and it recovers the cell centre
value in the world coordinates from its indexes i or j in the array Ai j. The added 1.5 value
is needed because of two operations performed in equation 4.2.2: The floor operation lead
to the addition of 0.5 plus 1 unit since it was previously subtracted for reasons already
explained.

It is important to note that the above explanation focuses on the accuracy of height,
that is, the Z coordinate. Furthermore, these equations and associated functions are also
prepared to maintain the accuracy of X or Y coordinates if needed. This will be demon-
strated further in this thesis.

At this stage, it is possible to store, access and represent the points centred in their
respective grid cell without losing any resolution with regard to the height, i.e. the points
in Z-axis. Even so, the number of stored points is the same as the input. By looking at the
points within the same cell (in an array Ai j), it was found that a considerable number of
them had the same height value, due to the high density point cloud. Although originally
they had different X and Y values, they were different points but when centred in a cell,
they are equal. Those equal points have to be removed to preclude that the same points
are processed as many times as they are present in the structure. For that purpose the
Std::unique (see section 3.2) is used but, by its definition, it only removes elements that
are equal and next to each other in a given vector. In other words, the array of values need
to be sorted before to be processed by "Unique" function.

As stated in section 3.1 the selection of the sorting algorithm, greatly depends on the
data to sort and how it is arranged in first hand. It is known, for instance, that the points
from the kinect sensor are returned from top to bottom and left to right of the image. If
the points on the top are the first into the Ai j structure, it is expected that those points have
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higher Z values (or height). But this information cannot be relied upon because it can be
flawed by empty spaces (due to: obstacles, objects, missing points) but it can be assumed
that the points are mostly in descending order. The chosen algorithm was the Shell Sort

with Pratt sequence because it is simple to implement and can achieve in the worst case
(n ×log2(n)) operations, being n the number of points to sort. Other sorting algorithms
have also been implemented during this work, namely:

• Shell Sort with Knuth, Pratt and Shell sequence.

• Merge Sort.

• Std::sort implementation of a relatively standard quick-sort. Available directly from
C++ libraries.

• Timsort: A hybrid stable sorting algorithm, derived from merge sort and insertion
sort. It is standard for python language and also used by Java.

It is important to note that even if the total number of points is considerably large,
the number of points in each array is considerably smaller, and depend on the cell size
chosen. This means that n is relatively small, hence the effectiveness of the sorting algo-
rithm will bring small differences in time versus another algorithm. Anyway even if an
improvement is small it might sum with others to achieve a greater improvement. After an
array containing the Z values is sorted, the unique algorithm removes all duplicate values
in that given array.

This sorting wasn’t just needed to remove the duplicate values, in fact it will make
further processing easier and more efficient. At this moment it is important to remember
that each cell ∈ G has its "vertical" (Z-axis) elements given by the set A, where in case
A is not empty we have {A0,A1, · · · ,An−1}, with Ai = z. In short, we have a set of sorted
z-values elements per cell. In order to obtain the proposed representation, a clustering
method is used in order to extract a set of clusters from A. For that to happen, we will
cluster points next to each other on each array. Since the points are sorted in the array,
while they satisfy the condition given by 4.2.4 the first given point A0

i j will expand point
by point until the next are further than the tolerance given by the user. At that moment the
structure expand from A0

i j to Am
i j. The next structure will begin at Am

i j +1 and the process
is repeated.

i f (|Ai+1|− |Ai|)≤ tolerance (4.2.4)
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Figure 4.2: Illustration of the method compared to standard voxel representation.

Only three points are stored back to the array from each resulting structure, the bottom,
middle and top Z values. This is shown in figure 4.2. Those values are needed to form the
visualization polygon. The tolerance referred in condition 4.2.4 is chosen by the user and
should take into consideration the density of points provided by the sensor.

For example, for the first structure of the array, the points are stored back to it in the
following order:

• A0
i j is the first point of the sorted array.

• Am
i j+A0

i j
2 corresponds to the middle point.

• Am
i j is the last and higher point of the structure.

Figure 4.3 demonstrates the functions developed to achieve various representations of
the environment. Images of points are also provided in that figure, those points are key
structural features to achieve those representations.
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4. Proposed Representation Method

Figure 4.3: Diagram of the developed and implemented functions (in ROS), and their
representation.
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5. Experiments, Tests and Results

The following tests have been performed on a laptop with an Intel I7 processor that
has 4 cores, 8 threads at a maximum of 3.5 GHz per core. It is important to state that
this thesis work is intended to be mounted on a robotic wheelchair as referred in appendix
chapter 9.

5.1 Sensors for Experiments
One of the main requirements to any mobile robotic platform is to travel through space

safely and, in order to ensure this, a complementary sensor based solution was adopted.
Specifically, two complementary sensory technologies were chosen, an infra-red depth
camera and six ultrasonic range finders. A discussion about their main characteristics is
found in this chapter as well as an explanation about their assembly set-up.

Sensor Sonar SRF04 Sonar SRF08 Kinect v1 Kinect v2

Refresh Rate ∼22[Hz] ∼15[Hz] 30[Hz] 30[Hz]

Field of View ∼60◦ ∼60◦ 57◦H. / 43◦V. 70◦H. / 60◦V.

Depth Resolution ±1cm ±1cm 640 × 480 512 × 424

Image Resolution - - 640 × 480 1920 × 1080

Range (approx.) 3cm to 3m 3cm to 6m 60cm to 4m 3cm to 4.5m

Table 5.1: Main sensors specifications

5.1.1 UltraSonic Ranger
An ultrasonic ranger works by transmitting a pulse of sound outside the range of

human hearing, at 40khz. This pulse travels at the speed of sound (roughly 340 m/s) away
from the ranger in a cone shape and the wave reflects back to the ranger from any object
in the path of the sonic wave. The ranger pauses for a brief interval after the pulse is
transmitted and then awaits the reflected wave in the form of an echo. The controller
driving the ranger then requests a ping, the ranger creates the sound pulse, and waits for
the return echo. If received, the ranger reports this echo to the controller and the controller
can then compute the distance to the object based on the elapsed time.

Both SRF04 and SRF08 are from Devantech and are presented in 5.1, they have the
same size and transducers. They rely on the same working principle as described above,
but that is where the similarities end. The newer version have a built-in light sensor on the
front. It communicates through an I2C bus, which allows sixteen addresses and therefore
sixteen different devices. Since it has a PIC16F872, the user do not need to use a timer on
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5.1 Sensors for Experiments

Figure 5.1: The two models of ultra sonic range finders used.

his own controller to wait for ranging to finish as in the SRF04 model. The range value is
provided in inches, centimetres or flight time in uS after each ranging that value is stored
in a specific register. Some registers are available for the user to write into, allowing him
to increase the range up to eleven meters and also decrease it. The main reason to reduce
the range is to get the range information quicker and by doing so, improve the refresh
rate stated in the table 5.1. After that, we must not forget to also reduce the gain of the
transducer because it is possible to receive an echo from the previously emitted pulse,
resulting in erroneous values. Another way to avoid that from happening is to reduce the
time the SRF08 listens for an echo.

This type of sensor is interesting because it is small, cheap and, have low power con-
sumption ( 250mW for the SRF04 and 75mW for theSRF08 ). Due to the conical shape
of the detection area, it is difficult to locate with precision an object or obstacle far away
from the sensor. In section 5.2, a method to minimize that effect will be presented.

5.1.2 Kinect Depth Sensors

This type of sensor referred as RGB-D device, since they provide coloured image
and depth information within their field of view. Those two sensors are presented in
figure 5.2. The main characteristics of both sensors were previously stated in table 5.1
but there are some relevant aspects yet to be discussed. Both sensors emit infra-red light
for acquiring depth. The first version relies on a method called structured light while
the second version uses a time-of-flight principle. The structured light method project
a known pattern onto the scene and infer depth from the deformation of that pattern,
while time-of-flight provides distance based on the known speed of light, measuring the
time of an infra-red light signal between the camera and the subject for each point of the
image. Detailed information about both techniques, comparison of sensors, testing and
results are provided in "Kinect Range Sensing: Structured-Light versus Time-of-Flight

Kinect" by [Sarbolandi et al., 2015]. Both devices were meant to be used directly with the
gaming platform "Xbox" and, for that reason, little open- source solutions are available for
researchers. A software called "libfreenect" from "OpenKinect" were used. It is an open
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5. Experiments, Tests and Results

source driver package, used to test the first version of the sensor. In order to calibrate
and test the second version of the Kinect device, a package of tools called iai_kinect2

from [Wiedemeyer, 2015] were used. That completely open- source package allowed the
modification of the frame rate and other parameters such as resolution:

• High definition (HD): 1920×1080 points

• Quarter High definition (qHD): 960×540 points

• Standard Definition (SD): 512×424 points

The higher definitions were obtained by up-sampling and interpolation as informed
by [Wiedemeyer, 2015] and the results are really satisfying. As the mapped area increase
with distance, with the native resolution, objects placed further away the sensor had low
definition. This huge increase of resolution lead to choose this second version of the
sensor for further experiments.

Figure 5.2: The two models of Microsoft Kinect devices available.

5.2 Sonar Array Assembly
The tests provided in appendix chapter 8 lead to the conclusion that the area covered

by one sonar was too large and the associated uncertainty was too high. On the figure 5.3
five different zones are shown. They are formed by three sonars on top of each other and
rotated by 30o relatively to the one in the middle. The 30o were chosen to minimize the
area of each zone.

To simplify the next explanation of this method the red area will be referred as sonar

1, the blue area as sonar 2 and the green area as sonar 3. The chosen way to merge
the readings, in order to minimize the detection areas from the three sonars to these five
detection zones is performed in the following manner:

• Zone 1: Sonar 1, reading from sonar 2 & 3 are not within sonar 1 reading ±
threshold.
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5.2 Sonar Array Assembly

Figure 5.3: Depiction of the five zones obtained with three sonars.

• Zone 2: Sonar 1 & 2, reading from sonar 1 & 2 are equal ± threshold.

• Zone 3: Sonar 1, 2 & 3, reading from sonar 1, 2, 3 are equal ± threshold.

• Zone 4: Sonar 2 & 3, reading from sonar 2 & 3 are equal ± threshold.

• Zone 5: Sonar 3, reading from sonar 1 & 2 are not within sonar 3 reading ±
threshold.

Figure 5.4: Image of one of the two arrays of three sonars on top of a servo.

It is important to state that the zone number three is the smaller one and it is the
area where the three sensors record the same range within a threshold. To maximize the
usage of that zone, the above mentioned set of three sonars are put on top of a servo
that allows a rotation of 180 degrees, that way, it will always be moving clockwise or
counter-clockwise to the nearest measurement taken, to maximize the usage of that zone.
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5. Experiments, Tests and Results

The array of sensors and the servo used can be seen in figure 5.4. It is also important
to mention a case that can lead to wrong readings with this approach. For example if
the sonar array is located inside a cylindrical structure, all sensors will return the same
reading within a threshold which will lead to the assumption that the obstacle is located
in region number 3. That assumption is wrong and all 5 zones should be considered in
that particular case. Due to the lack of more precise information provided by this type of
sensors, there is no way to correct that assumption.

The testing layout as well as the communication protocols for the experiments per-
formed is depicted in figure 5.5.

Figure 5.5: The testing layout for software testing and implementation.

Each devantech SRF04 need four wires in order to operate, power, ground, Serial Data
Line (SDA) and, Serial Clock Line (SCL) while the SRF08 can share the SDA and SCL
with other devices thank to his Inter Integrated Circuit (I2C) communication protocol.

5.3 Software Overview
This work has been developed under Ubuntu operating system, based on C++ pro-

gramming language and using ROS messages and data structures to record, store and pro-
cess datasets. The key ROS modules used for experimental implementations and results
reported in this Thesis are:

• Publisher/Subscriber: A publisher can send all types of messages available to
ROS to the core node, then, any other node can request to subscribe to that topic to
see and use those messages.
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5.3 Software Overview

• sensor_msgs::PointCloud: This message holds a collection of 3D points p =

[px, py, pz]T ,p ∈ R3, plus optional additional information about each point such
as colour. That information is easy to access and modify as needed.

• sensor_msgs::PointCloud2: This message holds a collection of N-dimensional
points, which may contain additional information as the sensor_msgs::PointCloud.
The point data is stored as a binary blob, which makes it more efficient but may
become more difficult to modify and access information.

• visualization_msgs::Marker: This message is used to represent geometric shapes
such as arrows, cubes, cylinders, spheres and even text. Other fields such as color,
position and lifetime are also available. The visualization_msgs::MarkerArray al-
lows the storage and representation of numerous messages of this type.

• tf::Transform: All represented object or group of objects need a position and ori-
entation, this structure allow movement and rotation in 3D space.

Let us now see and explain the interaction between nodes (i.e., the programs and the
messages) that are published by those nodes. It is required that all ROS applications have
a "ROSCORE", that is, a collection of nodes and programs that are pre-requisites for the
ROS-based system to oversees the remaining nodes and make communications possible
between them. This interaction is seen in figure 5.6 by the black bi-directional arrows.
The blue arrows point from the origin of the message to the node receiving it for further
processing or actual usage.

Figure 5.6: Diagram showing interaction between nodes

The IAI package node returned the point-cloud from the kinect sensor in sensor_
msgs::PointCloud2 format. Due to the difficulty to access and keep this data orga-
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nized, an implementation of various functions were essential to transform it to sensor_
msgs::PointCloud and three dimensional vector of float numbers in order to work with it
more easily. To represent those vectors in Ruby Visualization Tool (RVIZ) or to store into
file, the vectors can be transformed to Point Cloud and then to Point Cloud 2 if needed.

Other functions to load or store ".pcd" files containing datasets in Point Cloud format
were implemented. Another function to load ".bag" files previously recorded are also
available. The called ".bag" files have an important role in ROS, and a variety of tools
have been written to allow users to, process, analyse, and visualize them in RVIZ for
example. With all the data available, a way to process that amount of information in
real-time were needed. The Kinect2 sensor returns through the IAI node a maximum of
1920×1080 = 2073600 points. Each one of these points has three values associated { X,
Y, Z } and that number of points occur 30 times per second (30Hz). It is easy to conclude
that a simple laptop computer are unable to process such number of points at that rate. Not
willing to lose information about precision, resolution were maintained, but the number of
frames per second had to be shortened. Because of that large amount of information, the
method presented here needed to be simple, with as low number of operations as possible
and yet without losing definition in at least one of the three dimensions. It is this and only
this reason that lead to the development of the method proposed.

Variables such as grid size, cell size, robot and sensors positions in that grid are in-
puts provided by the user to the program. With those relative positions and dimensions
it is possible to map the points to their respective cell centre maintaining their height
untouched.

5.4 Sonar Point Cloud Calculation
One of the first implementations made was a way to minimize the area of detection

of the sonars or array of sonars to settle an hardware configuration as described above.
Since those sensors detect obstacles in a conical shape and in 3D coordinates, a way to
represent that area was needed for further processing of this representation method. With
the help of equations 9.0.4 and 8.0.2 it was possible to define with precision each area
or zone shown in figure 5.3. Various look-up tables are present in the code of the node
called "Sonar data Processing", those tables have information about the start angle of each
zone and its aperture, both under and over 15 centimetres and, always under 1 metre from
the sensor. After the reading of the three sensors, the conditions given above are used to
process in which zone is the obstacle. From the readings, the smaller distance d is stored.
Knowing the distance d in centimetres and the zone, an access to the lookup tables is
made to retrieve the starting angle of that zone α and the aperture of it, given by the angle
θ . The value ppc means points per circle and is chosen by the user.
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5.5 Results

Figure 5.7: Calculation of points coordinates {X ,Y,Z} to create a Point Cloud.

The lines 5 to 7 of figure 5.7 demonstrate the actual creation of the points around the
X axis while lines 8 an 9 are a rotation of those points around the Z axis for them to be
placed in their belonging zone. This process results in a point-cloud of the zones where
an obstacle is detected, the five zones are presented in figure 5.8.

Figure 5.8: Point Cloud calculated from the area of detection of each zone. With ppr=40.

5.5 Results
This section reports results from experiments carried out on various real sensory data

used to validate and to illustrate the implementation discussed in chapter 4. The computer
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used in the experiments allowed to process around six frames per second, the images from
the Kinect sensor are 1920 × 1080 pixels and each pixel has three associate coordinates
X, Y and Z. The IAI node also process the color of each point even if it is not used in this
proposed representation method. The images in this chapter were obtained using a "5 ×
5" centimetres cell size unless stated otherwise.

Figure 5.9: Representation of the Point Cloud provided by one of the sonar arrays

Figure 5.10: A simple wall: Original point cloud from Kinect 2 sensor on the left, variable
height voxels on the middle and standard voxels on the right.

The original point cloud from figure 5.10 has 1.603.171 points. For the variable adap-
tive voxels, only 111 points are needed, 3 points per vertical structure. For the regular
voxel representation, 1.000 points were needed, one per voxel and note that more voxels
were needed to map residual points (on the bottom of right image).

Figure 5.11 demonstrate the ability of this method to represent different surfaces over
the same grid cell while keeping the definition given by the sensor. All structures should
have the same height but due to noise characteristic of Kinect sensors, it is not the case.

The figure presented in 5.12 demonstrate that the method explained in this thesis can
also be exported to outdoor spaces and with Velodyne sensors. The point cloud is from a
"KITTI" dataset provided by [Geiger et al., 2013].
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5.5 Results

Figure 5.11: Front part of a bookcase.

Figure 5.12: Six persons in a outdoor environment.

Figure 5.13: Keeping sensor definition in X coordinate in left and middle image and Y
definition in right image.
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Figure 5.14: Left: Free space in blue. Right: Points representing the structure of the free
space.

An attempt to map the free area between the sensor and the obstacles is demonstrated
in the left part of figure 5.14. Two lines are projected from the center of the sensor to the
top and and bottom of each occupied volume. From those lines, only one point per line
and per cell is kept as shown in the right part of figure 5.14. The middle point is calculated
from the top and bottom ones, that point represent the centre of each structure that depicts
a free volume (in blue). This algorithm present some overlapping between free structures
when multiple obstacles lie in depth (X direction). This issue will be referred in section
6.1 of the next chapter.

The table provided in 5.2 quantify the points and structures presented in the figures
from 5.15 to 5.17. The mean of Variable Height Voxels needed to represent the nine
samples is 183, for the Standard Voxels an average of 659 voxels are needed to represent
the same volumes but with less definition. Since a Variable Height Voxel need 3 points
per structure, an average of "183 × 3 = 549" points are stored for the method proposed
here versus 659 for the Standard Voxels. So in average, this method uses less memory
since less points are stored and always need less structures to represent the same volume
and with higher precision.
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5.5 Results

Figure 5.15: Representations of a standing person.

Figure 5.16: First line: A bench; Second line: A plant; Third line: A closet .
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Figure 5.17: A chair and a seated person in different positions.

Figure Row Point Cloud Variable Height
Voxels

Standard
Voxels

Time
(ms)

1st 143.154 points 140 659 31,0507
5.15 2nd 99.651 points 102 418 27,9779

3rd 142.975 points 183 674 31,2319
1st 22.972 points 83 224 23,7153

5.16 2nd 96.993 points 703 1791 24,6782
3rd 313.366 points 666 2261 40,4457
1st 36.896 points 97 210 23,4143

5.17 2nd 121.481 points 203 622 29,9869
3rd 138.905 points 232 680 30,0971

Table 5.2: Quantification and comparison of structures presented.
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6. Conclusions and Future Work

6.1 Conclusions
The proposed approach is robust and the algorithm is fast due to its simplicity and low

number of operations required from the original point cloud to the final representation.
The work achieved with the sonars proved to be useful, reducing the area of detection and
that way obtaining a more precise localization of potential obstacles.

Unfortunately there are improvements and developments still to be made that will be
discussed on the next section 6.1.

6.2 Future Work
An interesting test would be to use linked lists instead of vectors but only in the sorting

step of this approach. Lists allow constant time insert and erase operations anywhere
within the sequence, these features would require less memory to sort. But, lists also
bring some disadvantages such as higher access times. The test and time measurement
with both structures would be useful.

The processing method of free space need improvement to avoid multiple empty struc-
tures overlapping in the same area. A merging ability would solve that issue. With both
free and occupied information, a probability of occupation could be obtained for each cell
from the comparison of volumes ratios over that cell.

Mounting the sonar arrays, Kinect and laser range finder to the wheel-chair for semi-
autonomous or even fully autonomous navigation would be really interesting. For that, a
map matching from local to global map have to be implemented. Some odometry issues
causing the wheels to spin have to be corrected, perhaps improvement in the PID con-
troller, reducing the natural frequency could solve this problem. Navigation algorithms
should also be implemented.

Exploiting the ability shown in figure 5.13, achieving multi-resolution in a given re-
quired area would be of high usefulness for decision making and path planing. A zoom
like feature in a given area with fine grid resolution for example.
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Sonar Evaluation

A study has been performed with one sonar to evaluate its area of detection. Firstly,
a flat obstacle was placed parallel to the sonar and moved from the left and then from
the right side of the sensor to the center until the sonar detected it, those two points were
then marked in a paper sheet. The obstacle was then moved away one centimetre and
the process repeated. This was done because this sensor has two transducers, one for the
emission of the wave and the other one for the reception of the echo. Because of that, the
angle of detection is not symmetric to the axis between both transducers. Measurements
have been made from 2 centimetres to 100 centimetres with steps of 1 centimetre. Because
of the increase of the detection area with the distance, only measurements under one meter
will be considered. This process is shown in figure 8.1.

Figure 8.1: Obstacle parallel to the sensor and steps of one centimetre.

The second evaluation was made with the obstacle on top of a ruler. The ruler was
retained in the centre point of detection (the point between the two transducers) and was
then rotated until the sensor found the obstacle on top of it. This way, the ranging area
with non parallel obstacles could be evaluated. Once again, the movement was done from
left to right and then from right to left. Measurements were taken from 10 centimetres to
100 centimetres with steps of 5 centimetres this time. This procedure is shown on figure
8.2.

The left part of the figure 8.3 shows the results of the previously explained experiment.
The solid line is the junction of the points obtained with the obstacle parallel to the sensor,
while the dots represent the measurements taken by the second evaluation method. It is
clear that this second method lead to a wider area. Which means that the angle of the
obstacle can spread the detection area. This larger area will have to be considered since
it is the worst case scenario and a solution that will lead to errors in mapping future
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Figure 8.2: Measurement of range area with variable obstacle angle.

obstacles is unacceptable. By doing so we can conclude that the detection cone is quite
large (around 60 degrees) and that is one reason that lead to only accept readings under
one metre. The lines of the right part of the figure were obtained by the least squares
method over the points previously obtained. Providing the equations needed to proceed
with the hardware configuration of the final assembly in chapter 5.

Figure 8.3: Left: Resulting zones for one sonar. Right: Quadratic regression of points.

The obtained equation for the top curve of the right figure is:
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y =−0.0031x2 +1.2082x−14.2762 (8.0.1)

And for the bottom curve of that same figure is as follows:

y = 0.0001x2−0.8483x+7.7197 (8.0.2)

It is important to note that under 15 centimetres this method is not applied since the
method obtained from the obstacle parallel to the sonar provide a wider detection area
and that is the one used for such short distances.
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Robchair Storm Platform

The implementation of the sensors and algorithms developed throughout this thesis
were intended to be applied to a robotic wheelchair that will be described in this appendix.
This work is an addition to [Paiva, 2015] work to the platform. Hugo Paiva implemented
a joystick connected to an Arduino board. A Raspberry Pi have also been added to the
wheelchair in order to navigate and communicate with the power driver. Of course this
was not the only purpose of his thesis but his work is gladly thanked since it allowed
the wheelchair to be operated. Even if most of the work presented in this chapter is of
technical nature and is more practical, it took many hours to perform and was essential to
the development of the future work on the wheelchair.

High 163.2cm
Width 64cm
Depth 84cm

Wheels radius 17.2cm
Maximum motor speed 1000RPM

Gear Box reduction factor 1:29
Encoders pulses per revolution 1000

Distance between Wheels 58cm

Table 9.1: RobChair Storm3 main specifications

The first requirement in order to acquire the odometry was to add rotary encoders to
the platform.

Figure 9.1: On the left, it is presented all the hand-made material to hold the encoders
in place while keeping the brakes. On the right, there is a picture taken from below the
wheelchair of the final assembly.

56



In order to connect the motors and encoders, a controller was needed. The chosen con-
troller was the MDC2230 motor controller from Roboteq, it features a dual channel setup,
which makes it possible to control the left and right motor of RobChair Storm individ-
ually. The controller features a high-performance 32-bit microcomputer and quadrature
encoder inputs to perform advanced motion control algorithms in open loop or closed loop
(speed or position) modes. The communication with MDC2230 motor controller can be
done trough RS232, CAN or USB where USB is the one used to exchange data between
the motor controller and the Raspberry Pi.

The MDC2230 also allows PID tuning to each motor, the method used to design the
PID consisted in applying a step input in open loop mode with the RobChair Storm on the
floor and retrieving the motors response to that stimulus. During the study of the courses
of Control and Digital Control and with the precious help of the book "Modern Control
Engineering" by [Ogata, 2001], I acquired the knowledge and mathematical equations
provided in this explanation. Three tests were done to each motor, retrieving 3 peak times
tp and 3 rise times tr for each motor. A mean of those values was calculated, providing
the following results:

• Motor 1: tr = 0.1365s; tp = 0.3975s

• Motor 2: tr = 0.1524s; tp = 0.3590s

ωd =
π

tp
(9.0.1)

The maximum overshoot for motor 1 was Mp = 0.1 and for motor 2 Mp = 0.12 for a
10 % maximum speed input command.

ξ =−
ln(Mp)√

π2 + ln(Mp)2
(9.0.2)

ωn = ξ ×σ (9.0.3)

σ =−ωd

π
× ln(Mp) (9.0.4)

The above obtained values were needed to input in a typical 2nd order transfer function
9.0.5that represent the behaviour of each motor.
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G(s) =
ωn

2

s2 +2ξ ωns+ωn2 →
b0

s2 +a1s+a0
(9.0.5)

The controller is a standard PID with proportional Kp, integrative Ki and derivative Kd

gains, it is shown in equation 9.0.6.

Gc(s) = Kp +
Ki

s
+Kds (9.0.6)

Figure 9.2: Block diagram of the closed loop system with PID and open loop.

Solving the characteristic equation given by 1+Gc(s).G(s) = 0 returned a 3rd order
equation as presented in 9.0.7 (left part). It was needed then to add a non dominant pole
p to the right part of the equation that part also contains the parameters that we want the
final closed loop system to follow. ξ w=1 and ωw

n =3.3 were chosen. The value for p is
equal to 10 ×ξ w×ωw

n .

s3 +(Kdb0 +a1)s2 +(Kpb0 +a0)s+Kib0 = (s+ p)(s2 +2ξ
w

ω
w
n s+ω

w
n

2) (9.0.7)

Solving equation 9.0.7 in order to the gains of the PID controller, returned the solution
to obtain the gains as presented in 9.0.8.

Kp =
2pξ wωw

n +ωw
n

2−a0

b0
;Kd =

2ξ wωw
n + p−a1

b0
;Kd =

pωw
n

2

b0
(9.0.8)
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Figure 9.3: Motors behaviour. Motor 1 on the left and motor 2 on the right.

In blue colour is the reference input, in red the open loop response without PID control
and the green line is the closed loop with PID controller. It is important to chose carefully
the value for the non dominant pole that had to be added because it can lead to the system
instability. After each change, it is advised to draw a root locus to prevent this from
happening.

Metallic parts have been handmade by me to hold all the needed sensors in place as
depicted in figure 9.4 and figure 9.5.

Figure 9.4: Hokuyo laser range finder to assemble in front of the WheelChair Storm3.
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Figure 9.5: Final layout missing the right sonar array.
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