
ARTICLE IN PRESS
Computers & Operations Research () --

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual
arc costs�

Teresa Gomesa,b,∗, José Craveirinhaa,b, Luísa Jorgeb,c

aDepartment of Electrical and Computer Engineering, University of Coimbra, Pólo II, 3030-290 Coimbra, Portugal
bINESC-Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
cPolytechnic Institute of Bragança, Campus de Sta Apolónia, 5301-857 Bragança, Portugal

A R T I C L E I N F O A B S T R A C T

Keywords:
OR in telecommunications
Paths with minimal cost sum
Dual arc costs
Disjoint paths

Routing optimisation in some types of networks requires the calculation of the minimal cost pair of
disjoint paths such that the cost functions associated with the arcs in the two paths are different. An
exact algorithm for solving this NP-complete problem is proposed, based on a condition which guarantees
that the optimal path pair cost has been obtained. This optimality condition is based on the calculation
of upper and lower bounds on the optimal cost. A formal proof of the correctness of the algorithm is
described. Extensive experimentation is presented to show the effectiveness of the algorithm, including a
comparison with an integer linear programming formulation.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background and motivation

In today's telecommunications networks it is necessary, for reli-
ability reasons, to use protection schemes involving the calculation
of two (or more) disjoint paths for each node-to-node connection,
especially when large amounts of traffic have to be routed in the
network. This concern is particularly relevant in optical networks,
namely WDM (wavelength division multiplexing) networks due to
the very high rates supported by lightpaths, and in the Internet us-
ing MPLS (multiprotocol label switching). In this context the prob-
lem of obtaining (arc or node) disjoint paths, for increasing network
reliability while minimising bandwidth consumption, is extremely
important. In telecommunication networks, when diverse routing is
used, the path that carries traffic under normal conditions is called
the active path (AP), and the path that carries traffic when some
failure affects the AP is called the backup path (BP).

In a network, with certain type of route protection schemes, the
minimisation of bandwidth usage can be achieved by solving the
min-sum problem: finding k disjoint paths between two (distinct)

� Work partially supported by programme POSC of the EC programme cospon-
sored by national funds.
∗ Corresponding author at: Department of Electrical and Computer Engineering,

Pólo II of Coimbra University, 3030-290 Coimbra, Portugal. Tel.: +351239796261;
fax: +351239796247.

E-mail addresses: teresa@deec.uc.pt (T. Gomes), jcrav@deec.uc.pt (J. Craveirinha),
ljorge@inescc.pt (L. Jorge).

0305-0548/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.04.002

nodes s and t such that the sum of the cost of the routes is minimised.
A polynomial-time algorithm for solving this problem was proposed
in [1] and a more efficient version for k= 2 was presented in [2]. In
this type of problem the arc costs are uniform, that is, they have the
same value regardless of the considered path.

In order to reduce bandwidth usage, it is desirable to allow band-
width sharing among BPs of disjoint APs. This is a condition that
leads to networks with non-uniform arc costs, that is, networks
with different arc costs in the APs and BPs. In fact the reserved
bandwidth in each arc of a BP associated with a given AP is less
than or equal to the bandwidth that would be required in that
same arc by the AP. Hence the problem of finding a pair of disjoint
paths (the AP and the BP) leads to the min-sum problem with or-
dered dual costs, or MSOD problem. This problem was shown to be
NP-complete for undirected and directed networks in [3] and [4],
respectively.

The problem of finding k disjoint paths from s to t (two dis-
tinct nodes), in a network with k different costs on every arc such
that the total cost of the paths is minimised, was studied in [5].
The paths may be arc or node disjoint and the networks may be di-
rected or undirected. Firstly it is proved that this problem is strongly
NP-complete even for k=2, when the relationship between the k arc
costs (in the same arc) is arbitrary. Two polynomial-time heuristics,
for the problem of finding disjoint paths with min-sum objective
function when the cost structure is not uniform, were then proposed.
Worst-case bounds were obtained for both heuristics.

The problem addressed in this paper, relevant in the context of
survivable routing, is the calculation of a pair of arc-disjoint paths
from a source to a destination in a network where two different

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:teresa@deec.uc.pt
mailto:jcrav@deec.uc.pt
mailto:ljorge@inescc.pt
http://dx.doi.org/10.1016/j.cor.2008.04.002

2 T. Gomes et al. / Computers & Operations Research () --

ARTICLE IN PRESS

and unordered costs are assigned to the arcs, a situation usually
designated as dual arc costs [3].

Several heuristics for obtaining an asymmetrically weighted pair
of disjoint paths with minimal cost, a particular type of the MSOD
problem, are described in [4]. The proposed heuristics are based on
k-shortest path searching, Suurballe's algorithm [2], integer linear
programming (ILP), linear relaxation and minimum cost network
flow (MCNF) techniques.

In [6] the problem of dynamic routing of restorable bandwidth-
guaranteed LSPs (label switched paths) in MPLS networks was ad-
dressed, and algorithms for setting up such LSPs were proposed. This
problem has, as a sub-problem, the determination of a minimal cost
pair of disjoint paths with different path costs. In [6] it was consid-
ered that the worst-case guarantee in [5] was not good enough for
this purpose, so a different approach to the problem of finding a pair
of disjoint paths with different arc costs, was presented. This was
based on a mathematical programming formulation of the problem.
In order to obtain lower bounds on the optimal solution value of this
problem, a relaxation of the integrity constraints was considered, as
well as the dual of this linear programming problem. A heuristic that
calculates a disjoint pair of paths, as well as upper and lower bounds
for the optimal disjoint path pair cost, was then described.

The approach of Ho et al. [7], to the problem of survivable rout-
ing, requires solving the min-sum problem concerning the cost of
the active and backup disjoint path pair, where the protection path
depends on the chosen AP (this a problem similar to the one ad-
dressed in [6]). In [7] this problem is formulated as an ILP process.
Since the problem is NP-complete two heuristics are also proposed:
the iterative two-step-approach (ITSA) and the maximum likehood
relaxation (MLR). The MLR is a modified Dijkstra's algorithm which
has polynomial-time complexity. The ITSA was already outlined in
[4] where it was designated as an enhancement to the TSA. The TSA
uses a shortest path algorithm for obtaining the AP, then removes
the arcs of the AP from the network; finally the shortest path al-
gorithm is used again for obtaining the BP. ITSA iteratively inspects
k-shortest paths as APs, in an ascending order of cost, from source
to destination. The TSA is used in every iteration of the ITSA until
the optimal path pair is obtained or a stopping criterion is satis-
fied. The efficiency of the ITSA is determined by the efficiency of the
k-shortest path algorithm. However, according to [8], the ITSA can
work extremely well in solving the diverse routing problem with
shared protection.

1.2. Contributions of the paper

In this paper we propose an exact algorithm for finding an arc-
disjoint path pair, withminimal cost in a network with dual arc costs,
as formalised in the next sub-section. We also analyse its effective-
ness in a significant number of randomly generated networks.

The exactness of the algorithm results from the fact that it en-
ables the calculation of optimal solution(s) and guarantees its (their)
optimality. Furthermore the algorithm is founded on the calculation
of upper and lower bounds on the optimal cost. The algorithm is
based on the resolution of two k-shortest path problems in an artic-
ulate manner, until an optimal stopping condition is verified.

An ILP formulation of the problem is also presented for perfor-
mance comparison with the proposed resolution approach.

Experimental results with randomly generated networks, having
up to 3200 nodes, show that the algorithm solves the problem ex-
actly in practically all the cases in directed networks, the cases of
failure being due to memory exhaustion alone. In the small percent-
age of cases in which an optimal solution is not attained, the solu-
tion provided by the algorithm is sub-optimal, and lower and upper
bounds for the optimal cost can be calculated. The performance com-
parison with the ILP approach was carried out using ILOG CPLEX. The

experimental results showed that the proposed algorithm enables
optimal solutions to be obtained in much shorter CPU times than
CPLEX. Moreover the algorithm is capable of solving larger problems
than the ILP approach using CPLEX.

The paper is organised in the following manner. In Section 1.3
the problem is formalised, the notation is introduced as well as an
ILP formulation of the problem. The main steps of the algorithm are
presented together with two statements concerning the lower and
upper bounds of the optimal cost, and the detection of the optimal
path pair cost; finally the exactness of the algorithm is proved. Ex-
tensive experimental results with randomly generated directed net-
works having different cost ranges are presented and analysed in
Section 3, including a comparison with the results obtained with the
ILP formulation, using CPLEX. Finally, some conclusions are drawn
in Section 4.

1.3. Problem formulation

Let G = (V, E) be a directed network with node set V =
{v1, v2, . . . , vn} and arc set E = {e1, e2, . . . , em} (where n and m des-
ignate the number of nodes and arcs in G, respectively), where two
different non-negative cost functions (or metrics) in the arcs, are
defined:

�(j) : E→ N0 (j = 1,2) (1)

�(j)((va, vb))= c
(j)
vavb

(va, vb) ∈ E (2)

The cost C(j) of a (loopless) path p in G with respect to metric �(j), is

C(j)(p)=
∑

(va,vb)∈p
c
(j)
vavb

(j = 1,2) (3)

Let path p, p= 〈v1, e1, v2, . . . , vi−1, ei−1, vi〉, be given as an alternate
sequence of nodes and arcs from G, such that the tail of ek is vk and
the head of ek is vk+1, for k=1,2, . . . , i−1 (all the vi in p are different).
Let the set of nodes in p be V∗(p) and the set of arcs in p be E∗(p).
Two paths p = 〈v1, e1, v2, . . . , vi−1, ei−1, vi〉 and q are arc-disjoint if
E∗(p)∩ E∗(q)=∅. Two paths p and q are disjoint if V∗(p)∩ V∗(q)=∅,
and are internally disjoint [9] if {v2, . . . , vi−1} ∩ V∗(q) = ∅. We will
say that two paths are node disjoint if they are internally disjoint.

The addressed problem is to find a pair (p, q) of arc-disjoint paths
which minimises the total cost of the pair, defined by

C[(p, q)] = C(1)(p)+ C(2)(q) (4)

where p and q have the same source and sink node. We recall that,
in [5], this problem was proved to be NP-complete.

The interest in developing an exact and effective solution to the
problem of obtaining the minimal cost pair of disjoint paths with
arbitrary dual arc costs, having inmind possible applications (namely
in telecommunication networks), provided the major motivation for
this paper.

The problem of finding a pair (p, q) of arc-disjoint paths, which
minimises the total cost of the pair (see Eq. (4)) can also be formu-
lated as an ILP problem, following a procedure similar to [10].

The flow conservation indicator, defined for all nodes vk ∈ V :

f(vk)=
⎧⎨
⎩
1 if vk is the source of p and q

−1 if vk is the sink of p and q

0 otherwise
(5)

Objective:

min
∑

j=1,2

∑
(va,vb)∈E

x
(j)
vavb

c
(j)
vavb

(6)

Constraints:
∑

vi:(vk,vi)∈E
x
(j)
vkvi
−

∑
vh:(vh,vk)∈E

x
(j)
vhvk
=f(vk), ∀vk∈V, j=1,2 (7)

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

ARTICLE IN PRESS
T. Gomes et al. / Computers & Operations Research () -- 3

x(1)
vkvi
+ x(2)

vkvi
�1, ∀(vk, vi) ∈ E (8)

x
(j)
vkvi
∈ {0,1}, ∀(vk, vi) ∈ E, j = 1,2 (9)

where

x(1)
vavb
=

{1 if (va, vb) ∈ p

0 otherwise
(10)

x(2)
vavb
=

{1 if (va, vb) ∈ q

0 otherwise
(11)

with (va, vb) ∈ E.
This formulation will only be used for evaluating the algorithm

performance with respect to a benchmarking standard tool which
might be applicable to the problem under analysis.

2. Proposed approach

Let p(1)
h

be the h-shortest (loopless) path from s to t with respect

to metric �(1) (obtained by MPS in its loopless version [11], for ex-
ample). Let q(p(1)

h
)(2) be the shortest path from s to t with respect

to �(2) (obtained using the Dijkstra algorithm) in the graph G(1) ob-
tained from G by removing (temporarily) the arcs in p(1)

h
.

Let p(2)
k

be the k-shortest (loopless) path for s to t with respect

to �(2). Let q(p(2)
k

)(1) be the shortest path from s to t with respect to

�(1) in the graph G(2), obtained from G by removing (temporarily)
the arcs in p(2)

k
.

Let Ah= (p(1)
h

, q(p(1)
h

)(2)), Bk= (q(p(2)
k

)(1), p(2)
k

), C(Ah)=C(1)(p(1)
h

)+
C(2)[q(p(1)

h
)(2)], and C(Bk)= C(1)[q(p(2)

k
)(1)] + C(2)(p(2)

k
).

2.1. Main steps of the algorithm

A k-shortest path enumeration algorithm, using arc costs c(1)
ij

,

obtains the paths p(1)
h

, h= 1,2, . . . , W , where W is the total number

of paths from s to t in the network. The arcs of each path p(1)
h

are
temporarily removed from the network graph and the shortest path
with respect to metric �(2), q(p(1)

h
)(2) (disjoint with p(1)

h
) is obtained

in the resulting graph (using for example the Dijkstra algorithm)
by using arc costs c(2)

ij
(with the cost of the removed arcs equal to

∞). In this manner, (procedure A) it is possible to keep track of the
current best candidate pair of paths found so far, the one with cost
minh C(Ah).

Now let the arc costs c(2)
ij

be used for obtaining the k-shortest

paths p(2)
k

, k = 1,2, . . . , W . For each p(2)
k

all its arcs are temporarily
removed from the network graph and the shortest path with respect
to metric �(1), disjoint with p(2)

k
, is obtained. In this manner (proce-

dure B) it is also possible to keep track of the current best candidate
pair of paths found so far, the one with cost mink C(Bk). Procedure
B can be considered as 'symmetrical' to procedure A.

Given the best current paths in procedures A and B, upper and
lower bounds for the minimal value of C[(p, q)] (4), copt, can be ob-
tained and thewidth of the interval containing copt can be calculated.

Lemma2.1 (Lower and upper bounds for copt). Let Ah=(p(1)
h

, q(p(1)
h

)(2))

and B = (q(p(2)
k

)(1), p(2)
k

) be the current minimal cost path pairs ob-
tained using procedures A and B, respectively.

Procedures A and B ensure that Ah and Bk are path pairs such that

C(Ah)=min
i

C[(p(1)
i

, q(p(1)
i

)(2))], i= 1, . . . , u (12)

C(Bk)=min
j

C[(q(p(2)
j

)(1), p(2)
j

)], j = 1, . . . , v (13)

with 1�h�u�W and 1�k�v�W .
Let

cL = C(1)(p(1)
h

)+ C(2)(p(2)
k

) (14)

cU =min[C(Ah), C(Bk)] (15)

r = cU − cL (16)

then

cL �copt �cU or C(Ah)= C(Bk)= copt (17)

Proof. The j-th element (j = 1,2) of Ah or Bk is the path which was

obtained by using metric �(j). Whenever a path p(1)
h

(p(2)
k

) does not

have a disjoint path q(p(1)
h

)(2) (q(p(2)
k

)(1)) the cost of Ah (Bk) is ∞.

By construction, paths p(1)
i

(p(2)
j

) are obtained by non-decreasing

order of their cost, with respect to metric �(1) (�(2)).
By definition copt =mini C(Ai) =minj C(Bj), 1� i, j�W , therefore

copt � min[C(A), C(B)]. This proves (15) is an upper bound for copt.
First case: assume that C(Bk) > copt and C(Ah) > copt. This implies

that a path pair Bj (j > k), can be found (using procedure B) such
that C(Bj)= copt and

C(2)(p(2)
j

)�C(2)(p(2)
k

) (18)

C(1)[q(p(2)
j

)(1)]�C(1)(p(1)
h

) (19)

Procedure B ensures Eq. (18) is true. Eq. (19) is verified otherwise
we necessarily have C(A)= copt.

By adding (18) and (19) we have cL �copt and r >0 (because
cL �copt < cU).

Second case: assume C(Bk) > C(Ah) and C(Ah)= copt. This implies
that a path pair Bj (j > k) can be found (using procedure B) such that

C(Bj)= copt and p(2)
j
= q(p(1)

h
)(2). Similarly to (18) and (19) we have

C(2)(p(2)
j

)�C(2)(p(2)
k

) (20)

C(1)[q(p(2)
j

)(1)] = C(1)(p(1)
h

) (21)

By adding (20) and (21) we have cL �copt.
Third case: consider C(Ah) > C(Bk) and C(Bk)=copt. A proof similar

to the second case (C(Bk) > C(Ah) and C(Ah)= copt) can be made and
is omitted.

Fourth case: C(Ah)= C(Bk)= copt. This completes the proof. �

Note that r >0 in case 1, r �0 in cases 2 and 3, and r �0 in case 4.

Corollary 2.1 (Optimal cost detection). Let Ah = (p(1)
h

, q(p(1)
h

)(2)) and

B=(q(p(2)
k

)(1), p(2)
k

) be the current minimal cost path pairs obtained us-
ing procedures A and B, respectively, 1�h�u�W and 1�k�v�W ,
where u and v are the order of the last paths generated by each
procedure.

If r �0, copt has been reached by procedure A or B.

Proof. We will consider two cases: r = 0 and r <0.
First case: r = 0.
Since r = 0, we are necessarily in cases 2, 3 or 4 of Lemma 2.1. In

each one of these cases, at least one of the two path pairs Ah and Bk
is optimal.

Second case: r <0.
By Lemma 2.1, r can only be negative if C(Ah)= C(Bk)= copt. �

Note that Corollary 2.1 does not state that if r >0 then copt �=
min[C(A), C(B)], but only that r �0 implies copt =min[C(A), C(B)].

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

4 T. Gomes et al. / Computers & Operations Research () --

ARTICLE IN PRESS

Now we will show that if procedures A and B are executed in
an articulate manner, an exact algorithm for calculating a pair of
arc-disjoint paths can be obtained.

2.2. Detailed description of the algorithm

An algorithm which solves the problem of obtaining the arc-
disjoint path pair with minimal C[(p, q)] (see Eq. (4)) by using a k-
shortest path enumeration algorithm (such as MPS [12] in its loop-
less version [11]), and an algorithm for finding the shortest path be-
tween a pair of nodes (for example the Dijkstra algorithm) will be
presented. Note that although Yen's algorithm has the lowest worst-
case complexity among k-shortest path ranking algorithms [13,14],
we prefer to use MPS because, in [11], experimental results show
that in practical situations this algorithm is more efficient than Yen's,
in terms of CPU time and RAM space.

In the algorithm the current best path pair is stored in A =
(p(1), q(p(1))(2)) and B= (q(p(2))(1), p(2)) in procedures A and B, re-
spectively.

Algorithm DP2LC
(1) Comment: Find the first pair of disjoint paths, by using MPS in the graph

with costs c(1)
ij

, and using Dijkstra in the pruned network, with costs c(2)
ij

.

(a) u← 0
(b) Do

(i) u← u+ 1;

(ii) MPS (loopless) generates p(1)
u , and Dijkstra finds q(p(1)

u)(2).
While C(Au)=∞

(2) Comment: Find the first pair of disjoint paths, by using MPS in the graph

with costs c(2)
ij

, and using Dijkstra in the pruned network, with costs c(1)
ij

.

(a) v← 0
(b) Do

(i) v← v + 1;

(ii) MPS (loopless) generates p(2)
v , and Dijkstra finds q(p(2)

v)(1).
While C(Bv)=∞

(3) A← Au, B← Bv

(4) r ←min[C(A), C(B)] − [C(1)(p(1))+ C(2)(p(2))]
(5) Comment: Identify (and generate) an optimal pair of disjoint paths.

While r >0 Do
(a) Procedure A:

While r >0 ∧ C(B)�C(A) Do
(i) u← u+ 1

(ii) MPS (loopless) generates p(1)
u , and Dijkstra generates q(p(1)

u)(2)

(iii) If C(Au) < C(A) ∨ [C(Au)= C(A) ∧ C(1)(p(1)
u) > C(1)(p(1))] Then

(A) A← Au

(B) r ←min[C(A), C(B)] − [C(1)(p(1))+ C(2)(p(2))]
End If

End While
(b) Procedure B:

While r >0 ∧ C(A)�C(B) Do
(i) v← v + 1

(ii) MPS (loopless) generates p(2)
v , and Dijkstra generates q(p(2)

v)(1)

(iii) If C(Bv) < C(B) ∨ [C(Bv)= C(B) ∧ C(2)(p(2)
v) > C(2)(p(2))] Then

(A) B← Bv

(B) r ←min[C(A), C(B)] − [C(1)(p(1))+ C(2)(p(2))]
End If

End While
End While

The first two steps of the algorithm consist of obtaining the first
pair of disjoint paths, A and B, in each procedure. Then the main
cycle (step 5) seeks the improvement of A and B, which are up-
dated in steps 5a and 5b, respectively, as soon as the algorithm can

improve the bounds cL or cU. When r �0 the optimal path cost was
found.

The output of the algorithm is composed of a pair, the one
with minimal cost, or two pairs (A and B if C(A) = C(B)) which
either are equal or have equal cost. In both cases the optimal
path cost was obtained, and at least a minimal cost path pair was
identified.

2.3. Proof of the correctness of the algorithm

The proof takes into account the control and stopping conditions
of the algorithm and Corollary 2.1. The proof of the algorithm cor-
rectness also assumes that A= (p(1), q(p(1))(2)) (B= (q(p(2))(1), p(2))),
obtained in step 5a (5b), corresponding to procedure A (B),
when u (v) paths have been generated by the k-shortest path
enumeration algorithm, using metric �(1) (�(2)), such that C(A) =
mini C[(p(1)

i
), q(2)(p(1)

i
)], i = 1, . . . , u (C(B) =minj C[(q(p(2)

j
)(1), p(2)

j
)],

j = 1, . . . , v).

Note that the first pair of disjoint paths was obtained, for proce-
dures A and B, in steps 1 and 2.

Proposition 2.1 (Correctness of DP2LC). Algorithm DP2LC obtains copt,
assuming at least a link disjoint path pair exists in the network.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

ARTICLE IN PRESS
T. Gomes et al. / Computers & Operations Research () -- 5

Proof. If, when entering step 5 of DP2LC, r �0, then from Corollary
2.1 copt has been found and copt =min[C(Au), C(Bv)]---and zero iter-
ations of cycle 5 were carried out.

If that is not the case, then the algorithm enters cycle 5. If nec-
essary the algorithm can enumerate all paths p(1)

u (p(2)
v). The first

optimal path pair found will be enumerated either in step 5a or step
in 5b. Suppose the algorithm quits cycle 5a with and optimal path
pair P (A or B). Therefore we will necessarily have r �0 or, r >0 and
C(P=A) < C(B). If r �0, by Corollary 2.1 copt = cU=min[C(A), C(B)]. If
r >0 then necessarily C(P = A) < C(B) and the algorithm remains in
5b until r �0 (that is until C(B)= C(A)= copt and r �0, or copt = C(A)

and r = 0). �

2.4. Length constraint

Note that the previous approach can also be used for obtaining
the minimal cost disjoint path pair with constraints on the max-
imum number of arcs allowed per path, a problem of interest in
various applications, namely in telecommunication networks. If an
algorithm (such as KD in [15]) for enumerating the k-shortest paths
with length constraints was used instead of a k-shortest path enu-
meration algorithm (MPS loopless [11]) and if the Bellman-Ford (see
[16]) algorithm was used instead of the Dijkstra algorithm, the ob-
tained pair would be the optimal disjoint path pair, satisfying the
desired length constraint.

2.5. Pair of node-disjoint paths

If an optimal pair of node-disjoint paths is desired, then, in pro-
cedure A, all arcs incident and all arcs emergent from the nodes
belonging to p(1)

h
(with the exception of s and t) are removed from

the graph and a node disjoint path, q(p(1)
h

)(2), is sought by using the

Dijkstra algorithm. Similarly for the pair p(2)
k

and q(p(2)
k

)(1), in pro-
cedure B. Therefore the previous algorithm (with this simple adap-
tation) would also solve the problem of obtaining the node-disjoint
path pair of minimal cost. However, the performance of the algo-
rithm in this case would have to be evaluated.

2.6. Directed and undirected networks

The proposed algorithm works for both directed and undirected
networks. In fact the MPS algorithm can be used in undirected net-
works, if each edge is replaced by two arcs in opposite directions,
with equal costs.

The Dijkstra algorithm has to receive a pruned graphwhere all the
arcs in a path p (selected by a k-shortest path algorithm) have been
temporarily removed. If the network is directed, only the directed
arcs in p are temporarily removed from the network graph. If the
network is undirected, for each arc (i, j) in p two directed arcs, (i, j)

and (j, i), are temporarily removed in the corresponding network
directed graph, before executing the Dijkstra algorithm.

3. Experimental results

In this section two sets of experiments will be presented. In the
first set of experiments, using low density networks with up to 800
nodes, an exhaustive approach was made because we feel that if a
sub-set of node pairs was randomly selected in each tested network
the results could be misleading if the sub-set did not include any of
the relatively few node pairs for which only sub-optimal solutions
were obtained. In the second set of experiments, with the purpose of
observing the behaviour of DP2LC with more dense and larger net-
works and for comparing with the ILP approach using ILOG CPLEX
10.110, we used 100 node pairs (randomly selected) in each tested

Table 1
Defining symbols to refer to the range of costs

E Ē

Z ([0,100], [0,100]) ([0,10], [0,10000])
([0,10000], [0,10000]) ([0,100], [0,10000])

Z̄ ([1,100], [1,100]) ([1,10], [1,10000])
([1,10000], [1,10000]) ([1,100], [1,10000])

network. This enabled the required results to be obtained in a rea-
sonable amount of time.

It will be shown that the algorithm DP2LC performs quite well
and obtains the minimal cost pair of disjoint paths for almost every
node pair, and uses significantly less CPU time than CPLEX.

3.1. Low density networks

Extensive and systematic tests were carried out with the algo-
rithm in a significant number of networks with different topologies,
consistent with typical ranges of telecommunications transport net-
works, and using various cost ranges.

Results are presented for directed networks. The number
of arcs m is equal to 3n, 4n and 6n, where n is the num-
ber of nodes in the network. For each number of nodes (n =
50,100,150,200,250,300,350,400,450,500,600,800) 10 dif-
ferent networks, with a given number of arcs, were randomly
generated.1 The used network generator creates an Hamiltonian
cycle and the remaining arcs are generated, with the additional con-
straint that arc-connectivity is always greater than one. There are no
multiple arcs between a pair of nodes. For each of these networks
the costs of the arcs were randomly generated in different ranges.

The symbols introduced in Table 1 will be used to refer to ranges
of cost values. The first (second) range in each pair refers to the costs
c(1)(c(2)).

Identical (different) ranges for the two arc costs will be designated
by E (Ē). Ranges with lower bound equal to 0 (1) will be designated
by Z (Z̄). Finally ZE, ZĒ, Z̄E and Z̄Ē, will identify the four groups
(each group with two ranges) of ranges in the table.

In this set of experiments DP2LC was tested for all end-to-end
node pairs (n(n− 1)) in every network.

In all tested cases the algorithm obtained an optimal solution
in almost all cases. Sub-optimal solutions were obtained in a few,
quite rare cases, in which the optimal stopping condition cannot be
verified because memory is exhausted in one of the procedures. In
these cases the algorithm has the capability of calculating the relative
error of a sub-optimal solution, X, re, defined by

re = C(X)− cL
cL

(22)

The possibility of calculating this error and the bounds (cU = C(X),
cL (14)) on the optimal cost is another advantage of the proposed
approach.

In Fig. 1 the average relative error of the sub-optimal solutions,
for networks where sub-optimal solutions occurred, for ranges ZĒ,
is shown. It can be seen that the relative error is quite small.

DP2LC only failed in finding optimal solutions for all node pairs in
the ranges Z̄, in the case of range ([1,100], [1,10000]) andm=4n,6n.
Even so those were quite rare situations, corresponding to a total
number of sub-optimal solutions (total number of node pairs for
which a solution was obtained, the optimality of which could not be

1 The program used for network generation was kindly borrowed from José
Luis Santos of the Department of Mathematics of Coimbra University.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

6 T. Gomes et al. / Computers & Operations Research () --

ARTICLE IN PRESS

Relative error of sub-optimal solutions

0

0.005

0.01

0.015

0.02

0.025

250

4 6

[0,10] - [0,10000] [0,100] - [0,10000]

800600500450400350300250200100800600500450400300

Fig. 1. Average of the relative error of sub-optimal solutions for ranges ZĒ.

Percentage of sub-optimal solutions

0.000%

0.003%

0.005%

0.008%

0.010%

0.013%

0.015%

0.018%

0.020%

0.023%

250

4 6

[0,10] - [0,10000] [0,100] - [0,10000] [1,100] - [1,10000]

800600500450400350300250200100800600500450400300

Fig. 2. Percentage of sub-optimal solutions, for networks with sub-optimal solutions for m= 4n,6n and ranges Ē.

checked) equal to 15, in approximately 235×106 node pairs consid-
ered in these tests (for all networks with ranges Z̄). The frequency
of sub-optimal solutions for range ([1,100], [1,10000]) is shown in
Fig. 2. Note that in Fig. 2 only non-null values are shown and the
average values were calculated considering only networks where
sub-optimal solutions were detected. For example, for n= 300,400
and m = 4n each value in Fig. 2 (ranges Z̄Ē) corresponds to a sin-
gle node pair (in a single network). In the case of ranges ZĒ, for
m=4n and 6n the number of sub-optimal solutions is higher (a total
of 1695 node pairs in approximately 235× 106) which represents a
very small percentage of the tested node pairs (for all networks with

ranges Z). Fig. 2 shows the percentage of sub-optimal solutions, for
the networks where sub-optimal solutions were detected. The worst
average value is 0.022% (the highest value in all tested cases was
0.1555% for n= 350 and m= 6n). Sub-optimal solutions occur more
often for the costs in the range ([0,10], [0,10000]).

We have made an estimate of RAM used for storing the data re-
quired by the algorithm, namely the space required to store the paths
that can be generated by MPS. This results in an (under-)estimate
for the allowed maximum number of paths, which will ensure than
only RAM memory is used and that no swapping takes place. CPU
times were obtained in a Pentium IV at 3.2GHz with 2GB of RAM.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

ARTICLE IN PRESS
T. Gomes et al. / Computers & Operations Research () -- 7

Average CPU time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

200
643

m
s

[1,100] - [1,100] [1,10000] - [1,10000]

800500200800500200800500

Fig. 3. Average CPU time per node pair (with optimal or sub-optimal solutions) for n= 200,500,800, m= 3n,4n,6n and ranges Z̄E.

Average CPU time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

200
643

m
s

[1,10] - [1,10000] [1,100] - [1,10000]

800500200800500200800500

Fig. 4. Average CPU time per node pair (with optimal or sub-optimal solutions) for n= 200,500,800, m= 3n,4n,6n and ranges Z̄Ē.

The average CPU time was obtained per pair of disjoint paths for
each node pair in the set of all s--t pairs with fixed t (for every node
t). This allows the MPS algorithm to re-use the tree of shortest paths
from all nodes to t and the ordered set of the network arcs.

In Figs. 3 and 4 average CPU times per node pair (with optimal or
possibly sub-optimal solutions) are presented for n = 200,500,800
and m=3n,4n,6n for costs ranges Z̄E and Z̄Ē. Two separate figures
are presented because in Fig. 4 the maximal CPU time is less than
4.5ms and in Fig. 3 is less than 1.4ms. Here it can be seen that the
used CPU time is relatively higher in the case of different cost ranges.
A complete set of results for all tested networks can be found in [17].
In Figs. 5 and 6 the average CPU times per node pair (with optimal
or sub-optimal solutions) for n=200,500,800 and m=3n,4n,6n for
ranges ZE and ZĒ are presented.

Recalling that DP2LC, for networks with arc costs in ranges E,
always obtained optimal solutions for all node pairs, Figs. 3 and 5
present the average CPU time for obtaining an optimal solution, per
node pair.

From Figs. 3 and 5 we conclude that the average CPU time for
obtaining an optimal solution is similar in ranges E and approx-
imately independent of the lower bound of the cost ranges. In
Fig. 4 a higher CPU time associated with different ranges for the
arc costs Z̄Ē is shown. In the case of ZĒ this CPU time increase
is also visible in Fig. 6. Results for ranges ([0,100], [0,10000])
(in Fig. 6) and ([1,100], [1,10000]) (in Fig. 4) are similar but
a strong increase in used CPU time was detected for net-
works with arc costs in the intervals ([0,10], [0,10000]) and
m= 4n,6n.

In Figs. 7 and 8 the average used CPU time, per node pair, for ob-
taining an optimal solution for all considered networks with arc costs
in ranges Ē, is presented (for networks with arc costs in ranges E all
solutions were optimal). The results in Figs. 4 and 7 are practically
identical because of the negligible number of sub-optimal solutions
in the ranges Z̄. However, Figs. 6 and 8 show some differences. In
Fig. 8 a visible decrease in CPU time can be seen when compared
with 6, for m= 6n and range ([0,10], [0,10000]).

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

8 T. Gomes et al. / Computers & Operations Research () --

ARTICLE IN PRESS

Average CPU time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

200
643

m
s

[0,100] - [0,100] [0,10000] - [0,10000]

800500200800500200800500

Fig. 5. Average CPU time per node pair (with optimal or sub-optimal solutions) for n= 200,500,800, m= 3n,4n,6n and ranges ZE.

Average CPU time

0

10

20

30

40

50

60

200
643

m
s

[0,10] - [0,10000] [0,100] - [0,10000]

500 800 200 500 800 200 500 800

Fig. 6. Average CPU time per node pair (with optimal or sub-optimal solutions) for n= 200,500,800 and m= 3n,4n,6n and ranges ZĒ.

It was verified that when longer CPU time was required to find
an optimal solution (usually for ranges Ē, and in particular for range
([0,10], [0,10000])) one of the procedures had quickly found a very
low cost path pair (procedure B) which required the other proce-
dure (procedure A) to generate a large number of path pairs, in
the search for a better path pair. This results from the fact that if
C(B) = C[q(p(2))(1), p(2)] = copt, copt will be mostly determined by

the cost of p(2), and frequently C(1)[q(p(2))(1)]?p(1)
1 , hence a large

number of path pairs will have to be generated by using proce-
dure A (which includes a call to Dijkstra's algorithm for obtaining
q(p(1)

u)(v) for each p(1)
u). Also, for the same m/n relation, networks

with more arcs, being more sparse, lead to longer paths and more
processing.

The number of sub-optimal solutions is rather small for ZĒ and
negligible for ranges Z̄Ē (as shown in Fig. 2). In these rare cases
DP2LC takes a very long time to exhaust the allowed memory usage

(because no CPU time limit per node pair was implemented). These
high CPU times combined with a relative higher frequency (on aver-
age �0.0221% as compared with 0.0025%, the maximal average fre-
quency of range ([0,100], [0,10000])) of occurrence of sub-optimal
solutions in the case of range ([0,10], [0,10000]) have some impact
on the average CPU time in Fig. 6, for n= 6m.

A study was also made regarding the frequency of occurrence of
the optimal pair among the first pair identified by procedure A or
by procedure B. The results showed that this frequency was greater
than 99.46% for all networks with ranges Ē, regardless of network
density or size, which is an indication of the rapid convergence of one
of the procedures of the algorithm. This result confirms the previous
statement regarding the performance of the algorithm for different
cost ranges: procedure B which enumerates the paths according
to �(2) (the larger cost range in the test networks) generated very
few paths because it obtains B = B1, such that C(B1) = copt quite

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

ARTICLE IN PRESS
T. Gomes et al. / Computers & Operations Research () -- 9

Average CPU time (optimal sol.)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

200
643

m
s

[1,10] - [1,10000] [1,100] - [1,10000]

800500200800500200800500

Fig. 7. Average CPU time per node pair with an optimal solution for n= 200,500,800, m= 3n,4n,6n and ranges Z̄Ē.

Average CPU time (optimal time)

0

10

20

15

45

40

35

30

25

200
643

m
s

[0,10] - [0,10000] [0,100] - [0,10000]

500 800 200 500 800 200 500 800

5

Fig. 8. Average CPU time per node pair with an optimal solution for n= 200,500,800, m= 3n,4n,6n, and ranges ZĒ.

frequently. Therefore, for ranges Ē, procedure A had very often the
task of obtaining a path pair, Ah, which confirms the optimal cost is

indeed equal to C(B1) (C(B = B1) = C(1)(p(1)
h

) + C(2)(p(2))), where h
may be a very large number, especially for ranges ZĒ.

For all networks with ranges E the frequency of occurrence of the
optimal pair among the first pair identified by procedure A or by
procedure B was in the interval [0.931,0.993], increasing with the
ratio m/n, regardless of the network size. In Fig. 9 results are shown
for all values of n and m but only for ranges ([1,10], [1,10000]) and
([0,100], [0,100]).

Also one should note that DP2LC does not enter cycle 5 if the
first path identified in both procedures is optimal. An analysis of the
frequency of this event was also made, and it was verified that it
increased with the ratio m/n, and was practically insensitive to the
range of the cost of the arcs and also to the network dimension. The
average values were around 30%, 40% and close to 60% for m = 3n,
4n and 6n, respectively.

3.2. Denser networks

In the previous set of experiments, networks were generated
with a given average node degree by making m = 3n,4n,6n. Is
this second set of experiments 10 different networks were ran-
domly generated with density (d) equal to 10% and 20%, for
n= 50,100,200,400,800,1600,3200, with the cost ranges given in
Table 1. In this case (s, t) node pairs were randomly generated and
the MPS algorithm did not re-use the tree of shortest paths from all
nodes to t.

DP2LC and ILOG CPLEX 10.110 (see ILP formulation in Section 1.3)
were used to solve the same problem for 100 randomly generated
node pairs. CPLEXwas not able to solve the problem ('Out of memory'
error condition) for 20% density networks when n = 3200. Results
for DP2LC and CPLEX will be presented in different figures because
of the different time scales.

We verified that, using this new set of more dense networks,
and testing only for 100 node pairs, the CPU time per node pair of

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

10 T. Gomes et al. / Computers & Operations Research () --

ARTICLE IN PRESS

100%

99%

98%

97%

96%

95%

94%

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
0

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
050 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

60
0

80
050

The optimal pair was the first path found in one of the procedures

3 4 6

[0, 100] - [0,100] [1,10] - [1,10000]

Fig. 9. Frequency of occurrence of the optimal pair among the first identified pair in procedures A or B, for ranges ([1,10], [1,10000]) and ([0,100], [0,100]).

DP2LC - Average CPU time (optimal sol.)

0

0.02

0.04

0.06

0.08

100

20%10%

se
c.

[0,100] - [0,100] [0,100] - [0,10000] [1,100] - [1,100] [1,100] - [1,10000]

0.42

0.423

400200100400200

Fig. 10. Average CPU time per node pair (with optimal solutions) for n= 100,200,400, d= 10%,20% and four cost ranges.

DP2LC no longer presented a clear correlation with the range of the
costs. Therefore four ranges will be shown in Figs. 10 and 12 and the
remaining four in Figs. 11 and 13.

From Figs. 10 and 11 it can be observed that DP2LC is apparently
more sensitive to the number of nodes than to the network den-
sity: for the same n the CPU time approximately doubles with net-
work density and for the same density it multiplies by four when n
doubles.

Observing the relative performance of CPLEX and of DL2LC for
smaller networks it can be seen that DP2LC is usually much faster
than CPLEX: up to 25 times, for 100 nodes networkswith 20% density.
There is an exception for n=400, d=10% and range ([0,100], [0,100]),
where it is only 1.5 faster, but for the remaining ranges (of n= 400,
d = 10%) it is at least 6.4 times faster than CPLEX. CPU times for
n=50 are not shown because they would not be visible in Figs. 10 or
12---for DP2LC the CPU time was always below 0.5ms and for CPLEX
it was around 10ms.

In Figs. 12 and 13 the average CPU time used by CPLEX to solve
the same problems is presented. The average CPU time per node pair,
for obtaining optimal solutions in DP2LC, was less than 1.65 s for
n=3200 and 10% density networks. CPLEX required in average more
than 35 s for the same networks. When the density increased to 20%
and the number of nodes was 3200, the CPU time of DP2LC was just
below 3.5 s for all cost ranges, and CPLEX did not manage to solve
this problem. Looking at the largest problem CPLEX was capable of
solving, in the case of 20% density networks, we can see the average
CPU time per node pair was close to 16 s while DP2LC took less than
0.79 s in average for obtaining optimal solutions, for all cost ranges.

From Figs. 11 and 12 it can be verified that DP2LC obtains opti-
mal solutions much more quickly than CPLEX. In the largest problem
solved by DP2LC and CPLEX (n= 3200, d= 10%), DP2LC was at least
10 times faster than CPLEX, in all cost ranges. The best relative per-
formance of DP2LC, when n= 800,1600,3200, occurred for n= 800,
d= 10%,20%, where DP2LC was at least 34 faster for all cost ranges.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

ARTICLE IN PRESS
T. Gomes et al. / Computers & Operations Research () -- 11

DP2LC - Average CPU time (optimal sol.)

0

0.5

1

1.5

2

2.5

3

3.5

800

20%10%

se
c.

[0,10000] - [0,10000] [0,10] - [0,10000]
[1,10] - [1,10000] [1,10000] - [1,10000]

3200160080032001600

Fig. 11. Average CPU time per node pair (with optimal solutions) for n= 800,1600,3200, d= 10%,20% and four cost ranges.

CPLEX - Average CPU time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100

20%10%

se
c.

[0,100] - [0,100] [0,100] - [0,10000] [1,100] - [1,100] [1,100] - [1,10000]

200 400 100 200 400

Fig. 12. Average CPU time per node pair for n= 100,200,400, d= 10%,20% and four cost ranges.

In the tested networks, and for the randomly selected node pairs,
some solutions were sub-optimal. The grand total of sup-optimal
solutions was 115 in a total of 112000 node pairs (close to 0.1%). In
these cases CPU time can be much larger than the values presented
in Figs. 10 and 11. Nevertheless, because DP2LC is very efficient for
almost every node pair, and obtains optimal solutions in a short time,
even for large problems, it is clearly a preferable approach to CPLEX.
In practical situations, and to avoid possible long running times, in
the rare occasions in which the optimal stopping condition takes too
long to be obtained, a very effective approach would be to enforce
a CPU time limit per node pair on DP2LC. Also recall that, in these
cases, the quality of every sub-optimal solution can be known, based
on the provided upper and lower bounds of the optimal cost.

Allowing DP2LC to run to the limit of available resources, includ-
ing the use of swapping to increase memory space up to a total
amount of 5GB, we were able to obtain 20 new optimal solutions.
These new optimal solutions were found in 11 networks, with n =
100,200,400 (in the larger networks the number of sub-optimal so-

lutions remained unchanged). The CPU times for these additional op-
timal solutions were quite high as compared to the values in Fig. 10,
ranging from tens to hundreds of seconds, which again reinforces
the need for a CPU time limit, per node pair, in practical situations.

To summarise, the following conclusions can be drawn from this
extensive experimental study:

• In the case of low density networks a correlation was observed
between the range of the costs and DP2LC performance:
◦ When arcs costs were in ranges E the algorithm managed to

obtain optimal solutions for all tested node pairs.
◦ When arc costs were in ranges Z̄, the algorithm obtained
optimal solutions for almost every node pair, in all tested
networks.
◦ In the case of networks with arc costs in ranges ZĒ the

number of sub-optimal solutions was a little higher than in
Z̄Ē but nevertheless a very small percentage of the tested
node pairs.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

12 T. Gomes et al. / Computers & Operations Research () --

ARTICLE IN PRESS

CPLEX - Average CPU time

0

5

10

15

20

25

30

35

40

800

20%10%

se
c.

[0,10] - [0,10000] [0,10000] - [0,10000]
[1,10] - [1,10000] [1,10000] - [1,10000]

1600 3200 800 1600

Fig. 13. Average CPU time per node pair for n= 800,1600,3200, d= 10%, n= 800,1600, d= 20%, and four cost ranges.

◦ It was also verified that DP2LC used relatively higher CPU
time per node pair for ranges Ē than for ranges E. This effect
was more pronounced when the range of the costs started
with zero.

Concerning average CPU time per node pair, for obtaining optimal
solutions it can be concluded that:

For networks with ranges E, the average CPU time per node
pair was very small (a few milliseconds).
For networks with ranges Z̄Ē, CPU times were a little higher
than for ranges ZE, but still in the order of some millisec-
onds.
For networks with ranges ZĒ, CPU times were some mil-
liseconds for range ([0,100], [0,10000]) but several tens of
milliseconds for ([0,10], [0,10000]) (especially for m= 6n).

• In the case of networks with 10% and 20% density the correlation
between the range of the costs and DP2LC performance was no
longer clear.
The time required by DP2LC to obtain an optimal solution grows
more steeply with the number of nodes than with the network
density.
DP2LC presents significantly lower average CPU times per node
pair (for obtaining optimal solutions), and solves larger problems
than CPLEX.

4. Conclusions

An exact and effective algorithm, DP2LC, for finding an arc-
disjoint path pair, with minimal cost, in a network with dual arc
costs, was proposed. The algorithm is based on the resolution of
two k-shortest path problems in an articulate manner, so that an
optimal stopping condition can be attained. This optimality condi-
tion is based on the calculation of upper and lower bounds on the
optimal cost. A proof of the correctness of the algorithm was also
presented.

The proposed algorithm (with minor changes) can be used in di-
rected and undirected networks, for obtaining either an arc-disjoint
or a node-disjoint minimal cost path pair.

Extensive experimentationwith DP2LCwas carried out in a signif-
icant number of randomly generated directed networks of different
topologies, representative of possible telecommunication networks,

and using eight ranges for the costs. Experimental results showed
that DP2LC solved the problem exactly in practically all the cases in
directed networks, the rare exceptions being due to memory exhaus-
tion alone. In the small percentage of cases in which an optimal so-
lution was not attained, the algorithm always returns a sub-optimal
solution. Another important advantage of the algorithm is the pos-
sibility of calculating upper and lower bounds for the optimal cost
as well as the relative error of the sub-optimal solutions, in the very
rare cases in which only these solutions are computed.

In low density networks, the average CPU time for obtaining an
optimal solution was shown to be a few milliseconds, per node pair,
for all considered ranges of the costs, excepting for one cost range,
where it required (in some cases) tens of milliseconds (for the larger
and more dense networks). The algorithm is faster when the dual
arc costs have identical ranges.

In the case of 10% and 20% density networks, DP2LC was capa-
ble of obtaining optimal solutions in much shorter CPU times than
CPLEX, as expected. Moreover it was capable of solving larger prob-
lems than CPLEX.

Finally, concerning applications of the algorithm, it must be noted
that in the context of survivable routing in communication networks,
many approaches require a minimal cost pair of disjoint paths with
dual arc costs. DP2LC, given its efficiency and exactitude, as well as
its capability to compute bounds on the optimal cost can provide a
very interesting solution in this and similar contexts.

References

[1] Suurballe JW. Disjoint paths in networks. Networks 1974;4:125--45.
[2] Suurballe JW, Tarjan RE. A quick method for finding shortest pairs of disjoint

paths. Networks 1984;14(2):325--36.
[3] Xu D, Chen Y, Xiong Y, Qiao C, He X. On finding disjoint paths in single and

dual link cost networks. In: IEEE INFOCOM 2004. New York: IEEE; 2004.
[4] Laborczi P, Tapolcai J, Ho P-H, Cinkler T, Recski A, Mouftah HT. Algorithms

for asymmetrically weighted pair of disjoint paths in survivable networks. In:
Cinkler T, editor. Proceedings of design of reliable communication networks
(DRCN 2001). October 7--10 2001. p. 220--7.

[5] Li C-L, McCormick ST, Simchi-Levi D. Finding disjoint paths with different path
costs: complexity and algorithms. Networks 1992;22:653--67.

[6] Kodialam M, Lakshman TV. Dynamic routing of restorable bandwidth-
guaranteed tunnels using aggregated network resource usage information.
IEEE/ACM Transactions on Networking 2003;11(3): 399--410.

[7] Ho P-H, Tapolcai J, Mouftah HT. On achieving optimal survivable routing for
shared protection in survivable next-generation internet. IEEE Transactions on
Reliability 2004;53(2):216--25.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://dx.doi.org/10.1016/j.cor.2008.04.002

ARTICLE IN PRESS
T. Gomes et al. / Computers & Operations Research () -- 13

[8] Mouftah HT, Ho P-H. Optical networks---architecture and survivability.
Dordrecht: Kluwer Academic Publishers; 2003.

[9] Bang-Jensen J, Gutin G. Digraphs: theory, algorithms and applications, Springer
monographs in mathematics. Berlin: Springer; 2002.

[10] Laborczi P, Tapolcai J, Cinkler T. Efficient algorithms for physically-disjoint
routing in survivable networks. In: Networks 2004. June 13--16, 2004.
p. 185--91.

[11] Martins E, Pascoal M, Santos J. An algorithm for ranking loopless paths. Technical
Report 99/007, CISUC, 1999 〈http://www.mat.uc.pt/∼marta/Publicacoes/
mps2.ps〉.

[12] Martins E, Pascoal M, Santos J. Deviation algorithms for ranking shortest paths.
International Journal of Foundations of Computer Science 1999;10(3):247--63.

[13] Yen JY. Finding the k shortest loopless paths in a network. Management Science
1971;17(11):712--6.

[14] Martins E, Pascoal M. A new implementation of Yen's ranking loopless paths
algorithm. 4OR---Quarterly Journal of the Belgian, French and Italian Operations
Research Societies 2003;1(2):121--34.

[15] Gomes T, Martins L, Craveirinha J. An algorithm for calculating the k
shortest paths with a maximum number of arcs. Investigação Operacional
2001;21(2):235--44.

[16] Ford Jr LR, Fulkerson DR. Network flows. Princeton, NJ: Princeton University
Press; 1962.

[17] Gomes T, Craveirinha J, Jorge L. An effective algorithm for obtaining minimal cost
pairs of disjoint paths with dual arc costs. Technical Report 5, INESC---Coimbra,
Coimbra, Portugal; 2006. ISSN: 1645-2631.

Please cite this article as: Gomes T, et al. An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs. Computers
and Operations Research (2008), doi: 10.1016/j.cor.2008.04.002

http://www.mat.uc.pt/~marta/Publicacoes/mps2.ps
http://www.mat.uc.pt/~marta/Publicacoes/mps2.ps
http://dx.doi.org/10.1016/j.cor.2008.04.002

	An effective algorithm for obtaining the minimal cost pair of disjoint paths with dual arc costs62626262
	Introduction
	Background and motivation
	Contributions of the paper
	Problem formulation

	Proposed approach
	Main steps of the algorithm
	Detailed description of the algorithm
	Proof of the correctness of the algorithm
	Length constraint
	Pair of node-disjoint paths
	Directed and undirected networks

	Experimental results
	Low density networks
	Denser networks

	Conclusions
	References

