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Abstract

One of the most important aspects in the application of boundary element techniques to wave propagation problems is the accurate
representation of the singular terms at the points of application of the virtual loads. It is current practice to carry out this task by means of
numerical quadrature. This paper presents ananalytical evaluation of the singular integrals for constant, linear and quadratic boundary
elements involving SH waves, the results of which are then used to model inclusions in a two-dimensional acoustic medium illuminated by
dynamic anti-plane line sources. Finally, the BEM results are compared with the known analytical solutions for cylindrical inclusions.
q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Studies on the effects of geologic and topographic irre-
gularities on wave propagation in soil media have been
motivated primarily by the need to better understand the
spatial variation and intensity of seismic motions. Among
the objectives of these studies are the effects that alluvial
basins [1] and obstacles in the path of waves, such as
cavities [2], have on seismic motions in their vicinity, and
which are caused by wave diffraction, scattering and rever-
berations. The tools used to analyse these problems range
from the semi-analytical methods applied by Lee [3] to
study wave diffraction near geological irregularities, to
purely numerical methods, such as finite elements combined
with transmitting boundaries. The latter have been mostly
restricted to situations where the response is required only in
localised irregular domains, such as for soil structure inter-
action problems [4]. Discrete methods have also been used
to model large alluvial basins, but for the most part only in
plane-strain. Finally, hybrid methods that involve a combi-
nation of finite elements to model the inhomogeneous inter-
ior domain, and semi-analytical representations for the
exterior domain, have been used by Sanchez-Sesma [5].

Possibly the best means of analysing wave propagation
problems in unbounded media is the boundary element
method (BEM), because it automatically satisfies the far

field radiation conditions and allows a compact description
of the medium in terms of boundary elements at the material
discontinuities only. As is well known, the BEM is based on
the use of appropriate fundamental solutions, or Green’s
functions, relating the field variables (stresses, displace-
ments) in a homogeneous medium to point sources placed
somewhere in the medium. The fundamental solution most
often used is that of an infinite homogeneous space, because
it is known in closed-form and has a relatively simple struc-
ture. However, BEMs based on the Green’s functions for a
half-space have also been used to solve several problems
involving diffraction of waves by surface irregularities of
arbitrary shape [6,7], as well as for cavities and buried
structures [8].

A very important aspect in the application of boundary
element techniques to wave propagation problems is the
accurate representation of the singular terms at the points
of application of the virtual loads [9–12]. To improve on the
current state of practice, which relies exclusively on numer-
ical integration, this paper first presents an analytical
evaluation of the singular integrals for constant, linear and
quadratic boundary elements formulated in the frequency
domain. These analytical expressions are then validated
by means of a Gauss–Legendre numerical quadrature, and
thereafter, the formulae are applied to an example of wave
scattering by cylindricalinclusionsin a homogeneous, two-
dimensional acoustic medium when illuminated by dynamic
anti-plane line sources. Finally, the BEM results are
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compared with the analytical solutions for these problems
presented by Pao and Mow [13].

2. Boundary element formulation

The fundamental equations underlying the application of
boundary elements to wave propagation are certainly well
known (for example, see Manolis [14]). Thus, it suffices to
state here that application of the method requires integration
of the Green’s functions, and of their derivatives, for all
elements used to model the problem at hand:

Hkl
33 �

Z
Cl

fH33�xk; xl ; nl� dCl �1�

Gkl
33 �

Z
Cl

fG33�xk; xl� dCl �2�

in which G33�xk; xl� andH33�xk; xl ;nl� are, respectively, the
components of the Green’s tensor for displacement and trac-
tion components atxk due to a concentrated load atxl ; nl is
the unit outward normal for thelth boundary segmentCl ,
andf is an interpolation function. In the case of a medium
under plane-strain conditions subjected to anti-plane line

loads, the required Green’s function is:

G33�x; x0� � i=�4m� H0�kbr� �3�
In this equationm is the Lame´ constant;kb � v=b is the
wave-number;v is the circular frequency;b � �����

m=r
p

is the
velocity of shear waves;r is the mass density;r � ux 2 x0u
is the source–receiver distance;Hn� � � H�2�n is the Hankel
function of the second kind of ordern, and i� ����

21
p

.
The variations of displacement and stresses within an

element are controlled by the interpolation function used
to map the nodal values for these quantities. In addition,
the different slopes at the junction of two contiguous
elements also play a role in the computation of the stress
resultants. In this work, the writers use discontinuous
elements to allow nodal points in which only the stresses
relative to the element itself are considered. To enhance the
accuracy of the results, the nodal points are chosen to coin-
cide with those in a Gauss–Legendre numerical integration
(Fig. 1). This issue is discussed further in a companion paper
[15].

3. Element integration

When the element to be integrated in Eqs. (1) and (2) is
not the loaded element, the integrands are non-singular and
the integration is best carried out using Gaussian quadrature.
For the loaded element, however, the integrands exhibit a
singularity, but it is then possible to carry out the integration
in closed form, as will be shown.

To demonstrate this assertion, consider the singular
segment of lengthL shown in Fig. 2, which represents,
constant, linear and quadratic functions. Since in this case
r is perpendicular to the normal�i:e: rnl � 0�; the singular
term Hll

33 disappears. However, the integration of the
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Green’s functionGll
33 for constant, linear and quadratic

elements involves evaluation of the three expressions

ZL

0
H0�kbr� dr;

ZL

0
rH0�kbr� dr;

ZL

0
r2H0�kbr� dr

�4�
Integration of

RL
0 H0�kbr� dr.

This integral follows directly from the expressions in
Abramowitz [16] (pp. 480, eq. 11.1.7),

ZL

0
H0�kbr� dr �

ZL

0
�J0�kbr�2 i Y0�kbr�� dr

� L�I1�b�2 i I2�b�� �5�

in which b� kbL is the dimensionless wave-number, and

I1�b� � J0�b�1
p

2
�S0�b�J1�b�2 S1�b�J0�b��

I2�b� � Y0�b�1
p

2
�S0�b�Y1�b�2 S1�b�Y0�b��

HereS0( ) andS1( ) are Struve functions whileJn( ) andYn( )
arenth order Bessel functions of the first and second kind,
respectively.

Integration of
RL

0 rH0�kbr� dr.
This integral uses once more the expressions in Abramo-

witz [16] (pp. 484, eq. 11.3.20 and eq. 11.3.24),

ZL

0
rH0�kbr� dr �

ZL

0
r�J0�kbr�2 i Y0�kbr�� dr

� I3�b�2 i I4�b� �6�

with b� kbL; and

I3�b� � L
kb

J1�b�
" #

I4�b� � L
kb

Y1�b�1
2

pk2
b

" #

Integration of
RL

0 r2H0�kbr� dr .
Making use of the recurrence relation for the Bessel func-

tions

r2

kb

dH1�kbr�
dr

� 2
r
kb

H1�kbr�1 r2H0�kbr� �7�

one obtains
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Integrating by parts, these integrals may be written as

1
kb
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0
rH1�kbr� dr

� Lim
1!0

2
r

k2
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1

1
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Hence,ZL
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It may be observed that Eq. (11) contains two indeterminate
expressions, namely lim1!0 brY0�kbr�c1 � 0 × ∞ and
lim1!0 br2Y1�kbr�c1 � 0 × ∞. However, by considering the
ascending series for the Bessel functionsY0, Y1 (Abramo-
witz [16], pp. 480, eq. 9.1.11 and eq. 9.1.13), it may be
concluded that

lim
1!0
�rY0�kbr��1 ù lim

1!0

2
p

r ln
kbr

2

� �
1 gr

� �
1
� 0 �12�

and

lim
1!0
�r2Y1�kbr��1 ù lim

1!0
2

r2

p
G�1� 1

2
kbr

� �21
" #

1

� 0 �13�

whereg is Euler’s constant. This leads in turn toZL

0
r2H0�kbr� dr � 2

1
k2
b

ZL

0
H0�kbr� dr

1
1
kb

L
kb

H0�b�1 L2H1�b�
 !

�14�

with b� kbL: Notice that J0�0� � 1; J1�0� � 0; and
lim1!0 �x ln x�1 � 0. Also, the first term in Eq. (14) is
provided by Eq. (5).

4. Analytical versus numerical integration

The analytical expressions described previously are next
implemented and compared with the results obtained by
means of the Gauss–Legendre quadrature. The integralsRL

0 H0�kbr� dr;
RL

0 rH0�kbr� dr;
RL

0 r2H0�kbr� dr are
computed along a straight line, using two, four and six inte-
gration points. Computations are performed in the
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frequency range [10, 200 Hz] at increments of 10 Hz. Also,
the shear wave velocity and the element lengthL are
assumed to be 100 m/s and 1.0 m, respectively.

Figs. 3(a), 4(a) and 5(a) show the results for the three
integrals obtained with the analytical and numerical integra-
tion methods in terms of the excitation frequency. However,
Figs. 3(b) and (c), 4(b) and (c), 5(b) and (c) illustrate the
relative errors introduced by numerical quadrature. As
expected, the accuracy of the numerical integration
improves with the number of Gaussian points, and is
virtually exact at the highest resolution of six points. By
contrast, the errors in the numerical quadrature are substan-
tial when using only two integration points.

These findings suggest that a purely numerical solution
with an adequate number of integration points can be satis-
factory from a computational point of view, even if the
analytical expressions involve less uncertainty. Still, the
exact solution could be useful as a benchmark, allowing

the testing of programs for errors, even when opting for a
purely numerical model.

5. Example of application

The method and expressions described above are next
applied to the problem of a cylindrical inclusion buried in
an infinite homogeneous space. Two inclusions are consid-
ered, namely a cavity and an elastic cylinder. Both are illu-
minated by shear (SH) waves elicited by an anti-plane
source that is parallel to the axis of the cylinder. The cylin-
drical incident field is given byuinc

3 � �H0kb1r�, where
kb1 � v=b1 is the wave-number;v is the circular frequency;
b1 is the velocity of shear waves in the medium surrounding
the inclusion, andr is the source–receiver distance. The recei-
ver registering the response is placed as shown in Fig. 6.

In a first test, the elastic inclusion is assigned the same
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material properties as the surrounding medium; as expected,
this test reproduces the free field conditions. The program is
subsequently tested with the material properties shown in
Fig. 6. In these analyses, 64 frequencies in the range
from 1 to 64 Hz are considered. These frequencies
imply SH waves whose wavelengths range between 10
and 0.156 times the diameter of the cylinder. The response
at the receiver station is evaluated both in closed form [13]
and by using the BEM program implementing the analytical
integration of the singular terms. In the latter case, the
computation is carried out using constant, linear and quad-
ratic elements. To illustrate the effect of nodal spacing on
the response functions, the number of elements is varied
between 5 and 50.

Figs. 7–10 give the results for a cavity. Figs. 7 and 8 show
the response (real part, imaginary part and modulus) at the

receiver station for a cavity modelled, respectively, with 25
and 50 elements. As expected, the BEM accuracy is much
greater at low frequencies than at high frequencies. The
reason is, of course, that high frequencies involve short
wavelengths, so shorter boundary elements are needed to
appropriately model the response. In the present example,
the ratio between the wavelength of the incident waves to
the length of boundary elements ranges from 15.92 to
159.23 for a frequency of 1 Hz and from 0.249 to 2.49 for
a frequency of 64 Hz. It can further be observed that linear
elements outperform constant elements with results closer
to the analytical solution. Quadratic elements, in turn, are
better than linear elements, because they are better able to
model variations in displacements and/or tractions.

Figs. 9 and 10 show the absolute value of the scattered
field when the cavity is modelled with 5 to 50 elements, for a
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source whose frequency varies between 32 (Fig. 9) and
64 Hz (Fig. 10). This range corresponds to incident waves
with wavelengths of 6.25 and 3.125, respectively. Once
more, the solution is seen to improve with the number of

boundary elements and with changes from constant to linear
to quadratic elements.

Figs. 11–14 illustrate the response obtained for the case
of an elastic inclusion similar in size and shape to the cavity.
While the response again improves with the number of
nodes and the refinement in the boundary elements used, a
higher number of nodes per element is not necessarily bene-
ficial, because of the increased computational expense that
these more accurate models entail. Indeed, a balance can be
struck between the number and type of elements used. The
more precise and expensive quadratic elements could be
advantageous when calculating responses at points of
rapidly changing states of stress and deformation. These
can be expected to occur in the neighbourhood of hetero-
geneities or sharp discontinuities in geometry and material
properties in the medium, such as corners of the elastic
inclusion.
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6. Conclusions

This paper presented exact expressions for the singular
integrals involved in the application of the BEM method to
problems of wave diffraction in anti-plane shear wave
motion (or acoustic waves in a fluid medium). These expres-
sions were then compared with those obtained by the purely
numerical method in current use, which allowed an assess-
ment of the accuracy of the latter for a broad range of
frequencies. The method was next applied to ideal examples

of wave scattering by elastic inclusions modelled with
constant, linear and quadratic elements, which permitted
evaluating the accuracy of the BEM formulation against
the theoretical solutions available for these problems.

It was first observed that an evaluation of the singular
integrals by numerical quadrature requires at least four
Gauss–Legendre stations for acceptable accuracy. From
the examples presented, it was then seen that the response
improved and approached the exact solution as the expan-
sion order and the number of boundary elements used was
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Fig. 7. Anti-plane field scattered by a cylindrical cavity modelled with 25 boundary elements.
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Fig. 10. Anti-plane field scattered by a cylindrical cavity in the presence of an harmonic excitation source of 64 Hz.

-0.4

-0.2

0

0.2

0.4

16 32 48 641

A
m

pl
itu

de

a ) Real part

Hz

-0.4

-0.2

0

0.2

0.4

16 32 48 641

A
m

pl
itu

de

b ) Imaginary part

Hz

0

0.1

0.2

0.3

0.4

16 32 48 641

A
m

pl
itu

de

c ) Modulus

Hz

(

(

(

Fig. 11. Anti-plane field scattered by a cylindrical elastic inclusion modelled with 25 boundary elements.



A.J.B. Tadeu et al. / Engineering Analysis with Boundary Elements 23 (1999) 671–681680

-0.4

-0.2

0

0.2

0.4

16 32 48 641

A
m

pl
itu

de

a ) Real part

Hz

-0.4

-0.2

0

0.2

0.4

16 32 48 641

A
m

pl
itu

de

b ) Imaginary part

Hz

0

0.1

0.2

0.3

0.4

16 32 48 641

A
m

pl
itu

de

c ) Modulus

Hz

(

(

(

Fig. 12. Anti-plane field scattered by a cylindrical elastic inclusion modelled with 50 boundary elements.

0

0.1

0.2

0.3

0.4

5 15 25 35 45 50

A
m

p
lit

u
d

e

Modulus

Nº of elements

Fig. 13. Anti-plane field scattered by a cylindrical elastic inclusion in presence of a harmonic excitation source of 32 Hz.



increased. This expected finding provided confirmation that
the integrals presented herein are both accurate and valid.
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