

RASPBERRY PI
CONNECTING DEVICES

Luis Miguel Rocha Jacinto

Raspberry Pi controlling a process using I/O ports
Interconnection of multiple devices

Master Thesis submitted for partial approval of the requirements of Master

 of Electrical and Computer Engineering Degree in Automation speciality

September 2015

Raspberry Pi controlling a process using I/O ports
Interconnection of multiple devices

Luis Miguel Rocha Jacinto

A Dissertation
for Graduate Study in MSc Program

Master of Science in Electrical and Computer Engineering

Work Developed Under Supervision of
Prof. António Paulo Mendes Breda Dias Coimbra (DEEC-UC) and

Prof. Iztok Fajfar (FEE-UL)

Jury
Prof. Rui Alexandre de Matos Araújo (President)

Prof. António Paulo Mendes Breda Dias Coimbra (Vowel)
Prof. Lino José Forte Marques (Vowel)

Electrical and Computer Department
University of Coimbra

Portugal
September 2015

Acknowledge

”Success is not final, failure is
not fatal: it is the courage to
continue that counts.”

Winston Churchill

I’m deeply thankful for all the support and strength my parents and brother gave me over

the last years. Without them this work wouldn’t be possible.

I would like to thank my coordinator Paulo Coimbra for guiding and supporting me over.

Your discussion, ideas and feedback in this process have been absolutely invaluable to me.

Also I want to thank Iztok Fajfar for accepting me for this master thesis and for introducing

this topic. I am very appreciated.

I also place on record, my sense of gratitude to my friends and all other persons, who, directly

or indirectly, have helped me in this important step in my life.

Abstract

”It has become appallingly
obvious that our technology has
exceeded our humanity.”

Albert Einstein

The Raspberry Pi, a single-board computer, has never been fully explored as a server to

connect multiple platforms and Operating Systems. In this work, it was developed a software

compatible with multiple platforms and Operating Systems to acquire, process and deliver data

to other devices either by wire or wireless. This software includes interfaces that allow the

communication between Raspberry Pi and different Operating Systems, namely Windows, Linux

and Mac for computers and Android for phones and tablets. Furthermore, to assure a better

performance of the system, it was used multithreading and time-triggered routines. Moreover,

some features and functionalities were added to allow an easy interaction of the user with the

data. This includes receiving, analyzing, monitoring and storing the data, among others. The

Android interface also includes the option to use a “SMS alert” service. The “SMS alert” service

notifies the user once a preset value was reached allowing the user to react to critical situations.

A sensor of temperature and humidity was used for simulation purposes. Nevertheless, with

the current software any other type of sensor can also be used, regardless of the numbers of

output variables.

Keywords: Raspberry Pi, interfaces, multithreading, time-triggered routines, monitoring,

functionalities, “SMS alert” and software compatible

Resumo

”Tornou-se bastante óbvio que a
nossa tecnologia excedeu a nossa
humanidade.”

Albert Einstein

O Raspberry Pi, um computador single-board, nunca foi completamente explorado como um

servidor para connectar múltiplas plataformas e sistemas operativos. Neste trabalho, foi desen-

volvido um software compat́ıvel com múltiplas plataformas e sistemas operativos para adquirir,

processar e entregar dados a outros dispositivos por cabo ou sem cabo. Este software inclui

interfaces que permitem a comunicação entre o Raspberry Pi e diferentes sistemas operativos,

nomeadamente Windows, Linux e Mac para computadores e Android para telemóveis e tablets.

Além disso, para assegurar uma melhor performance do sistema, foi usado multithreading e

rotinas time-triggered. Mais ainda, alguns serviços e funcionalidades foram adicionados para per-

mitirem uma fácil interação do utilizador com os dados. Isto inclúı receber, analizar, monitorizar

e armazenar os dados, entre outros. A interface Android inclui também uma opção para usar o

serviço “Alerta SMS”. O serviço “Alerta SMS” notifica o utilizador que um valor predefinido foi

atingido permitindo ao utilizador reagir a situações cŕıticas.

Um sensor de temperatura e de humidade foi usado para fins de simulação. Porém, com o

software atual qualquer outro tipo de sensor pode ser usado, independentemente do numero de

variávies de sáıda.

Palavras-chave: Raspberry Pi, interfaces, rotinas time-triggered, monitorizar, funcionali-

dades, “Alerta SMS” e software compat́ıvel

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Summary of The Work Developed . 2

1.4 Structure of the Thesis . 3

2 Technical Background 6

2.1 Introduction to Raspberry Pi . 6

2.2 State of art . 8

2.2.1 Existing competitors . 8

2.2.2 Summary . 12

3 Hardware, Software and Technologies Used 15

3.1 Software and Technologies . 15

3.1.1 TCP Protocol . 15

3.1.2 TCP Sockets . 15

3.1.3 VNC Protocol . 15

3.1.4 SQLite . 16

3.1.5 Multithreading . 16

3.1.6 Timer Events . 17

3.1.7 Android Preferences . 17

3.1.8 Third-Party Libraries . 18

3.2 Hardware . 18

3.2.1 UART . 18

3.2.2 Wireless USB for Raspberry Pi . 19

3.2.3 DHT22 sensor . 19

3.2.4 LCD . 19

i

4 Development and Implementation 21

4.1 Preparation . 21

4.1.1 Setting up VNC to support remote control of Raspberry Pi 21

4.1.2 Setting up Port Forwarding for External Connections 21

4.1.3 Setting up the UART . 22

4.1.4 Setting up Plotting systems . 22

4.1.5 LCD configuration for Raspberry Pi . 23

4.1.6 Android Permissions . 23

4.1.7 SQLite Tables Structure . 23

4.2 Raspberry Pi Interface . 24

4.2.1 Sensor Thread . 25

4.2.2 TCP Clients Thread . 25

4.2.3 UART Thread . 25

4.2.4 Structure of the interface . 26

4.2.5 Electrical connections between Raspberry Pi, sensor, LCD and UART . . . 26

4.3 QT interface . 27

4.3.1 Serial Port . 27

4.3.2 TCP Client . 28

4.3.3 View Data . 29

4.3.4 Classes developed to handle important tasks 30

4.4 Android Interface . 31

4.4.1 The Monitor Activity - TCP Client . 31

4.4.2 Stored Data Activity . 33

4.4.3 View Data Activity . 34

4.4.4 Settings Activity . 35

4.4.5 Classes developed to handle important tasks 36

4.5 Difficulties and Solutions . 37

4.6 Summary . 38

5 Results and Discussion 40

5.1 Android “SMS alert” Service Demonstration . 40

5.2 Raspberry Pi Process Control Demonstration . 41

5.3 CPU usage . 45

ii

5.3.1 Raspberry Pi . 45

5.3.2 Android . 47

5.3.3 QT . 48

5.4 Discussion of the main results . 49

6 Conclusions and Future Work 51

6.1 Conclusions . 51

6.2 Future Work . 52

A Configurations and setting up features 54

A.1 Finding the IP of Raspberry Pi . 54

A.2 VNC installation and configuration . 54

A.3 VNC in the boot . 54

A.4 Port Forwarding . 56

A.5 Deactivate Raspberry Pi’s UART . 58

A.6 QT in Linux based Operating Systems . 58

A.7 WiringPi instalation for C/C++ Development . 59

A.8 RPi.GPIO installation for Python Development 59

B Tutorials and examples 60

B.1 QT Examples . 60

B.1.1 Serial Ports Names in QT . 60

B.2 Python Examples . 61

B.2.1 Email . 61

B.2.2 Serial Port . 62

B.2.3 LED Turn On/Off . 62

B.2.4 LCD . 63

B.3 C/C++ Examples . 67

B.3.1 LED with button - Pull Up/Down pin: . 67

B.3.2 PWM - LED brightness . 68

B.3.3 LCD - 4-bit Mode . 69

B.3.4 LED Blinking Effect . 70

B.3.5 Makefile to compile the examples . 71

iii

C Useful information 72

C.1 TCP Connection . 72

C.2 Multiple Readers/One Writer Problem . 72

C.3 LCD Modes for Character Display . 73

C.3.1 8 bits Mode . 73

C.3.2 4 bits Mode . 75

C.3.3 Comparison of the two modes . 77

Acronyms and symbols 78

iv

List of Figures

1 Raspberry Pi 2 [?] . 7

2 Banana Pi [?] . 8

3 BeagleBone Black [?] . 9

4 Intel Galileo Gen 2 [?] . 10

5 ODROID-C1 [?] . 10

6 pcDuino3 [?] . 11

7 UDOO Quad [?] . 11

8 Database Structure . 24

9 Raspberry Pi interface - Structure . 26

10 Raspberry Pi interface - Connections . 26

11 QT interface - Serial Port . 28

12 QT interface - TCP Client . 29

13 QT interface - View Data . 30

14 Android interface - Monitor activity . 32

15 Android interface - Stored Data activity . 34

16 Android interface - View Data Activity . 35

17 Android interface - Settings activity . 35

18 Android interface - “SMS alert” . 40

19 Raspberry Pi interface - UART and TCP Clients connected 41

20 Raspberry Pi interface - UART and TCP Clients disconnected 42

21 Raspberry Pi interface - Server shutdown . 42

22 QT interface - Linux TCP Client . 43

23 Android interface - TCP Client . 43

24 QT interface - Windows Serial Port . 44

25 Raspberry Pi interface - Running to test CPU usage 45

26 Raspberry Pi interface - CPU usage . 46

27 Android interface - CPU usage . 47

28 QT interface - Serial Port CPU usage . 48

29 QT interface - TCP Client CPU usage . 48

30 QT interface - View Data CPU usage . 49

v

31 Setting up the port and the protocol . 56

32 Association of the device to the port forwarding 57

33 Checking if port is open . 57

34 Three-way handshake . 72

35 LCD 8-bit Mode . 74

36 LCD 4-bit Mode . 76

vi

List of Tables

1 Comparison between the single-board computers - 1/2 12

2 Comparison between the single-board computers - 2/2 13

3 UART Configuration Bits . 22

4 Android Permissions [?] . 23

vii

Chapter 1

Introduction

”I am just a child who has never
grown up. I still keep asking
these ’how’ and ’why’ questions.
Occasionally, I find an answer.”

Stephen Hawking

Over the years the use of microcontrollers has increased world wide. The appearance of the

single-board microcontrollers, a microcontroller printed in a single circuit board providing all the

circuitry necessary to control a task, introduced a new way to develop. This new way allowed the

developers to focus on the development of applications rather than focusing in the development

of the controller hardware. Also, they introduced a new way to teach electronic in education.

Later, appeared the single-board computer, also printed in a single circuit board, introducing

a high computational performance with some features similar to computers. This allowed its

use as an embedded system (embedded computer controller), for educational purposes and also

for the development of systems. With the appearance of the internet it became evident the

need to connect different platforms and devices to single-board microcontrollers and single-board

computers.

This work will focus on Raspberry Pi, a recent credit-card sized single-board computer that

is revolutionizing the electronic community with its features [?]. The focus will be to show why

it is so good and appropriate to use Raspberry Pi in order to create a system able to connect

different platforms and devices. This work was mainly developed in Slovenia under the Erasmus

program.

1.1 Motivation

The Raspberry Pi was introduced in 2006, and it has been a crucial tool for new students

from all ages to learn how to program and to be introduced in the electronic environment. It has

a powerful set of features that made it worldwide known and used by a vast number of users.

The main motivation is to make a first approach to a field, that has never been fully explored

by the majority of Raspberry Pi’s users. The use of Raspberry Pi as a way to connect multiple

1

platforms and Operating Systems. Through this it should be able to handle the communications,

to control processes, and to exchange data between the different devices. With this work it is

intended to show that there is potential winnings if this device is used in the society.

1.2 Objectives

The main objective was to develop three interfaces: a server interface, the Raspberry Pi

interface, and two endpoint interfaces, an Android interface and a QT interface. The focus was

to allow the connection between Raspberry Pi and other devices. The Raspberry Pi interface is

intended to allow the connection of multiple devices to exchange data. This connections would

be either by wire, QT interface, or wireless, both Android and QT interfaces. Furthermore, the

endpoint interfaces would allow the user to monitor, analyze and to manage the data using charts

(graphical implementation). Moreover, these two interfaces have a GUI implemented that makes

the interfaces user-friendly. Among other features and functionalities, the Android interface

would include a service named “SMS alert” to notify a predefined phone number via SMS once

a preset value is reached. Furthermore, all the interfaces would be developed using threading

technology to guarantee a better usage of the resources, e.g. memory, and allowing a proper use

of the CPUs available in the Raspberry Pi, computers, smartphones and tablets. Using threading

mechanims the complexity of the interfaces is increased.

Three different programming languages would be used in this work: C++, Java and Python.

The first to be used in the QT interface, the second in Android interface and the last in Raspberry

interface.

1.3 Summary of The Work Developed

At the beginning it was written guidelines on how to do the initial configuration such as

finding out the Raspberry Pi’s IP address in order to configure a remote access, using VNC

protocol, and on how to set up some needed features in this work, see appendix A. Also, for a

brief introduction to Raspberry Pi, to know how to use it and how it works it was developed

a few number of tutorials, see appendix B, on how to use the common basic electronic devices,

how to interact with some new technologies and how to access the GPIO of this single-board

computer.

After this short introduction, it started to be developed the Raspberry Pi, Android and QT

interfaces. In the Raspberry Pi interface it was developed a TCP server, using TCP sockets,

2

and an UART communication. The first is intended to allow wireless communication, while the

second allow wire communication. It was used a thread exclusively for the UART communication

and for the TCP server, a dedicated thread for each TCP client connected. In terms of the sensor,

one specific thread is responsible to read data from the sensor. This thread is able to send the

data to the UART and TCP clients threads and when they receive it they send it to the particular

user over wire and wireless respectively. In the Android interface it was developed a TCP client

that is able to connect to the TCP server. It was developed the “SMS alert” and an “email

sharing” services. The first allows to notify a predefined phone number that critical values have

been detected and the second allows to send stored data to a predefined email address. In the

QT interface it was developed a TCP client and a UART communication. It was developed a

driver for the UART communication. The Android and QT interfaces were also developed to

allow the user to monitor, analyze and process data in a graphical way. A database feature was

also added in the two interfaces allowing the user to access stored data and do some actions with

it. As an example exporting the data as a CSV or XLSX file format.

It is important to mention that this dissertation allowed me to consolidate the knowledge

acquired throughout the course by exploiting the concepts of programming such as threading,

TCP sockets, conditional objects, time-triggered routines, GUI development and also introduced

me to new programming languages such as Java and Python that are a great acquisition to my

portfolio.

In addition, this project was also very enriching for me regarding the programming domain,

which is a very interesting business area that I would like to get involved into in my future job.

1.4 Structure of the Thesis

This dissertation contains five chapters apart from this one. They are as following:

• Technical Background - An introduction to Raspberry Pi is made, a state of art introducing

the most know competitors, their advantages and disadvantages.

• Hardware, Software and Technologies Used - It is described and introduced the most rele-

vant hardware, software and technologies used to support this dissertation.

• Development and Implementation- This chapter contains all the work developed, properly

introduced, contextualized and explained with detail.

3

• Results and Discussion - In this chapter are showed and discussed the results of the work

developed in the latter chapter.

• Conclusions and Future Work - It is presented the conclusions and the future work that

can be done.

4

Chapter 2

Technical Background

”You have enemies? Good.
That means you’ve stood up for
something, sometime in your
life.”

Winston Churchill

There is a vast variety of single-board computers. The most appropriate for each applica-

tion should be chosen after analyzing and comparing which will have the best performance and

bring the best results for a desired application. With this in mind, this chapter starts with an

introduction to Raspberry Pi and includes a comparison between some single-board computers.

2.1 Introduction to Raspberry Pi

Raspberry Pi is a worldwide known brand that gained its popularity after the success of its

released single-board computers. In this work, it will be detailed the last Raspberry Pi release, the

version 2 model B. This single-board computer has functionalities similar to a desktop computer

and a powerful set of hardware components that allow its use to develop applications with high

demands. Some of the main features are a System-on-Chip (SoC) Broadcom BCM2836, an ARM

Cortex-A7 with 4 cores with 900MHz CPU, 1GB RAM (LPDDR2), HDMI port to connect a

monitor, 4 USB ports to connect some devices like a keyboard and mouse, MicroSD card slot,

CSI camera interface, combined audio jack and composite video, DSI display interface to connect

touch screen display, 40 General Purpose I/O (GPIO) pins header and Ethernet port [?, ?]. The

last one allows to connect Raspberry Pi to the internet and do operations such as browsing,

connecting to ftp servers, creating tcp servers or clients to exchange data, updating the system

via terminal and more. Regarding the USB ports, it is possible to connect a wireless extender

to support wireless connections to the internet eliminating the need to connect the Raspberry

Pi via wire to a router. Raspberry Pi runs on a Linux based Operating System and this is the

biggest advantage of this device since it allows the use of all the Linux compatible programs in it,

e.g. git (a distributed version control system, commonly used to manage versions of developed

applications), wolfram mathematica for school work, apache and wireshark. Also, there is a

6

vast number of Hardware on Top (HAT) that can be added directly to the Raspberry Pi [?].

This hardware allows to plug to Raspberry Pi other devices, for instance a GPS Module, RGB

Matrix, Piano keyboard, among others [?]. This single-board computer has some features that a

single-board microcontroller has, for instance the GPIO pins, see figure 1. The GPIO are a set

of input and output digital pins and they have an important role to the Raspberry Pi. Some of

the electrical technologies available are I2C, SPI, PWM and UART support.

Figure 1: Raspberry Pi 2 [?]

In every device there is always some drawback and Raspberry Pi is no exception regarding

to this topic. An example is that it does not support analog input since there is no ADC device.

Fortunately, Raspberry Pi can be extended with a set of ADC devices to support analog input

and allow the use of analog sensors. Another example is that there is only one pin that allows

hardware PWM in this device. There are two solutions to this problem, either use software PWM

or expand the Raspberry Pi with PWM circuits that use either SPI or I2C technology. The first

solution is to use a software library1. The drawback is that this library has low resolution (the

minimum pulse width is 100µs [?]). This solution is not good for applications that require good

1A C/C++ library is needed: WiringPi; See appendix A.7 for more information on how to install.

7

precision such as motors with encoders in robots or other devices where precision is absolutely

mandatory. For these cases it is better the second solution. As a note, for outputting analog

signals, PWM can be used regulating the Duty Cycle and applying a RC filter2 to the output

channel. In terms of Operating Systems it can run Linux based OS, Android, RISC OS and

Windows 10 and the programming languages available are C/C++, Python, Node.js, Shell-script,

Scratch, Java and other languages present in Linux Operating System.

2.2 State of art

This section will present and contextualize some single-board computers (SBCs) related to

Raspberry Pi.

2.2.1 Existing competitors

Banana Pi

Banana Pi is a single-board computer with an Allwinner A20 SoC, an ARM Cortex-A7

2 cores with 1GHz CPU , 1GB (DDR3) RAM, it has an ethernet port, HDMI, CSI, SD card

slot, support for audio I/O (stereo jack and microphone), 26 GPIO pins header, and 2 USB. It

supports Hardware PWM (just one pin), SPI, I2C and also UART. This SBC is very similar to

Raspberry Pi 1 model A (practically the same GPIO pins header) but has some functionalities

that Raspberry Pi 1 does not have, for instance ethernet port (10/100/1000 Mbps). Banana

Pi can run Linux based Operating System and Android. As programming languages there are

available C/C++, Python and other languages available in Linux based Operating System [?].

Figure 2: Banana Pi [?]

BeagleBone Black

2If it does not suffice a higher order active low-pass can be used or a higher PWM frequency [?].

8

Some of BeagleBone Black main features are a Texas Instrument Sitara AM3359 SoC, an

ARM Cortex-A8 with 1 core and 1GHz CPU, 512MB (DDR3L) RAM, 4GB of memory (for the

Operating System), microSD card slot, its support for microHDMI, 1 USB port , ethernet port

(10/100 Mbps), a 46-pin dual-row expansion header including 7 analog input pins (ADC) and

a large number of digital input and output pins[?]. It includes support for hardware PWM,

I2C, SPI and UART. The main programming languages available are Python, C/C++, Java,

Ruby and Node.js, among other languages available in a Linux based Operating System. As

for Operating Systems there this SBC can run Android, Fedora, Angstrom Linux and also some

other Linux based [?].

Figure 3: BeagleBone Black [?]

Intel Galileo Gen 2

This single-board computer has an Intel QuarkSoc X1000 SoC, a x86 Quark with 1 core and

400MHz CPU, 256MB (DDR3) RAM, 8MB NOR Flash and 8KB EEPROM onboard storage,

a MicroSD card slot, 1 USB, ethernet port (10/100 Mbps) and an Arduino-compatible header

(Arduino 1.0 header). This header has 20 digital I/O (12 fully native speed), 6 analog input

(ADC) and it has support for 6 PWM (12-bit resolution), SPI master, I2C and UART. The

Operating systems able to run in this single-board computer are Linux based Operating System

and Windows. The programming languages available are Node.js, html5, C/C++ and Python

[?, ?].

9

Figure 4: Intel Galileo Gen 2 [?]

ODROID-C1

ODROID-C1 is a single-board computer with an Amlogic S805 SoC, an ARM Cortex-A5

with 4 cores and 1.5GHz CPU, 1GB (DDR3) RAM, can be added an eMMC module as an

onboard memory, microHDMI, a RTC, IR Receiver, MicroSD card slot, 40 GPIO pins header,

supports analog input (ADC), 4 USB and ethernet port (10/100/1000 Mbps). Also it supports

SPI, I2C and UART. This SBC can have the follwoing Operating Systems: Linux based Operating

Systems and Android. As for programming languages it can be used the languages available in

the two Operating Systems mentioned [?].

Figure 5: ODROID-C1 [?]

pcDuino3

This single-board computer has a Allwinner A20 SoC, an ARM Cortex-A7 with 2 cores

and 1GHz CPU, 1GB (DRAM) RAM, it has a 4GB (Flash) onboard memory, HDMI support,

MicroSD card slot, IR Receiver, 1 USB, ethernet port (10/100 Mbps) and an Arduino-compatible

header (Arduino 1.0 header). This header has 14 digital I/O, 6 analog input (ADC) and it has

10

support for 2 PWM, SPI master, I2C and UART. The Operating Systems available for pcDuino3

are Linux based Operating System and Android. As for programming languages it can be used

the languages available in the two Operating Systems mentioned [?, ?].

Figure 6: pcDuino3 [?]

UDOO Quad

This single-board computer has a Freescale i.MX6 Quad SoC, an ARM Cortex-A9 with

4 cores and 1GHz CPU, 1GB (DDR3) RAM, HDMI support, MicroSD card slot, CSI, analog

audio and microphone, Wifi module, sata support, FlexCan (Flexible Area Network) support,

2 USB, ethernet port (10/100/1000 Mbps), 76 GPIO pins with an Arduino-compatible header

(Arduino 1.0 header) and support for analog input (ADC). It has support for PWM, I2C, SPI

and UART. The Operating Systems available for this single-board computer are Linux based

Operating System and Android. As for programming languages it can be used the languages

available in the two Operating Systems mentioned [?, ?].

Figure 7: UDOO Quad [?]

11

2.2.2 Summary

In the table bellow is summarized the Operating Systems, System-on-Chip (SoC), CPU and

RAM that each single-board computer above mentioned have:

Table 1: Comparison between the single-board computers - 1/2

Single-Board Computer Operating System SoC CPU RAM

Banana Pi
Linux based OS

Android
Allwinner

A20
ARM Cortex-A7
2 cores - 1GHz

1GB
(DDR3)

BeagbleBone Black
Linux based OS

Android
TI Sitara
AM3359

ARM Cortex-A8
1 core - 1GHz

512MB
(DDR3)

Intel Galileo Gen 2
Linux based OS

Windows
Intel QuarkSoc

X1000
x86 Quark

1 core - 400MHz
256MB
(DDR3)

ODROID-C1
Linux based OS

Android
Amlogic

S805
ARM Cortex-A5
4 cores - 1.5 GHz

1GB
(DDR3)

pcDuino3
Linux based OS

Android
Allwinner

A20
ARM Cortex-A7
2 cores - 1GHz

1GB
(DRAM)

Raspberry Pi 2 model B
Linux Based OS

Windows, Android
Broadcom
BCM2836

ARM Cortex-A7
4 cores - 900MHz

1GB
(LPDDR2)

UDOO Quad
Linux based OS

Android
Freescale

i.MX6 Quad
ARM Cortex-A9
4 cores - 1 GHz

1GB
(DDR3)

The SoC, System-On-Chip, integrates all the components into a single silicon chip. It has

the CPU, GPU, memory, USB controllers, power management circuits, among others. SoC main

advantage is its very high level of integration and its little size. Since it has a shorter wiring it

has ã low energy consumption. The type of SoC in a single-board computer is a very important

parameter. The CPU ranges are from 1 to 4 cores and the speed from 400MHz to 1.5GHz. In

terms of RAM the ranges goes from 256MB to 1GB. In terms of Operating System all the SBCs

have Linux based OS and some also support Android and Windows OS.

In terms of prices and the most important features, the table bellow summarizes all the

information:

3Information available in: [?, ?, ?, ?, ?, ?, ?]

12

Table 2: Comparison between the single-board computers - 2/2

Single-Board Computer Price (e)3 Other interfaces

Banana Pi 38 HDMI,UART , 2 USB, SD card, CSI, Ethernet??

BeagbleBone Black 48
MicroHDMI, MicroSD card, UART

4GB (eMMC), 1 USB, Ethernet?

Intel Galileo Gen 2 66
Arduino 1.0 headers, MicroSD card, UART,1 USB, JTAG

8MB NOR Flash and 8KB EEPROM, Ethernet?

ODROID-C1 31
MicroHDMI, 4 USB, RTC, (IR) Receiver

support for eMMC module, MicroSD card,Ethernet??

pcDuino3 45
Arduino 1.0 headers, 4GB Flash, HMDI, UART

1 USB, IR Receiver, MicroSD card, Ethernet?

Raspberry Pi 2 model B 31
HMDI, CSI, DSI display, MicroSD card, UART

4 USB, HAT compatible,Ethernet?

UDOO Quad 87
Arduino 1.0 headers, MicroSD card, CSI

HDMI, 2 USB, Ethernet??

? (10/100 Mbps)
?? (10/100/100 Mbps)

In terms of price the range goes from 31 to 87 e. Comparing the features that these SBCs

have to their prices it is clear to conclude that it is a good ratio. The most expensive SBC

is UDOO Quad however, comparing its features to the price is quite acceptable. In terms of

developing an application/system it should be analyzed first the needs and after choose from

the available SBCs one in particular that fits the purpose needed, taking in considerations the

parameters mentioned in the tables 1 and 2. Concluding, Raspberry Pi is a relatively cheap SBC

that has some features and functionailites similar other SBCs.

13

Chapter 3

Hardware, Software and Technologies Used

”Whoever is careless with the
truth in small matters cannot be
trusted with important matters.”

Albert Einstein

In this chapter, it will be mentioned the hardware, the software and technologies that had

contributed and supported significantly the work developed.

3.1 Software and Technologies

It will be mentioned all the software and technologies used in the development of the Rasp-

berry Pi, Android and QT interfaces.

3.1.1 TCP Protocol

TCP is a transport layer protocol that provides reliable, ordered and error-checked delivery

of a stream of data. It is mainly used by applications that require guaranteed delivery of packets

[?].

3.1.2 TCP Sockets

Processes running on different machines communicate with each other by sending messages

into sockets, using a TCP connection. Data can be exchanged as if there was a direct virtual

pipe between client and server [?]. The TCP protocol will guarantee that all the data sent will

be received and in the same order that was sent.

For more information about how to establish a TCP connection, using a TCP socket, please

refer to C.1.

3.1.3 VNC Protocol

Virtual Network Computing is a graphical desktop sharing protocol to remotely control

another computer. It can also transmit the keyboard and mouse events from one computer, the

15

client, to the one that is sharing the desktop, the server. There can be more than one client

connected to the server. This technology allows for example remote maintenance, accessing files

in a system and having control of a particular computer.

3.1.4 SQLite

SQLite is a database management system that complies with the SQL syntax. In contrast

to other database systems, SQLite is not a client-server database. Instead, it is embedded into

the application. Also, there is bindings for almost every programming language. Some of them

are Java, C/C++, PHP, Python and Ruby.

3.1.5 Multithreading

Multithreading is a concept where multiple threads can exist within the context of a single

process and run independently. This allows applications to be more responsive, faster executing

and doing tasks and more importantly, makes use of the multicore and multi-CPU systems since

it is possible to divide tasks into parallel tasks (threads) and let the OS decide if they run either

concurrently, on a single core or, in parallel, on multiple cores.

Async task

In Android development, it is not allowed to access directly elements from the Android GUI

thread directly by working threads. To be able to access them there are different solutions, one

of them is the Async tasks. This solution allows to send arguments to a working thread and

there are four main functions with an important role. In particular, the first one allow small

configurations of variables and setting values, the second one does the work and is able to publish

if new work is done, the third one receives the published work and allow to interact with the

Android GUI thread and access its elements and the last one is called at the end of all the work

to do the cleaning.

For more information about this class refer to [?].

QThread

QThread is a QT class that allow the use of working threads in the development of an

application. There is some ways to use this class. The most used are to move a worker object to

a thread using the moveToThread() method or to subclass the QThread and override the run()

method. For both methods, to connect the work done with the QT GUI Thread it is necessary

16

to make use of signals and slots. In the working thread it should be used an emit and in the GUI

thread the respective signal should be connected to a particular slot to handle the event. In this

way it is possible to combine working threads that do some work and the QT GUI thread not

blocking its graphical view.

For more information about this class refer to [?].

Conditional Objects

To deal with one of the writer/reader problems, the multiple readers and one writer, and

to grant synchronization between threads, in Python language, there is a conditional variable

that uses a lock mechanism to synchronize access to a shared state. This mechanism solves the

known problems associated with shared variables. This conditional variable assures that threads

interested in a particular change of state, the readers, will wait until the thread that change

the state changes it, the writer. When the writer changes the state it notifies all the readers,

awakening and allowing them to access the shared variable. Also, this conditional object can be

used to solve other writer/reader sub-problems a part from the one explained above.

For more information about conditional objects and the multiple readers and one writer

problem refer to [?] and appendix C.2 respectively.

3.1.6 Timer Events

In QT to deal with work that has to be done periodically, timers are a valuable asset. They

allow a task to be executed every single millisecond. When there is a timer timeout, a timer event

is raised and with the timer id it is possible to redirect the work to the task needed. Another

way to redirect the work is to connect the timeout signal to a slot and have a specific function

for each task.

3.1.7 Android Preferences

In order to provide an user preferences settings menu in an android application that is able to

remember the values after being changed it is necessary to use the preference API from Android

repository. This settings are available to be read in the application and with them it is possible to

do some actions depending on the user configuration. Also it is important to highlight that even

when the user closes the application, the settings will have the values that the user configured

before.

For more information about this API refer to [?].

17

3.1.8 Third-Party Libraries

QcustomPlot

QT does not include support to plot graphs in an application. To add this functionality it

is necessary to add a third-party library, QCustomPlot.

AchartEngine

Android does not have any built-in libraries to allow the use of graphs in an application. For

being able to plot graphs it is necessary to include in the project a third-party library such as

AchartEngine. Then add a JAR file containing the library to the project and inform the gradle

system to compile it in order to be able to use its methods.

JExcelApi

In order to be able to handle excel file format in an Android application it is necessary to

add a third-party library, JExcelApi. To be able to use this library it is necessary to do the same

steps explained in the section 3.1.8 in the AchartEngine separator.

QtXlsXWriter

To add excel file format support to QT it was needed to add a third-party library, QtXl-

sXWriter to the project. This library allows to create a XLSX file, access the cells to add data,

create charts and many more.

3.2 Hardware

3.2.1 UART

A universal asynchronous receiver/transmitter is a device that translate data between par-

allel and serial forms. Parallel interfaces transfer multiples bits at the same time over a bus

and serial interfaces stream the data one single bit at time. Essentially, the UART acts as an

intermediary between parallel and serial interfaces taking bytes of data and sending them bit by

bit sequentially. Since the data is transferred without support from an external clock signal it is

categorized as an asynchronous communication.

18

3.2.2 Wireless USB for Raspberry Pi

The wireless USB allow the Raspberry Pi to have internet access without having to connect

an ethernet port to a router and settle up all the working environment taking in consideration

the router location.

3.2.3 DHT22 sensor

It is a relative cheap sensor for measuring temperature and humidity. Inside there is a chip

responsible to do analog to digital conversion and to output the data over digital signals. It uses

a non-standard one wire digital signaling protocol.

For more information, please refer to the datasheet [?].

3.2.4 LCD

A Liquid Crystal Display is an electronic device that allow to display digits, words, charac-

ters, images and even videos in it.

19

Chapter 4

Development and Implementation

”I never did anything by
accident, nor did any of my
inventions come by accident;
they came by work.”

Thomas A. Edison

In this chapter, it will be explained all the work developed, how it was accomplished, which

difficulties stood against the progress and how they were overcome.

4.1 Preparation

The purpose of this section is to describe all the steps taken to set-up all the tools and

functionalities needed to provide a stable and consistent working base.

4.1.1 Setting up VNC to support remote control of Raspberry Pi

Due to the absence of a HDMI monitor it was necessary to use the VNC protocol to provide

a graphical remote access to Raspberry Pi. First it is necessary to find out Raspberry Pi’s IP

address, see appendix A.1 to know how to, and use any SSH application to connect to it via

terminal. After having access to Raspberry Pi it was necessary to install Tight VNC Server,

configure and start it. See appendix A.2 for detailed information on how to do this step by step.

And at last to establish a connection using a computer it was only needed to insert Raspberry

Pi’s IP address in any VNC application. To avoid to start the VNC server manually all the time

the Raspberry Pi is turned on it was added to the boot order a script to start it automatically.

The steps to do this are available in the appendix A.3.

4.1.2 Setting up Port Forwarding for External Connections

In order to allow external connections to Raspberry Pi it was necessary to port forward the

port number 5000 and associate it to Raspberry Pi’s IP address in the router interface. This

was an important step since it allows TCP connections to be made outside a local network and

21

grant access to the server in any internet access point. All the steps needed are detailed in the

appendix A.4.

4.1.3 Setting up the UART

First it was necessary to deactivate the main use of the UART from Raspberry Pi’s Operating

System in order to be able to have exclusive access to it. This step was needed since Raspberry

Pi uses the UART to serve as a command line access, login purposes, and to provide diagnostic

messages during the boot time. To deactivate it was necessary to do the steps explained in the

appendix A.5.

To establish the UART communication it is was necessary to define the communications

settings.

The table bellow shows the configuration settings needed:

Table 3: UART Configuration Bits

Baudrate Data Bits Parity Stop Bit Flow Control

115200 8 No Parity One Stop No Flow Control

The information about how to connect the UART to the Raspberry Pi is shown in the figure

10 in the section 4.2.5.

4.1.4 Setting up Plotting systems

AchartEngine configuration for Android

In order to use this service it was necessary to create a class named Point to manage points

(a date and a double) and another class named LineGraph to use the Point class to add points

to a graph. Also, it was developed in the LineGraph class methods to clear the graph, to repaint

the view, to configure the layout and to add different series into the same plot. In the layout

XML file it is mandatory to add a chart id inside a Linear Layout and in the java class it is

necessary to attach the view to it. Also, it was replaced the default zoom buttons to make the

layout prettier and user-friendly. It is important to mention that it was developed these two

classes to help managing the plot and its features in a real time mode.

22

QCustomPlot Configuration for QT

In order to configure and use QCustomPlot in QT it was necessary to insert in the GUI main

file a QWidget and then promote it to a QCustomPlot. It was customized the graphs layout and

a zoom in and zoom out functionality was added being the last one triggered by the mouse wheel.

4.1.5 LCD configuration for Raspberry Pi

In order to use a LCD character display it was necessary to first choose the mode to use it.

There is the 4bit and 8bit mode and in this work it was used the first. To be able to use it it was

necessary to create a library, in Python language, that controls the LCD via commands using its

registers. In addition this commands differ accordingly to the mode selected. The library created

was based on an existent program to handle an LCD [?].

For more information about the two modes and the registers please refer to appendix C.3.

4.1.6 Android Permissions

To use some features that an android device has it is mandatory that in the AndroidManifest

XML file the required permissions are included. This way the resources needed will be available.

Also, for security purposes when the user tries to install an application in an android device it

will be prompted being warned about the potential usage of this particular application.

In the table bellow it is shown the permissions used in this work:

Table 4: Android Permissions [?]

Permission Description

android.permission.SEND SMS Allow the application to send SMS
android.permission.INTERNET Internet access and sockets access
android.permission.WRITE EXTERNAL STORAGE Write access to the external storage
android.permission.READ EXTERNAL STORAGE Read access to the external storage
android.permission.ACCESS NETWORK STATE Access to the state of the internet

Also, as an extra information, for adding support to export the application from the phone

memory to a MicroSD card it is necessary to add in the XML file referred before the following

line android:installLocation=”preferExternal” in the manifest tag.

4.1.7 SQLite Tables Structure

In order to be able to manage a database it was necessary to define the tables structure and

their relationship. This database consists in two different tables listData and monitorData. This

23

tables are connected to each other by a foreign key (FK). This key is the idListData field that

is present in the monitorData table and that is connected to the id field in the listData table.

The listData table stores the begin/end times and dates for a particular set of monitored data

and also an unique identifier, while the monitorData table stores the temperature, humidity,

the timestamps and a idListData for all the monitored done. For each entry of the last table a

particular idListData is associated to a particular set of monitored data in the listData table.

In the figure bellow it is shown the database structure with the two tables and their rela-

tionship:

Figure 8: Database Structure

4.2 Raspberry Pi Interface

It was developed an interface for Raspberry Pi, using Python language, to allow TCP con-

nections (a TCP server), to allow an UART connection and also an event manager to handle the

readings of the sensor. The first uses wireless communication, while the second uses communica-

tion by wire. The TCP server can accept new TCP clients and start new threads for each client

that successfully connects to the server. For the UART connection was developed a driver in

order to communicate with devices able to communicate with this technology such as computers

and microcontrollers. It was created a specific thread to handle the serial port communication,

the sensor thread. For the event manager it was developed a specific thread to handle the sensor

reading events. This thread is responsible to send the new data to the TCP clients and UART

threads and also to print it in the LCD. There is a shared variable managed by a conditional

object that is associated with a lock mechanism to handle synchronization between threads, refer

to section 3.1.5 in the separator Conditional Objects for more information. This shared variable

can be accessed by two different set of threads, the ones that need to read and the one that need

to write to it. As readers there are the TCP clients and UART threads and as writer there is

24

the sensor thread. The last one can access the variable to write and when it does notifies all the

readers, awakening and granting them access to read the shared variable and do their work. For

safety reasons, when a CTRL+C is caught all the threads are safely terminated, the GPIO is

cleaned up, the server shutdown and the program terminates.

See Appendix C.2 for more details about multiple readers and one writer problem.

4.2.1 Sensor Thread

This thread is responsible to read the data from the sensor, format the temperature and

humidity to be with two decimal digits, to write and change the value of the shared variable and

to notify all the TCP clients and UART threads that new data is available to be accessed. Also,

in this thread the LCD is refreshed with the new data.

4.2.2 TCP Clients Thread

Each TCP client thread is able to access a shared variable that contains the new values

from the sensor and send it to the according client over wireless. When a client disconnect, the

connection is closed for that particular client and the thread terminates.

4.2.3 UART Thread

In this thread, first it is necessary to establish the connection with the right configuration, as

it is shown in the table 3 in the section 3, and specify the port name. In this case the port name

is /dev/ttyAMA0. It waits to receive in the buffer the message “Read\n”, sent by the connected

device. Then this thread enters in a loop accessing the shared variable to read and send it to the

respective device over wire. To terminate the readings when it reads from the buffer the message

“Stop\n” the communication is stopped. To start over the communication it is necessary to send

again the message “Read\n”.

25

4.2.4 Structure of the interface

In the figure bellow it is possible to see the structure of this interface, how it works and how

it is connected with each thread:

Figure 9: Raspberry Pi interface - Structure

4.2.5 Electrical connections between Raspberry Pi, sensor, LCD and UART

The figure bellow shows the connections between the Raspberry Pi, the LCD, the UART

and the sensor. It is important to mention that the UART has a Micro-USB that needs to be

connected to the device that will communicate over wire with the Raspberry Pi.

Figure 10: Raspberry Pi interface - Connections

26

4.3 QT interface

It was developed an interface that creates a TCP client, using a TCP socket, and a serial

port communication, the UART connection, in order to connect to Raspberry Pi interface either

by wire or wireless. This interface was build in QT to aim the compatibility with the most

significant Operating Systems available in the market namely Windows, Linux and Mac. To use

this interface in the Operating Systems mentioned it is necessary to install4 QT Creator in both

systems, compile the code and the interface is ready to be used. It is important to mention that

it is possible to use at the same time the two connections, the TCP client and the serial port

communication. However there is no point in receiving the same data in different ways. For

that reason it was disabled this service. This is done by disabling a tab when one connection

is established. This tab is present in the GUI window and can be seen in the figure 11 in the

section bellow. In this interface the UART connection does not make use of the database since

it was chosen to develop only support for the TCP connection. At last it was developed a way

to enable zoom in and zoom out of the plot in real time using the mouse wheel, exportation of

stored data via XLSX or CSV file formats and also a way to save images of the graphs in PNG

format file.

4.3.1 Serial Port

In this part, the first step to be done was to find out the serial port name of the connected

device in the Operating System dynamically. To make the UART connection easier to the user,

when the programs starts a combo box (multiple choice) is automatically filled with the available

port names of the current connected devices to the computer. If for any case the user did not

have the device connected before loading the interface it is possible to refresh and automatically

the name will appear in the combo box. For more information about how to check the available

ports in QT please refer to the appendix B.1.1. The second step was to develop a serial port

communication being necessary to open the UART device and set up the configuration bits, see

table 3 in the section 3. When the connect button is clicked the serial communication port is

established and on success it is sent the message “Read\n” to the Raspberry Pi interface. When

the Raspberry Pi interface receives this message the exchange of data starts. To prevent bad

behavior in the QT interface the read button is enabled when the connection is established and

4For MAC Operating System it is necessary to install Xcode available on MAC installation CD [?]. For Linux
refer to appendix A.6.

27

the stop button when the connection is active. For not colliding with the GUI thread in QT,

when the read button is clicked a timer is instantiated to tick each second. Each timeout is

handled in an event handler that reads the serial port, deals with the data formats and insert

the data in the graph not affecting the GUI thread’s performance. It is important to mention

that it is necessary to know the id of the timer in order to handle the event. To terminate the

readings, it is necessary to send the message “Stop\n” to Raspberry Pi interface. This is done

when the user clicks in the stop button. In order to add the functionality to save the plotted

graph as an image it was necessary to use the savePNG method available in the UI element of

the graph and specify the file path to save it. As default it was chosen the computer desktop.

The figure 11 shows the GUI tab for the serial port communication.

Figure 11: QT interface - Serial Port

4.3.2 TCP Client

The first step was to develop a method, using TCP sockets, to connect, by wireless, the QT

interface with the Raspberry Pi interface, the TCP server. To do so it was necessary to provide

the server’s IP and port addresses. This two parameter are present in a text box, see figure 12,

with default values that the user can change. To prevent bad behavior from the user, when the

connection is established the disconnect button is enabled and the connect button is disabled.

When the connection is established first time the graph is initialized and a timer is configured

to tick each second until the user stops it. Each timeout event is handled by a task that reads

28

the data from the socket buffer, inserts the data in a graph and store the data in the database.

To save the graph as an image the button save PNG has to be clicked.

The figure 12 shows the GUI tab for the TCP communication:

Figure 12: QT interface - TCP Client

4.3.3 View Data

In this part of the work, it was developed a way to access stored data. This allows the user to

re-plot the graph and save images of it, export the data as a XLSX or CSV file format and delete

either one or all the entries available in the database. For accessing a particular set of monitored

data, it is necessary to double click in the respective entry of the table and the graph for that

particular data is plotted, see figure 13. The data is fetched from the database by a working

thread in the background of the interface. For this working thread it was necessary to develop

a class called MyThread that is connected to the GUI thread via signals and slots. This is done

in order to communicate the data already fetched from the database by the working thread to

the GUI thread. When the GUI thread receives data it automatically adds it to the graph. For

more information about this class please refer to the section 4.3.4 in the MyThread separator.

The figure 13 shows the GUI tab for the view data:

29

Figure 13: QT interface - View Data

It was also developed a MyThreadExport class that uses a thread to create the two files

mentioned. They are stored in the computer desktop in use. This class is similar to MyThread

class in terms of technology used and both uses QThread mechanism.

4.3.4 Classes developed to handle important tasks

MyThread class

In this class the run method from the QThread class was overridden in order to fetch data

from the database using a working thread and sending it to the GUI thread. This working thread

is connected to the GUI thread by a signal and a slot. A signal is emitted by the working thread

when there is new work done to publish. When the GUI thread receives the work already done,

via a slot, it is inserted the data in the graph. It is important to mention that this process was

necessary to be able to communicate between this two threads. In the GUI thread, when a double

click in a particular row of the table present in the View Data tab, see figure 13, is detected it

is started a thread with a QSqlQuery as a parameter containing the result from a specific query.

With this query it is fetched data from the database.

30

DataBaseManager class

In this class it was developed methods to create the database, the two tables needed for the

interface and all the needed commands to interact with the tables, for instance to insert, delete,

update and retrieve data. For methods that query the database to retrieve data it is returned

a QSqlQuery variable that is after looped to extract the data. For methods that are exclusively

for inserting, updating and deleting it is not returned any value. It is used binding arguments

to make the SQL syntax easier to understand and to avoid complex strings with the required

queries. Since this is a object-orient technology, it is only necessary to add a member of this

class in the GUI header file to instantiate the database and use its methods.

4.4 Android Interface

This interface was developed to allow a wireless connection of all android devices to the

Raspberry Pi interface. It is possible to receive data and store it in a database for later access,

export data to XLSX and CSV file formats and send it via email, warn the user about a high

value via SMS, the “SMS alert”, specify user preferences and settings, zoom in and zoom out the

graph with multi-touch support, among other features.

4.4.1 The Monitor Activity - TCP Client

In the Monitor activity, it was developed the wireless connection between Android and

Raspberry Pi interfaces trough the use of a TCP socket. Since it is required internet access for

establishing the connection, when the user clicks in the connect button if there is no internet

access a warning is thrown. Also if the socket gives the error: “cannot reach the host”, a warning

is generated to warn the user that either the IP or port addresses provided in settings are wrong

or the server is not active. When the connection is established successfully the connect button

is changed to a disconnect button and the exchange of data starts.

The following algorithm shows the logic behind this process:

31

Algorithm 1 Establishing Connection

1: procedure Connect Event . When the connect button is clicked
2: if IP is valid then
3: if there is internet access then
4: create the socket
5: if host is unreachable then
6: warn either to start the TCP Server or that the IP or port addresses are wrong
7: else
8: establish connection
9: switch the connect button with a disconnect button

10: starts exchanging data

11: else
12: warn that there is no internet access in the android device
13: else
14: warn user that the IP address is invalid

It was developed also a class using SQLite technology to be able to store the data in a

database for accessing the data in the future. See section 4.4.5 in the Database class separator

for more information about the class structure and its features. Also, it was developed zoom

and filter functionalities to allow zoom in and zoom out and to filter the data allowing to see

better some areas of interest in the plot and also to see either all the plots, the temperature or

the humidity.

In the figure bellow it is possible to see the layout of this activiry, the available actions and

filters. The stored data and the settings buttons will be explained in detail in the bellow sections.

(a) Menu actions (b) Filters in the graph

Figure 14: Android interface - Monitor activity

32

In this activity there is three important actions/services. They are as follow: “SMS alert”,

store data in the database and add the new data to the graph. In terms of relationship between

this three actions/services the following algorithms syntheses this process:

Algorithm 2 Relationship between SMS service, database and graph

1: procedure Monitorizing Process . When the monitorizing is active
2: if data is available then
3: if data > threshold and “SMS alert” is allowed then
4: if time elapsed since last sent SMS = time interval then
5: send SMS with the high value detected

6: insert data in the graph
7: insert in the database

In the numbers 3 and 4 it is important to explain that the user is allowed to choose if the

interface can use the “SMS alert” service, define a threshold to trigger it and the time interval

to wait for the next SMS to be sent. The time interval is just a precaution to avoid sending a

huge amount of unwanted SMS. This preferences that the user can define are explained in detail

in the section 4.4.4.

4.4.2 Stored Data Activity

In this activity it is possible to see the stored data in form of a list. This list is created

dynamically and when it gets wider, a vertical scroll view is inserted automatically. It is important

to explain that this list is a custom list view developed in order to increase the functionality and

to make the interface user-friendly. It was developed three main actions in this activity: long

and simple press in a item and the delete all button. The first action, the long press, when it

is triggered a pop up appears warning if the user wants to delete that entry, see figure 15b. If

the user chooses the OK button the data is delete from the list view and from the database.

The second, the simple press, goes to the View Data activity to display a graph with all the

information about that entry. This activity is explained in the section 4.4.3. The third, the

delete all button, deletes all the entries if the user clicks in the OK button in the pop up window.

It has a confirmation pop up to avoid deleting all the data by mistake.

The figure bellow shows the custom list view, the long press in a item and the delete all

button:

33

(a) Custom List View (b) Long Press in the item (c) Delete all entries

Figure 15: Android interface - Stored Data activity

4.4.3 View Data Activity

When a simple press in a item is detected in the Stored Data activity it is triggered the View

Data activity that receives as parameter the id of the item selected. In this activity it is queried

the database in order to plot the values in the graph for that particular element. In the graph it

is possible to zoom in and zoom out. It was not developed in this activity the filter service. When

the email button is clicked, see the figure 16a, a pop up window will appear to choose the email

provider to be used, see figure 16b. When the user selects the provider an async task starts and

query the database to retrieve the data for a particular id creating a XLSX and CSV file in their

respective formats5. The name of the files generated is the id of the listData table since for each

set of monitored data there is a different id generated by the database and therefore no conflict

with the name of the files created. This two files are appended to the attachment of the email,

a default subject is generated, the message is inserted and the recipient is the one configured in

the settings of the interface. See figure 17 in the notifications header for understanding where

it is configured the recipient. This process is fully automated and there is no need for the user

to do anything other than clicking the send button. If by any chance the user wants to change

some parameter it is possible to do that since it is allowed to the user to have full control of the

email provider.

In the figure 16c it is shown the generated email:

5The CSV default format is in each row each value is separated by a comma. In the XLSX in each cell a value
is stored.

34

(a) Send email action (b) Choose the mail provider (c) Generated Email

Figure 16: Android interface - View Data Activity

4.4.4 Settings Activity

The Settings activity has a main role in all the activities. The default actions and config-

urations to be used by the other activities are stored in this activity. This includes the default

server’s IP and port addresses, the phone number to send SMSs, the threshold to “SMS alert”

and the time interval to avoid sending unwanted SMSs, a boolean flag to activate/deactivate

the “SMS alert” and a default email address. It is important to highlight that this activity

uses the preferences mechanism mentioned before in the section 3.1.7 and therefore it stores the

preferences of the user. In the figure 17 it is shown the settings activity and its layout:

Figure 17: Android interface - Settings activity

35

4.4.5 Classes developed to handle important tasks

Graph classes

First it was developed a Point class that has two private variables, a date and a double, and

their get and set methods. This class helps the LineGraph class allowing the encapsulation of

data and handling the points of the graph in a easier way. In other words, the LineGraph class

uses the Point class to create and manage points in the graph. The first class is also able to do

all the configuration needed to start plotting. This two classes have an important role since they

make it possible to plot smoothly in real time without having problems with the performance.

For more information please refer to section 4.1.4 in the AchartEngine configuration for Android

separator.

List View classes

It was developed the CustomListAdapter class to be able to modify the default android list

view element and insert three text views showing the date, id and time for a particular set of

monitored data in each row of the list. It was developed the DataItem class with three variables

and their respectively set and get methods. The CustomListAdapter class uses the DataItem

class to handle the data and associate the views in the layout file to the variables and then

inflate the views. This layout file has the three text views mentioned before that will be present

in each row of the list. In the StoredData activity it is used the CustomListAdapter class to

populate the list view and to set up the long and simple press in a item. Explaining in a abstract

way, the CustomListAdapter class uses the DataItem class to manage three items, the date, id

and time and for each particular set of monitored data a dynamic row is added to the custom

list in order to populate it. This classes are connected to each other and with them it is possible

to obtain the final result present in the figure 15a.

Database class

Since almost every single activity in the Android interface need to access the database, it

was decided to develop the SQLiteManager class that extends a SQLiteOpenHelper class from

SQLite library. Some methods were overridden and other were created. The library developed

is able to instantiate a database connection, to create the two tables if they don’t exist already,

to upgrade the version of the database and it has defined all the methods needed to query the

database. Another purpose of this class is to assure that only one instance of the database is

created and activities that need to write to the database will not collide with the activities that

36

need to read. This is done with getWritableDatabase and getReadableDatabase methods. Before

executing the queries it is mandatory to call this methods. Doing this, the database and then

the database main library will handle the requests and avoid conflicts. For retrieving the data

from the queries a cursor is returned and a loop needs to be implemented in each activity that

query the database.

4.5 Difficulties and Solutions

In this work, some difficulties got in the way of the progress. Some of the most important

were:

• To understand how to configure the Raspberry Pi’s VNC server to be able to use the

graphical interface of this single-board computer.

• To start the communication using the UART since first it was discovered that the Raspberry

Pi uses it to show boot-time messages and also for other services.

• It was difficult to get used to Python syntax since it is very different than C/C++.

• To use port forwarding it was necessary to understand the concepts behind this technology

that are not straightforward.

• In QT it was hard to understand how to use the thread system.

• To understand how to develop Android applications.

The first difficulty that appeared was to access the Raspberry Pi’s GUI interface. This was

needed since it makes easier to program and develop. It was developed in this work tutorials on

how to configure and use the Raspberry Pi, refer to the first three tutorials in the appendix A.

To use the UART it was necessary to do some configurations steps in order to disable the

main function of Raspberry Pi’s UART. For that it was necessary to research to learn how to do

it.

The Python syntax was understood after a while and the abstraction level that comes with

it made it possible to develop the Raspberry Pi interface.

To use and configure port forwarding it was necessary to research on how to open the port

for the TCP protocol and to associate it with the Raspberry Pi’s IP address. Also some research

was made to understand better this concept.

37

To deal with threads in QT it is not easy to understand at first time. It is necessary to

research the QThread class in QT documentation to know how to use this technology. In the

section 3.1.5 in the QThread separator it is explained the two most used methods to use this

technology. After understanding the mechanism it was straightforward the development.

To understand how to develop an Android application it was necessary to invest time in

research. Some concepts are not easy to learn since there is a lot of classes, methods and

technologies that need to be understood before starting the development phase. The development

of the Android interface was slower than the QT interface.

4.6 Summary

Since this chapter is long, this section has the intention to summarize the work done. In a

simple explanation, the Android and QT interfaces are intended to be endpoint interfaces that

are able to connect to Raspberry Pi interface in order to exchange data. The Raspberry Pi

interface is the “brain” of all the process and it works as a controller that handles the work, the

requests and distribute the data either by wire or wireless to multiple devices. These devices can

be either Android phones or tables or Windows, Linux or Mac computers.

The Android and QT interfaces are meant to simplify the information and to get an easier

perspective of the data received. This is done by adding a graphical way to show the data in order

to allow a better understanding about it. Also, there are mechanisms to make future analysis

since it was implemented a database system in both interfaces.

38

Chapter 5

Results and Discussion

”However beautiful the strategy,
you should occasionally look at
the results.”

Winston Churchill

In this chapter, it is presented the results from experiments done in order to test the interfaces

and verify their consistency. Also some demonstrations were done to show the most important

services developed.

5.1 Android “SMS alert” Service Demonstration

To test the “SMS alert” service it was defined the threshold to be 75, see figure 18c. When

the humidity value goes higher than this restriction, see figure 18a, it is sent a SMS to a default

number, see figure 18b. After a time interval defined by the user, the interface is able to send

again SMSs.

(a) Monitoring Data (b) SMS warning (c) Threshold value

Figure 18: Android interface - “SMS alert”

40

5.2 Raspberry Pi Process Control Demonstration

To instantiate the Raspberry Pi’s interface it was used Putty application. In this simulation

it was used three TCP clients and the UART connection.

In the figure 19 it is shown the information about the server such as the server’s external

and internal IP and port addresses, the process identifier (PID), the date and the connections

already accepted:

Figure 19: Raspberry Pi interface - UART and TCP Clients connected

It is important to mention that the three TCP clients used were an android phone and two

computers running Linux and Windows Operating Systems. The android phone was connected

outside the local network using mobile data to access the internet, see figure 23. The Linux

computer was running Freya OS (Ubuntu based OS), see figure 22. The last TCP connection is

not shown in this demonstration. The UART connection was used by other computer running

Windows OS, the one used to take the print-screens.

41

When the TCP Clients and the UART connection are disconnected, the server is still active

waiting for new connections to happen. See figure bellow:

Figure 20: Raspberry Pi interface - UART and TCP Clients disconnected

And at last, when the CTRL-C is detected the server shutdown terminating all the working

threads and the program. See figure bellow:

Figure 21: Raspberry Pi interface - Server shutdown

42

In the figure bellow, it is shown the Linux TCP Client used in the demonstration and its

monitored data:

Figure 22: QT interface - Linux TCP Client

The android phone connected with mobile data to access the Raspberry Pi’s server is shown

in the figure bellow. It is important to mention, that for connecting to the server outside the

local network it is strictly necessary to use the External IP address given in the Raspberry Pi

terminal interface, see figure 19.

Figure 23: Android interface - TCP Client

Bellow it is shown the Windows computer used to connect via UART to Raspberry Pi

interface:

43

Figure 24: QT interface - Windows Serial Port

Testing the responsiveness of the interface:

The Raspberry Pi interface was also simulated in order to check if the server has a good

response when new connections and disconnections of older connections are requested in a fre-

quent way. For testing this it was used the same amount of devices used in the demonstration

above and it was connected and disconnected devices frequently. The results were positive, the

interface didn’t slow down the communications and the data was delivered as it was expected.

The interface was responsive.

Testing the interface when the internet is being used

It was tested the interface when the internet network was being used by other users, down-

loading files and data. The wireless communication, the TCP server, worked as excepted. How-

ever the transference of the packets was slower comparing the case without that usage. The wire

communication, the UART connection, was not affected by this test since it does not depend

on the internet usage and therefore it had a stable performance being faster than the wireless

solution. At last, a good internet connection between the Raspberry Pi and the router is required

to avoid the scenario in which Raspberry Pi is disconnected from the internet and due to that

the server is not able to communicate with its TCP Clients.

44

5.3 CPU usage

The interfaces developed run smoothly without CPU overloads. This test was done to

analyze the CPU usage to verify if the interfaces developed are consuming more resources than

they should.

5.3.1 Raspberry Pi

In this test, it was used four TCP clients, connected in the local network, to the Raspberry

Pi interface. The figure bellow shows the clients connected and most important the process

identifier (PID) that will be used to test the CPU usage.

Figure 25: Raspberry Pi interface - Running to test CPU usage

Having the Raspberry Pi interface running and executing in another terminal the following

command: top -n 40 -d 2 -c -p 2878 | grep tcp serial port.py where -n 40 is the number of

iterations, -d 2 is the sample rate, two per second, -c is to show the absolute path of the running

process and -p 2878 is the process identifier (PID) it is possible to verify the CPU usage of this

interface. The top (table of processes) command is a task manager available in many UNIX-like

Operating Systems that provide the CPU usage of the processes. Using the -p 2878 the top will

only show results from the process with that PID. The grep is used to extract only the lines

where the CPU usage is.

45

The values of the CPU usage, the yellow column, are low and there is no overload of the

interface. The figure below shows the output from the top command:

Figure 26: Raspberry Pi interface - CPU usage

It is important to mention that the CPU usage is the percentage of the CPU that is being

used by the process. By default top displays the percentage of a single CPU. On multi-core

systems it is possible to have CPU usage greater than 100%. Since Raspberry Pi has 4 cores,

the maximum value of CPU usage that is possible to have is 400% meaning that the four CPUs

are being used at its maximum. To show the overall percentage of the available CPUs in use it

is necessary to hit the Shift i while top is running. Since the command used above uses the grep

to pipe the output and grab only the necessary data to print in the terminal it is not possible to

hit Shift i while top is running. Despite that, it is know that Raspberry has 4 cores so the values

shown in the figure 26 divided by four will give the overall percentage of the available CPUs

being used. The maximum value in the figure above shown was 4% and therefore the maximum

46

overall CPU usage was 1%. The meaning of this number is that assuming that the four cores

were one this interface would be using 1% of its time of execution which is a pretty good result.

Also, there was no visual increase in the CPU usage when the TCP connections were established.

5.3.2 Android

For the android interface, since there is a GUI interface, the CPUs are used more than with

Raspberry Pi’s interface. However, this usage is not compromising the interface.

The figure bellow shows two CPU usage for two different activities:

(a) Monitor activity

(b) Stored Data Activity

Figure 27: Android interface - CPU usage

There are spikes present in the figures 27a and 27b. The spikes in the first figure are caused

either by touching the graph, zoom in and zoom out or changing the filters, while in the second

figure they are caused when the user clicks in an item in the list view being a particular data from

the database loaded in the graph. It is important to mention that the other activities present in

the Android interface showed even less CPU usage than this values shown. This interface does

not overload the CPUs available.

47

5.3.3 QT

For the QT interface, the CPU usage is low for the Serial Port connection. In the figure

bellow it is shown their values:

Figure 28: QT interface - Serial Port CPU usage

In the TCP connection the network usage is not zero like in figures 28 and 30 since there is a

TCP connection established. In the figure bellow it is shown the CPU usage for this connection.

It is higher than the UART but still in a low level.

Figure 29: QT interface - TCP Client CPU usage

The figure 30 shows the maximum CPU usage obtained in the QT interface. This happens

when a user double clicks in a row of the QTableView. This event triggers a QThread to retrieve

48

the values from the database for a particular id and insert them in the graph. Even though they

are higher than the other two figures above shown it is still considerably low.

Figure 30: QT interface - View Data CPU usage

5.4 Discussion of the main results

The main results obtained were to be expected. It was accomplished a Raspberry Pi inter-

face connecting different devices simultaneously in real time exchanging data. In addition, the

“SMS alert” service demonstration was simulated showing that when a value is higher than a

certain condition the SMS is sent to the default phone number. This demonstration was positive

and the detection worked as expected. In terms of CPU usage the three interfaces were tested

and the results were good since there is almost no overload of the CPUs. Also all the interfaces

run smooth and allow a bunch of features that introduce great functionalities to the user.

In this work it was used different technologies, programming languages, platforms and Op-

erating Systems. Most of the knowledge used in this work was introduced or acquired in this

master degree. The rest of it was self-taught and improved during this work.

The objectives in this work have been achieved with great success. From a practical view,

the main goal to use Raspberry Pi to connect multiple devices, with different platforms and

Operating Systems was accomplished. Moreover, it is important to highlight that the work de-

veloped is a first approach in an area that has a high growing potential and that in terms of the

main goal of this dissertation achieved its purpose.

49

Chapter 6

Conclusions and Future Work

”In the end, it’s not the years in
your life that count. It’s the life
in your years.”

Abraham Lincoln

In this chapter is presented the conclusion of this project and the future work that can

be developed.

6.1 Conclusions

Three interfaces were developed in this study, a server interface, the Raspberry Pi interface,

and two endpoint interfaces, the Android and the QT interfaces. The Raspberry Pi interface

showed an incredible good performance allowing the connection between the server and multiple

devices to exchange data. In the wire connection it was used serial port communication, while

in the wireless connection it was used a TCP socket. The TCP protocol assures a reliable, or-

dered, and error-checked stream of data. Both the Android and QT interfaces were very efficient

monitoring, analyzing and processing data in a graphical way.

The Raspberry Pi interface uses threading technology and synchronization methods to opti-

mize the use of the Quad-Core CPU available in the Raspberry Pi. Although the type of sensor

used to test this interface only included two types of variables, temperature and humidity, other

type of sensors, which can include two or more types of variables, can also be used.

The Android interface uses the AsyncTask class from Android APIs to allow a proper and

easy use of the working threads. This allows efficient communication with the GUI thread. With

this interface, one can share the stored data with other devices via email. Moreover, a service

named as “SMS alert” was created to notify the user once a preset value is reached. This allows

the user to react to critical situations.

The QT interface uses a customized class that overrides the QThread class to manage

threads, and a time-triggered routine to deal with the data coming from the Raspberry Pi.

This interface is compatible with Windows, Linux and Mac Operating Systems. In opposite to

51

the Android interface, which only uses wireless communication, the QT interface allow the use

of either wire or wireless communications.

6.2 Future Work

For future work it is considered two categories: i) The development of the software; ii)

Considering other possible applications.

i) Development of a GUI for the Raspberry Pi interface; Use either an android phone or an

USB 3G modem integrated with the Raspberry Pi to send the “SMS alert”. This integration

would also permit the development of a new functionality, the “SMS info”. This functionality

would allow the user to obtain information from the Raspberry Pi interface, by his request.

ii) Monitoring the security of a building by integrating a smoke or a motion sensor to the

Raspberry Pi interface; Monitoring the energy consumption of a building by linking the Raspberry

Pi with a power meter.

52

References

[1] R. P. Brasil, “Raspberry pi 2 modelo b,” http://raspberrypibra.com/wp-content/uploads/

2015/08/raspberry pi 2 modelo b circuit especificacoes pinout.jpg, [Online; accessed 11-

May-2015].

[2] B. Pi, “What is banana pi?” http://www.bananapi.org/p/product.html, [Online; accessed

12-September-2015].

[3] T. Instruments, “Beaglebone black development board,” http://www.ti.com/tool/beaglebk,

[Online; accessed 12-September-2015].

[4] M. Electronic, “Intel galileo gen 2 development board,” http://www.mouser.com/images/

microsites/Intel Galileo2 lrg.jpg, [Online; accessed 11-September-2015].

[5] H. Kernel, “Odroid-c1,” http://www.hardkernel.com/main/products/prdt info.php?g

code=G141578608433&tab idx=1, 2015, [Online; accessed 12-September-2015].

[6] S. pcDuino3, “pcduino3,” https://cdn.sparkfun.com//assets/parts/9/7/2/2/12856-01.jpg,

[Online; accessed 11-September-2015].

[7] U. Q. Products, “Udoo quad,” http://shop.udoo.org/eu/product/udoo-quad.html, [Online;

accessed 12-September-2015].

[8] Manifest.permission, “Android apis reference,” http://developer.android.com/reference/

android/Manifest.permission.html, [Online; accessed 31-May-2015].

[9] R. P. Foundation, “What is a raspberry pi?” https://www.raspberrypi.org/help/

what-is-a-raspberry-pi/, [Online; accessed 03-September-2015].

[10] R. P. Products, “Raspberry pi 2 model b,” https://www.raspberrypi.org/products/

raspberry-pi-2-model-b/, [Online; accessed 12-September-2015].

[11] E. technical specifications, “Raspberry pi 2 model b,” http://www.element14.com/

community/docs/DOC-73827/l/the-new-raspberry-pi-2-model-b-1gb-technical-specifications,

[Online; accessed 12-September-2015].

[12] J. Adams, “Introducing raspberry pi hats,” https://www.raspberrypi.org/blog/

introducing-raspberry-pi-hats/, [Online; accessed 11-May-2015].

53

http://raspberrypibra.com/wp-content/uploads/2015/08/raspberry_pi_2_modelo_b_circuit_especificacoes_pinout.jpg
http://raspberrypibra.com/wp-content/uploads/2015/08/raspberry_pi_2_modelo_b_circuit_especificacoes_pinout.jpg
http://www.bananapi.org/p/product.html
http://www.ti.com/tool/beaglebk
http://www.mouser.com/images/microsites/Intel_Galileo2_lrg.jpg
http://www.mouser.com/images/microsites/Intel_Galileo2_lrg.jpg
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433&tab_idx=1
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G141578608433&tab_idx=1
https://cdn.sparkfun.com//assets/parts/9/7/2/2/12856-01.jpg
http://shop.udoo.org/eu/product/udoo-quad.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
https://www.raspberrypi.org/help/what-is-a-raspberry-pi/
https://www.raspberrypi.org/help/what-is-a-raspberry-pi/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.element14.com/community/docs/DOC-73827/l/the-new-raspberry-pi-2-model-b-1gb-technical-specifications
http://www.element14.com/community/docs/DOC-73827/l/the-new-raspberry-pi-2-model-b-1gb-technical-specifications
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/

[13] Adafruit, “Raspberry pi hats and plates,” http://www.adafruit.com/category/286, [Online;

accessed 11-September-2015].

[14] G. Henderson, “Software pwm library,” https://projects.drogon.net/raspberry-pi/wiringpi/

software-pwm-library/, [Online; accessed 31-May-2015].

[15] A. Palacherla, “Using pwm to generate analog output,” Microchip, 2002, datasheet reference:

DS00538.

[16] G. Coley, “Beaglebone black system reference manual,” Beagle Bone, 2013.

[17] Intel, “Intel galileo gen 2 development board datasheet,” http://www.intel.com/content/

www/us/en/embedded/products/galileo/galileo-g2-datasheet.html, 2015, [Online; accessed

12-September-2015].

[18] I. Galileo, “Intel galileo gen 2 development board,” http://www.intel.com/content/

www/us/en/embedded/products/galileo/galileo-overview.html, 2015, [Online; accessed 12-

September-2015].

[19] Sparkfun, “pcduino3 - dev board,” https://www.sparkfun.com/products/12856, 2015, [On-

line; accessed 12-September-2015].

[20] A. Jin, “Explanation of pcduino3 headers,” http://learn.linksprite.com/pcduino/

quick-start/explaination-of-pcduino3-headers/, 2014, [Online; accessed 12-September-2015].

[21] U. Quad, “Udoo.rev.d gpio,” http://elinux.org/images/1/1f/Udoo pinoutext.jpg, [Online;

accessed 12-September-2015].

[22] Ewell, “Banana pi dual core raspberry-like development board,” http://www.amazon.

com/Raspberry-Pi-like-devepment-Gigabit-ethernet/dp/B00LGXINGS, [Online; accessed

12-September-2015].

[23] Sparkfun, “Beaglebone black,” https://www.sparkfun.com/products/12857, [Online; ac-

cessed 12-September-2015].

[24] I. G. G. 2, “Intel galileo gen 2,” https://www.sparkfun.com/products/13096, 2015, [Online;

accessed 12-September-2015].

[25] E. Upton, “Raspberry pi 2 on sale,” https://www.raspberrypi.org/blog/

raspberry-pi-2-on-sale/, [Online; accessed 12-September-2015].

54

http://www.adafruit.com/category/286
https://projects.drogon.net/raspberry-pi/wiringpi/software-pwm-library/
https://projects.drogon.net/raspberry-pi/wiringpi/software-pwm-library/
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-g2-datasheet.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-g2-datasheet.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-overview.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-overview.html
https://www.sparkfun.com/products/12856
http://learn.linksprite.com/pcduino/quick-start/explaination-of-pcduino3-headers/
http://learn.linksprite.com/pcduino/quick-start/explaination-of-pcduino3-headers/
http://elinux.org/images/1/1f/Udoo_pinoutext.jpg
http://www.amazon.com/Raspberry-Pi-like-devepment-Gigabit-ethernet/dp/B00LGXINGS
http://www.amazon.com/Raspberry-Pi-like-devepment-Gigabit-ethernet/dp/B00LGXINGS
https://www.sparkfun.com/products/12857
https://www.sparkfun.com/products/13096
https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/
https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/

[26] F. K. James and W. R. Keith, Computer Networking - A Top-Down Approach, 5th ed.

Pearson, 2009.

[27] A. References, “Async task class,” http://developer.android.com/reference/android/os/

AsyncTask.html, [Online; accessed 09-August-2015].

[28] Q. Documentation, “Qthread class,” http://doc.qt.io/qt-4.8/qthread.html, [Online; ac-

cessed 09-August-2015].

[29] C. Objects, “Threading library,” https://docs.python.org/2/library/threading.html#

condition-objects, [Online; accessed 09-August-2015].

[30] A. A. Guides, “Android preferences,” http://developer.android.com/guide/topics/ui/

settings.html, [Online; accessed 09-August-2015].

[31] Humidity and Temperature Sensor, https://www.sparkfun.com/datasheets/Sensors/

Temperature/DHT22.pdf, SparkFun.

[32] M. Hawkins, “16x2 lcd module control with backlight switch,” http://www.raspberrypi-spy.

co.uk/2012/08/16x2-lcd-module-control-with-backlight-switch/, [Online; accessed 31-May-

2015].

[33] Q. Documentation, “Qt for mac os x requirements,” http://doc.qt.io/qt-4.8/

requirements-mac.html, [Online; accessed 31-May-2015].

[34] L. registers, “Lcd modes and registers,” http://esd.cs.ucr.edu/labs/interface/interface.html,

[Online; accessed 09-August-2015].

55

http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://doc.qt.io/qt-4.8/qthread.html
https://docs.python.org/2/library/threading.html#condition-objects
https://docs.python.org/2/library/threading.html#condition-objects
http://developer.android.com/guide/topics/ui/settings.html
http://developer.android.com/guide/topics/ui/settings.html
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
http://www.raspberrypi-spy.co.uk/2012/08/16x2-lcd-module-control-with-backlight-switch/
http://www.raspberrypi-spy.co.uk/2012/08/16x2-lcd-module-control-with-backlight-switch/
http://doc.qt.io/qt-4.8/requirements-mac.html
http://doc.qt.io/qt-4.8/requirements-mac.html
http://esd.cs.ucr.edu/labs/interface/interface.html

Configurations and setting up features

A.1 Finding the IP of Raspberry Pi

There is four options available: having a HDMI monitor, connecting the UART to a com-

puter, accessing the router DHCP table or having a program to search all the IP addresses in

use for a particular router. The first and second options show the boot messages from Raspberry

Pi and it is printed its IP there. The third option is to access the router DHCP table, if it is

allowed for the particular router, and search for the entry that has the name raspberrypi and its

IP is there available. For the fourth option it can be used for example the program Advanced IP

Scanner 6.

A.2 VNC installation and configuration

To configure the VNC Server the following steps are needed:

1. Using any ssh program connect to Raspberry Pi

2. Provide the user (pi) and the password (raspberry)

3. Execute the command: sudo apt-get install tightvncserver

4. Execute the command: tightvncserver and then set a password

5. To start the server execute: vncserver :0 -geometry 1600x900 -depth 24

A.3 VNC in the boot

The steps are as follow:

1. Execute the command: sudo bash

2. Execute the command: nano /etc/init.d/vncboot

3. Copy and Paste the code bellow

4. Press CTRL+X to save the file and name it vncboot

6Available in: http://www.advanced-ip-scanner.com/br/.

57

5. Change the permissions of the file with: chmod 755 /etc/init.d/vncboot

6. Execute the command: update-rc.d vncboot defaults

7. Next time the Raspberry Pi is turned on the VNC Server will start automatically.

The following code is the one referred in the step 3:

1#!/ b in / sh

2### BEGIN INIT INFO

3# Prov i d e s : vncboot

4# Requi red−S t a r t : $ r emo t e f s $ s y s l o g

5# Requi red−Stop : $ r emo t e f s $ s y s l o g

6# Defau l t−S t a r t : 2 3 4 5

7# Defau l t−Stop : 0 1 6

8# Short−De s c r i p t i o n : S t a r t VNC Se r v e r at boot t ime

9# De s c r i p t i o n : S t a r t VNC Se r v e r at boot t ime .

10### END INIT INFO

11

12 USER=roo t

13HOME=/roo t

14

15 export USER HOME

16

17 case ”$1” i n

18 s t a r t)

19 echo ” S t a r t i n g VNC Se r v e r ”

20 / u s r / b i n / v n c s e r v e r : 1 −geometry 1600 x900 −depth 24

21 ; ;

22

23 s top)

24 echo ” Stopp ing VNC Se r v e r ”

25 / u s r / b i n / v n c s e r v e r − k i l l : 0

26 ; ;

27

28 ∗)

29 echo ”Usage : / e t c / i n i t . d/ vncboot { s t a r t | s top }”

58

30 ex i t 1

31 ; ;

32 esac

33

34 ex i t 0

A.4 Port Forwarding

The first step is to connect to the router with an Ethernet cable or via wireless. It was

used a TG585 v8 router and to access its GUI interface it is needed to use a browser and type

192.168.1.254. After the page is loaded go to the separator Game & Application Sharing. Then

it is necessary to open the port needed and to choose the type of protocol to open. In this case,

as an example it was opened the port 5000 for TCP and UDP protocols as it is shown in the

figure bellow:

Figure 31: Setting up the port and the protocol

The second step is to link the IP address that will be associated with this service. For doing

this click in the Assign a game or application to a local network device and choose the device

needed. In this case it was chosen the Raspberry Pi, see figure 32. To verify that the port is

open7 it is necessary to use the external address of the network (given in the website) and insert

the port. If everything is well configured in the router it should appear in the end that the port

is open as it is shown in the figure 33:

7Use this website: http://www.yougetsignal.com/tools/open-ports/.

59

Figure 32: Association of the device to the port forwarding

Figure 33: Checking if port is open

60

A.5 Deactivate Raspberry Pi’s UART

To deactivate the UART it is necessary to do the following commands:

1. Execute the command: sudo nano /boot/cmdline.txt

2. Change the line 1 to 2

3. Execute the command: sudo nano /etc/inittab

4. Comment (insert a #) or delete the line 3

5. Reboot the Raspberry Pi.

The lines above referred are:

1. dwc otg.lpm enable = 0 console = ttyAMA0,115200 kgdboc = ttyAMA0,115200 console =

tty1 root = /dev/mmcblk0p2 rootfstype = ext4 elevator = deadline rootwait

2. dwc otg.lpm enable = 0 console = tty1 root = /dev/mmcblk0p2 rootfstype = ext4 elevator

= deadline rootwait

3. T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

A.6 QT in Linux based Operating Systems

To install QT 5.3.1 on 32-bit Linux computer it is needed to do:

1. Execute the command: wget

download.qt-project.org/official releases/qt/5.3/5.3.1/qt-opensource-linux-x86-5.3.1.run

2. Execute the command: sudo chmod +x qt-opensource-linux-x86-5.3.1.run

3. Execute the command: ./qt-opensource-linux-x86-5.3.1.run

4. Follow the instructions given in the installation wizard

After, execute the following commands to install a compiler and some libraries:

1. Execute the command: sudo apt-get install g++

2. Execute the command: sudo apt-get install mesa-common-dev

3. Execute the command: sudo apt-get install libgl1-mesa-dev libglu1-mesa-dev

61

A.7 WiringPi instalation for C/C++ Development

This is a library that allow to program the GPIO, available in the Raspberry Pi, in C/C++

language. It has a lot of features and it is very useful for developing.

The steps are as follow:

1. Execute the command: sudo apt-get update

2. Execute the command: sudo apt-get upgrade

3. Execute the command: sudo apt-get install git-core

4. Execute the command: git clone git://git.drogon.net/wiringPi

5. Execute the command: cd wiringPi

6. Execute the command: ./build

A.8 RPi.GPIO installation for Python Development

This library allows to program the GPIO available in the Raspberry Pi in Python language.

To install it follow the steps bellow:

1. Execute the command: sudo apt-get update

2. Execute the command: sudo apt-get upgrade

3. Execute the command: sudo apt-get install python-dev python-rpi.gpio

62

Tutorials and examples

B.1 QT Examples

B.1.1 Serial Ports Names in QT

In this section, it is shown a simple example on how to create a function to insert in a

QComboBox the list of available serial port names connected to a certain computer. This function

should be called either in the creating time of the GUI window or in a button click event to allow

a user to refresh the list.

The code bellow shows that function:

1 . . .

2#inc lude <QtS e r i a l P o r t / QSe r i a lPo r t>

3#inc lude <QtS e r i a l P o r t / QSe r i a l P o r t I n f o>

4

5 //Assuming tha t i n the GUI f i l e t h e r e i s a

6 //QComboBox wi th the name port name

7

8 . . .

9 void r e f r e s h s e r i a l p o r t ()

10 {

11 // C l e a r s the QComboBox

12 ui−>port name−>c l e a r () ;

13

14 // I n s e r t s the s e r i a l po r t names found

15 f o r e a c h (const QSe r i a l P o r t I n f o &in f o ,

16 QSe r i a l P o r t I n f o : : a v a i l a b l e P o r t s ())

17 {

18 ui−>port name−>addItem (i n f o . portName ()) ;

19 }

20 }

21 . . .

63

B.2 Python Examples

B.2.1 Email

This example shows how to send emails using Raspberry Pi and a gmail account. To be able

to use this example it is necessary to allow in the security setting of the gmail account this type

of usage.

1#Import sm tp l i b f o t the s end i ng f u n c t i o n

2 import sm tp l i b

3

4# Import ema i l modules

5 from ema i l . mime . t e x t import MIMEText

6

7 to = ’ t a r g e t t o s e n d ema i l @ gma i l . com ’

8 gma i l u s e r = ’ temp . app . s e r v e r@gma i l . com ’

9 gma i l pa s swo rd = ’ tempe ra tu ra ’

10 smtp s e r v e r = smtp l i b .SMTP(’ smtp . gma i l . com ’ ,587)

11

12 smtp s e r v e r . e h l o ()

13 smtp s e r v e r . s t a r t t l s ()

14 smtp s e r v e r . l o g i n (gma i l u s e r , gma i l pa s swo rd)

15

16

17 msg = MIMEText (” He l l o ! Th i s i s an automat i c ema i l from Raspbe r r y Pi . ”)

18 msg [’ Sub j e c t ’] = ”Temperature App l i c a t i o n ”

19 msg [’ From ’] = gma i l u s e r

20 msg [’To ’] = to

21 smtp s e r v e r . s endma i l (gma i l u s e r , [to] , msg . a s s t r i n g ())

22

23 smtp s e r v e r . q u i t ()

64

B.2.2 Serial Port

In this example the serial port is opened and on success it send the numbers from 1 to 49.

On failure or if it is detected a CTRL-C the program is terminated.

1 import s e r i a l

2

3#To read a l i n e use the l i n e b e l l ow

4#s e r i a l p o r t . r e a d l i n e ()

5

6 t ry :

7 #Open S e r i a l Port

8 s e r i a l p o r t = s e r i a l . S e r i a l (”/dev/ttyAMA0” , baudra te =115200 ,

9 t imeout =3.0)

10

11 f o r i i n range (1 , 5 0) :

12 s e r i a l p o r t . w r i t e (s t r (i)+”\n”)

13

14 except Keyboa r d I n t e r r up t :

15 p r i n t ”User t e rm ina t ed the program with CTRL+C!\ n”

16

17 except s e r i a l . S e r i a l E x c e p t i o n :

18 p r i n t ” S e r i a l Excep t i on ! ”

19

20 f i n a l l y :

21 s e r i a l p o r t . c l o s e

22 p r i n t ” C lo sed S e r i a l Port ! ”

B.2.3 LED Turn On/Off

In this example it is shown how to turn on a LED and then after four seconds turn it off.

1 import RPi . GPIO as GPIO

2 import t ime

3

4 GPIO . setmode (GPIO .BCM)

5 GPIO . s e tup (4 , GPIO .OUT) ## GPIO4 Output

65

6 GPIO . output (4 , True) ## Turn on

7

8 t ry :

9 t ime . s l e e p (4) ## Wait 4 segundos

10 GPIO . output (4 , F a l s e) ## Turn o f f

11

12 except Keyboa r d I n t e r r up t :

13 p r i n t ”User t e rm ina t ed the program with CTRL+C!\ n”

14

15 except :

16 p r i n t ”Other e x c e p t i o n s were caught ”

17

18 f i n a l l y :

19 GPIO . c l e anup ()

B.2.4 LCD

In this example it imported a developed library called lcd.py. The following code is the

main.py and bellow this code is the library code.

1 import l c d

2 import t ime

3 import RPi . GPIO as GPIO

4

5 def main () :

6

7 l c d . l c d i n i t ()

8 l c d . l c d s t r i n g l i n e o n e (” Rasbpe r r y Pi ”)

9 l c d . l c d s t r i n g l i n e t w o (” i s the b e s t :P”)

10 t ime . s l e e p (3)

11

12 i f name == ’ ma i n ’ :

13

14 t ry :

15 main ()

16 f i n a l l y :

66

17 l c d . c l e a r ()

18 l c d . l c d s t r i n g l i n e o n e (”Bye Bye ! ”)

19 GPIO . c l e anup ()

Here is the library, lcd.py, to use the LCD:

1 import RPi . GPIO as GPIO

2 import t ime

3# Timing c on s t a n t s

4 E PULSE = 0.0005

5 E DELAY = 0.0005

6

7#GPIO p i n s

8 LCD RS = 21

9 LCD E = 20

10 LCD D4 = 16

11 LCD D5 = 12

12 LCD D6 = 7

13 LCD D7 = 8

14

15 LCD WIDTH = 16 # Maximum ch a r a c t e r s pe r l i n e

16 LCD CHR = True # Cha rac t e r Mode

17 LCD CMD = Fa l s e # Comand Mode

18 LCD LINE 1 = 0x80 # LCD RAM add r e s s − 1 s t l i n e

19 LCD LINE 2 = 0xC0 # LCD RAM add r e s s − 2nd l i n e

20

21 def l c d i n i t () :

22 GPIO . setmode (GPIO .BCM)

23 GPIO . s e tup (LCD E , GPIO .OUT)

24 GPIO . s e tup (LCD RS , GPIO .OUT)

25 GPIO . s e tup (LCD D4 , GPIO .OUT)

26 GPIO . s e tup (LCD D5 , GPIO .OUT)

27 GPIO . s e tup (LCD D6 , GPIO .OUT)

28 GPIO . s e tup (LCD D7 , GPIO .OUT)

29

30 # I n i t i a l i s e d i s p l a y

67

31 l c d b y t e (0 x33 ,LCD CMD)

32 l c d b y t e (0 x32 ,LCD CMD)

33 l c d b y t e (0 x06 ,LCD CMD) # Curso r move d i r e c t i o n

34 l c d b y t e (0 x0C ,LCD CMD) # Di s p l a y On , Cur so r Off , B l i n k Off

35 l c d b y t e (0 x28 ,LCD CMD) # Data l eng th , number o f l i n e s , f o n t s i z e

36 l c d b y t e (0 x01 ,LCD CMD) # Cl e a r d i s p l a y

37 t ime . s l e e p (E DELAY)

38

39 def l c d b y t e (b i t s , mode) :

40 # Send byte to data p i n s

41 # b i t s = data

42 # mode = True f o r c h a r a c t e r

43 # Fa l s e f o r command

44

45 GPIO . output (LCD RS , mode)

46

47 # High n i b b l e

48 GPIO . output (LCD D4 , Fa l s e)

49 GPIO . output (LCD D5 , Fa l s e)

50 GPIO . output (LCD D6 , Fa l s e)

51 GPIO . output (LCD D7 , Fa l s e)

52 i f b i t s&0x10==0x10 :

53 GPIO . output (LCD D4 , True)

54 i f b i t s&0x20==0x20 :

55 GPIO . output (LCD D5 , True)

56 i f b i t s&0x40==0x40 :

57 GPIO . output (LCD D6 , True)

58 i f b i t s&0x80==0x80 :

59 GPIO . output (LCD D7 , True)

60

61 l c d t o g g l e e n a b l e () # Toggle Enab le

62

63 # Low n i b b l e

64 GPIO . output (LCD D4 , Fa l s e)

65 GPIO . output (LCD D5 , Fa l s e)

68

66 GPIO . output (LCD D6 , Fa l s e)

67 GPIO . output (LCD D7 , Fa l s e)

68 i f b i t s&0x01==0x01 :

69 GPIO . output (LCD D4 , True)

70 i f b i t s&0x02==0x02 :

71 GPIO . output (LCD D5 , True)

72 i f b i t s&0x04==0x04 :

73 GPIO . output (LCD D6 , True)

74 i f b i t s&0x08==0x08 :

75 GPIO . output (LCD D7 , True)

76

77 l c d t o g g l e e n a b l e () # Toggle Enab le

78

79 def l c d t o g g l e e n a b l e () :

80 # Toggle enab l e

81 t ime . s l e e p (E DELAY)

82 GPIO . output (LCD E , True)

83 t ime . s l e e p (E PULSE)

84 GPIO . output (LCD E , Fa l s e)

85 t ime . s l e e p (E DELAY)

86

87 def l c d s t r i n g (message , l i n e) :

88 message = message . l j u s t (LCD WIDTH, ” ”)

89 l c d b y t e (l i n e , LCD CMD)

90

91 f o r i i n range (LCD WIDTH) :

92 l c d b y t e (ord (message [i]) , LCD CHR)

93

94 def l c d s t r i n g l i n e o n e (message) :

95 l c d s t r i n g (message , LCD LINE 1)

96

97 def l c d s t r i n g l i n e t w o (message) :

98 l c d s t r i n g (message , LCD LINE 2)

99

100 def c l e a r () :

69

101 l c d b y t e (0 x01 , LCD CMD)

B.3 C/C++ Examples

Using the library wiringPi, see appendix A.7 to know how to install it, this appendices are

meant to show some examples on how to use it.

B.3.1 LED with button - Pull Up/Down pin:

In this example, instead of using an external resistor to pull up/down the button it is used

an internal resistor inside Raspberry Pi’s pins. The pull up/down makes sure that the potential

of the button will be either 0 or 5 volts. This is used to avoid the floating phenomena (unknown

state) and assure that the pin will be in either low or high state.

This example turns on the led depending on wich pull system was used.

1#inc lude <s t d i o . h>

2#inc lude <w i r i n gP i . h>

3

4 const i n t l e dP i n = 17 ; //GPIO17

5 const i n t butPin = 22 ; //GPIO22

6

7 i n t main (void)

8 {

9

10 wi r i n gP iS e tupGp i o () ;

11 pinMode (l edP in , OUTPUT) ;

12 pinMode (butPin , INPUT) ;

13

14 // PULL−UP R e s i s t o r

15 // When i t i s c l i c k e d i t r e ad s 0V

16

17 // PULL−DOWN r e s i s t o r

18 // When i t i s c l i c k e d i t r e ad s 5V

19 // pu l lUpDnCont ro l (butPin , PUDDOWN) ;

20

21 pu l lUpDnCont ro l (butPin , PUD UP) ; // PULL−UP

70

22

23 whi le (1)

24 {

25 i f (d i g i t a l R e a d (butPin))

26 {

27 d i g i t a lW r i t e (l edP in , LOW) ;

28 }

29 e l s e

30 {

31 d i g i t a lW r i t e (l edP in , HIGH) ;

32 }

33 }

34

35 return 0 ;

36 }

B.3.2 PWM - LED brightness

In this example, it is written in the PWM register a value from 0 to 1023 that changes the

dutycicle of the wave. The effect is that we see the LED brightness change.

1#inc lude <s t d i o . h> // p r i n t f ()

2#inc lude < s t d l i b . h>

3#inc lude <w i r i n gP i . h>

4

5 const i n t l e dP i n = 18 ;

6

7 i n t main (void)

8 {

9 i n t b r i g h t ;

10

11 wi r i n gP iS e tupGp i o () ;

12

13 pinMode (l edP in , PWMOUTPUT) ;

14

15 whi le (1)

71

16 {

17 f o r (b r i g h t = 0 ; b r i g h t < 1024 ; b r i g h t++)

18 {

19 pwmWrite (l edP in , b r i g h t) ;

20 de l a y (1) ;

21 }

22

23 f o r (b r i g h t = 1023 ; b r i g h t >= 0 ; b r i g h t −−)

24 {

25 pwmWrite (l edP in , b r i g h t) ;

26 de l a y (1) ;

27 }

28 }

29

30 return 0 ;

31 }

B.3.3 LCD - 4-bit Mode

In this example, it is shown how to use the LCD to print to its screen the string “Hello

World!”. It was used the 4-bit mode, for using the 8-bit mode it is necessary to use more four

wires, change the variable LCD BIT MODE to 8 and specify the pins for the extra four wires.

1#inc lude <s t d i o . h>

2#inc lude <w i r i n gP i . h>

3#inc lude < l c d . h>

4

5 const i n t LCD ROWS = 2 ;

6 const i n t LCD COLS = 16 ;

7 const i n t LCD BIT MODE = 4 ; // 4−b i t Mode

8 const i n t LCD RS = 7 ; //GPIO7

9 const i n t LCD E = 8 ; //GPIO8

10 const i n t LCD D4 = 17 ; //GPIO17

11 const i n t LCD D5 = 18 ; //GPIO18

12 const i n t LCD D6 = 27 ; //GPIO27

13 const i n t LCD D7 = 22 ; //GPIO22

72

14

15 i n t main (void)

16 {

17

18 i n t l c d ; // hand l e

19 wi r i n gP iS e tupGp i o () ;

20

21 l c d = l c d I n i t (LCD ROWS, LCD COLS , LCD BIT MODE , LCD RS , LCD E ,

22 LCD D4 , LCD D5 , LCD D6 , LCD D7 , 0 , 0 , 0 , 0) ;

23

24 i f (l c d == −1)

25 {

26 p r i n t f (” l c d I n i t f a i l e d !\ n”) ;

27 return −1;

28 }

29

30 l c d P o s i t i o n (l cd , 0 , 0) ; // p o s i c i o n a na po s i c a o 0x0

31 l c dPu t s (l cd , ” He l l o World ! ”) ;

32 ge t cha r () ;

33 l c d C l e a r (l c d) ;

34

35 return 0 ;

36 }

B.3.4 LED Blinking Effect

This example shows how to use digital ports to turn on and off a LED and make a blinking

effect.

1#inc lude <s t d i o . h>

2#inc lude <w i r i n gP i . h>

3

4 const i n t l e dP i n = 17 ; //GPIO17

5

6 i n t main (void)

7 {

73

8

9 wi r i n gP iS e tupGp i o () ;

10

11 pinMode (l edP in , OUTPUT) ;

12

13 p r i n t f (” P r e s s CTRL+C to qu i t . ”) ;

14

15 whi le (1)

16 {

17 d i g i t a lW r i t e (l edP in , HIGH) ;

18 de l a y (7 5) ; // wa i t 75ms

19 d i g i t a lW r i t e (l edP in , LOW) ;

20 de l a y (7 5) ; // wa i t 75ms

21 }

22

23 return 0 ;

24 }

B.3.5 Makefile to compile the examples

This is the makefile that can be used to compile the programs above mentioned:

1 main : main . o

2 gcc −Wall −W −Werror −o main main . o − l w i r i n gP i

3 main . o : main . c

4 gcc −Wall −W −Werror −c main . c

74

Useful information

C.1 TCP Connection

The client establish the initial contact with the server and initiates a TCP connection, this

is done by creating a socket. Once the socket has been created in the client program, TCP in the

client initiates a three hand-shake. During the three-way handshake, the server creates a socket

dedicated to a particular client. In the end of the handshaking phase, a TCP connection exist

between the client’s socket and the server new socket and data can be exchanged.

Inside the TCP header, there are two important bits ACK and SYN. This two have an

important role in this process. In the three-way handshake, see the figure 34, three packets are

exchanged. The first one is a TCP packet with the SYN bit on (set to 1) from the client to the

server, when the server receives it sends a packet to the client with the SYN and ACK bits on.

When the client receives this packet sends a last packet with the ACK bit on and when the server

receives this last message the connection is established.

For more information about three hand-shake, please refer to [?].

Figure 34: Three-way handshake

C.2 Multiple Readers/One Writer Problem

The well-known problem of readers and writers has a vast number of sub-problems, one of

them is the multiple readers and one writer. This problem happen when concurrent programming

is used and synchronization is strictly necessary between readers and writers.

The easy way to understand this problem is to imagine a scenario in which there are two

sets of threads, the writer and the readers and there is a shared variable between them. The first

set can write data and the second read it accessing the shared variable.

75

If the shared variable is open for reading, no reading thread should be kept waiting to access

the variable to be able to read. If the writer is writing no reader is allowed access the variable.

In this problem there is a vast number of approaches to avoid starvation that happens when

a thread waits indefinitely for some resources, but other threads are using it, to increase fairness

or to favor or readers or writers.

C.3 LCD Modes for Character Display

In order to operate with LCD displays, it is necessary to choose which mode we want to

operate with the LCD. There is two different ways to communicate with it. There’s the 4 and 8

bits.

C.3.1 8 bits Mode

In 8-bit mode, it is required 8 wires for sending a whole byte of data at once and three

control lines: enable(EN), register Select (RS) and read/write(RW).

The basic procedure is to prepare all other lines, and then pulse the enable line high for a

short while in which LCD reads the command sent (when RW is low) or writes data (when RW

is high). For control messages, RS line is low, and for writing characters, RS line is high. In this

work the RW is connected to the Ground since it is only needed to send commands.

First it is necessary to send the following commands to initialize the LCD: 0x30, 0x30 and

again 0x30; which means three times 00110000 in binary.

It is important to mention that after this three commands it is required to send the next

byte in the following format: 0 0 1 DL N F; where DL is to set the interface (1 in binary for 8-bit

mode - DB4), N for number of lines of the display (2 bits) and F for the font (2 bits).

The figure bellow shows the procedure to do the initialization and to operate the LCD in

this mode:

76

Figure 35: LCD 8-bit Mode

77

C.3.2 4 bits Mode

This mode is an approach that uses 4 wires to do the communication. The basic principle

is the same as 8-bit but instead of sending a whole byte at once it is necessary to send first the

higher nibble and then the lower nibble and the reconstruction of the bits to make a byte is done

by the LCD.

Having a function that receives a whole byte and then sends the first nibble, toggle the

enable line and after sends the lower nibble is advised.

So the first commands are 0x33 and then 0x32. To configure it to work in 4-bit and to set

up a 2x16 LCD, two lines with sixteen characters each, the following byte needs to be sent: 0 0

1 DL N F; where DL is to set the interface (0 in binary for 4-bit mode - DB4), N is the number

of lines of the display (two lines so 10 in binary) and F is the font and we choose the default one

(00 in binary). So the upper nibble is 0x02 and the lower nibble is 0x08 and the whole byte is

0x28.

To use the LCD after those steps it is only necessary to know the registers associated with

each action.

The figure bellow shows the procedure to do the initialization and to operate the LCD in

this mode:

78

Figure 36: LCD 4-bit Mode

79

C.3.3 Comparison of the two modes

Comparing the two modes, 8-bit is slightly faster however it is impossible to notice the

difference to human eyes since the transmission time is relatively low.

In terms of wires 4-bit has only four so it is better to use this method for devices with limited

I/O ports.

For information about the registers please refer to [?].

80

Acronyms and symbols

Abbreviation Meaning

ACK Acknowledge

ADC Analog-to-Digital Converter

API Application Programming Interface

CAN Controller Area Network Protocol

COM Communication

CSI Camera Serial Interface

DAC Digital-to-Analog Converter

DHCP Dynamic Host Configuration Protocol

HAT Hardware Attached on Top

FK Foreign Key

GPIO General - Purpose Input/Output

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

I2C Inter-Integrated Circuit

JAR Java Archive

LCD Liquid Crystal Display

OS Operating System

PHP Hypertext Preprocessor

PK Primary Key

PNG Portable Network Graphics

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SD Card Secure Digital Card

SMS Short Message Service

SoC System-on-Chip

SQL Structured Query Language

SSH Secure Shell

SYN Synchronize

TCP Transmission Control Protocol

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

USB Universal Serial Bus

VNC Virtual Network Computing

XLSX Microsoft Excel Open XML Spreadsheet

XML Extensible Markup Language

81

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Summary of The Work Developed
	Structure of the Thesis

	Technical Background
	Introduction to Raspberry Pi
	State of art
	Existing competitors
	Summary

	Hardware, Software and Technologies Used
	Software and Technologies
	TCP Protocol
	TCP Sockets
	VNC Protocol
	SQLite
	Multithreading
	Timer Events
	Android Preferences
	Third-Party Libraries

	Hardware
	UART
	Wireless USB for Raspberry Pi
	DHT22 sensor
	LCD

	Development and Implementation
	Preparation
	Setting up VNC to support remote control of Raspberry Pi
	Setting up Port Forwarding for External Connections
	Setting up the UART
	Setting up Plotting systems
	LCD configuration for Raspberry Pi
	Android Permissions
	SQLite Tables Structure

	Raspberry Pi Interface
	Sensor Thread
	TCP Clients Thread
	UART Thread
	Structure of the interface
	Electrical connections between Raspberry Pi, sensor, LCD and UART

	QT interface
	Serial Port
	TCP Client
	View Data
	Classes developed to handle important tasks

	Android Interface
	The Monitor Activity - TCP Client
	Stored Data Activity
	View Data Activity
	Settings Activity
	Classes developed to handle important tasks

	Difficulties and Solutions
	Summary

	Results and Discussion
	Android ``SMS alert'' Service Demonstration
	Raspberry Pi Process Control Demonstration
	CPU usage
	Raspberry Pi
	Android
	QT

	Discussion of the main results

	Conclusions and Future Work
	Conclusions
	Future Work

	Configurations and setting up features
	Finding the IP of Raspberry Pi
	VNC installation and configuration
	VNC in the boot
	Port Forwarding
	Deactivate Raspberry Pi's UART
	QT in Linux based Operating Systems
	WiringPi instalation for C/C++ Development
	RPi.GPIO installation for Python Development

	Tutorials and examples
	QT Examples
	Serial Ports Names in QT

	Python Examples
	Email
	Serial Port
	LED Turn On/Off
	LCD

	C/C++ Examples
	LED with button - Pull Up/Down pin:
	PWM - LED brightness
	LCD - 4-bit Mode
	LED Blinking Effect
	Makefile to compile the examples

	Useful information
	TCP Connection
	Multiple Readers/One Writer Problem
	LCD Modes for Character Display
	8 bits Mode
	4 bits Mode
	Comparison of the two modes

	Acronyms and symbols

