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Abstract

Part I of these two related papers considered theanalyticalevaluation of singular integrals for anti-plane boundary elements, the results of
which were then applied to the evaluation of scattering problems involving SH waves. This second part provides an extension of these results
to the more complicated case of in-plane boundary elements, and presents their application to scattering problems involving SV-P waves.
First, the singular integrals for constant, linear and quadratic boundary elements are evaluated a in closed form. Thereafter, the formulation is
used to model cylindrical inclusions in a two-dimensional elastic medium illuminated by dynamic in-plane (plane-strain) line sources. The
boundary element method (BEM) results are then compared with the known analytical solutions for these problems.q 1999 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Part I of these two related papers [1] considered the analy-
tical evaluation of singular integrals for anti-plane boundary
elements and their application to scattering problems with
SH waves. This second part extends those results to the
more complicated case of in-plane (plane strain) boundary
elements, and applies them to scattering problems involving
SV-P waves. First, the singular integrals for constant, linear
and quadratic boundary elements are evaluated analytically.
These exact integrals are then compared with those obtained
with Gaussian quadrature, which both demonstrates the
validity of the analytical expressions presented and also
allows us to assess the accuracy of the numerical method.
Thereafter, the formulation is used to model cylindrical
inclusions in a two-dimensional elastic medium insonified
(or illuminated) by dynamic in-plane (i.e. plane-strain) line
sources. Finally, the boundary element method (BEM)
results are compared with the known closed-form solutions
for these scattering problems.

2. Boundary element formulation

The boundary element formulation for in-plane wave

motion involves the integrals [2–4]

Hkl
ij �

Z
Cl

fHij �xk; xl ;nl� dCl �i; j � 1;2� �1�

Gkl
ij �

Z
Cl

fGij �xk; xl� dCl �i; j � 1;2� �2�

in which Gij �xk; xl� and Hij �xk; xl ;nl� are, respectively, the
components of the Green’s tensor for displacement and trac-
tion components at the observation pointxk in direction i
caused by a concentrated load acting at the source pointxl in
direction j. Also, nl is the unit outward normal for thelth
boundary segmentCl, andf contains the interpolation func-
tions. The requisite Green’s function for this problem is [5]

Gij �x; x0� � i=�4m�{ 2 dij H0�kbr�1 dij =�kbr�bH1�kbr�
2 jH1�kar�c} 2 i=�4m�

� 2r
2xi

2r
2xj

bH2�kbr�2 j2H2�kar�c
( )

�i; j � 1;2�:

�3�

In this equationa � ���������������l 1 2m�=rp
and b � �����

m=r
p

are the
velocities of dilatational and shear waves, respectively,l
andm are the Lame´ constants,ka � v=a andkb � v=b are
the wave-numbers,v the circular frequency;r the mass
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density,r � ux 2 x0u the source–receiver distance,Hn� � �
H�2�n � � the Hankel function of the second kind of ordern, d ij

the Kronecker delta, andi � ����
21
p

(not to be confused with
the sub-indexi indicating direction). The corresponding
expressions for the tractionsHij, which may be obtained
from Gij by taking partial derivatives, are omitted here for
the sake of brevity.

3. Element integration

As in the anti-plane formulation, discontinuous elements
are used here to allow discontinuity of stresses between
contiguous elements. The interpolation functions used are
depicted in Fig. 1, which shows the elements’ nodes coin-
ciding with the sampling points in the Gauss–Legendre
numerical integration.

When the element to be integrated is not the loaded
element in Eqs. (1) and (2), the integrands are non-singular
and the integration is best carried out using the standard
Gaussian quadrature. For the loaded element, however,
the integrands exhibit a singularity, but it is then possible
to carry out the integration in a closed form, as described

below. To demonstrate this assertion, consider thelth singu-
lar segment of lengthL shown in Fig. 2, together with
constant, linear and quadratic interpolation functionsf .

The integration of the Green’s functions can be expressed
in terms of the following integrals:

Z
Gij dr ;

Z
rGij dr;

Z
r2Gij dr;

Z
Hij dr;

Z
rHij dr;

Z
r2Hij dr �i; j � 1;2�:

�4�

TheHij are obtained from the derivatives of theGij, namely,

2Gij

2xk
� i

4m

"(
dij �C1 1 C2 1 C3�2

 
2r
2xi

! 
2r
2xj

!
C4

1 2

 
2r
2xi

! 
2r
2xj

!
C5

)
2r
2xk

2

 
dik

2r
2xj

1 djk
2r
2xi

!
C5

#
�i; j; k � 1; 2�

�5�

where

C1 � C1�r� � kbH1�kbr�

C2 � C2�r� � 21=�kbr2�{ H1�kbr�2 jH1�kar�}

C3 � C3�r� � 1=kbr{ 2 H1�kbr=r 1 kbH0�kbr�
2 j�2H1�kar�=r 1 kaH0�kar��}
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Fig. 1. Interpolation functions and position of the Gauss–Legendre nodes.
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Fig. 2. The local co-ordinate system for segment integration.



C4 � C4�r� � { 2 2=rH2�kbr�1 kbH1�kbr�

2 j2�22=rH2�kar�1 kaH1�kar��}

C5 � C5�r� � { H2�kbr�=r 2 j2H2�kar�=r} :
The partial derivatives2r=2xi ; 2r =2xj , in Eq. (5) represent

the slope of the line connecting the nodal point with the
integration point. As for the loaded element this equals
the slope of the segment, which is constant, it follows that
these derivatives do not affect the integration of the singular
terms. To evaluate the various integrals, it is necessary to
make use of the recurrence relations for the Bessel func-
tions, the ascending series for these functions and the inte-
grals listed in Appendix A [6]. Still, a considerable algebra
is necessary, as discussed later.

3.1. Integration of
RL

0 Gij dr

In view of Eq. (3), this integral may be written as

Gij �
ZL

0
Gij �x; xr � dr � i

4m
dij �2B1 1 B2�2

2r
2xi

2r
2xj

B3

" #

i; j � 1;2

�6�
with

B1 �
ZL

0
H0�kr

b� dr �6a�

B2 �
ZL

0

1
kbr

{ H1�kbr�2 jH1�kar� dr �6b�

B3 �
ZL

0
{ H2�kbr�2 j2H2�kar� dr : �6c�

The first integral, namelyB1, was obtained in Part 1,

B1 � B1�b� �
ZL

0
H0�kbr� dr �

ZL

0
�J0�kbr�2 iY0�kbr�� dr

� L�I1�b�2 iI2�b��
�7�

with b� kbL and

I1�b� � J0�b�1
p

2
�S0�b�J1�b�2 S1�b�J0�b��

I2�b� � Y0�b�1
p

2
�S0�b�Y1�b�2 S1�b�Y0�b��

whereS0( ) andS1( ) are Struve functions andJn( ) andYn( )
arenth order Bessel functions of the first and second kind,
respectively.

To evaluateB2 andB3, it is necessary to make use of the
recurrence relations for the Bessel functions, Eq. (A1), and
to dispose of an apparent singularity at the lower limit of the
integrals. This may be accomplished by considering the

ascending series for the Bessel functions, Eq. (A6), and
observing that the singular terms vanish exactly on account
of the fact thatj � b=a � kb=ka: For example,

B2 � Lim
1!0

ZL

1

("
H0�kbr�2

1
kb

dH1�kbr�
dr

#

2j2

"
H0�kar�2

1
ka

dH1�kar�
dr

#)
dr

�
ZL

0
�H0�kar�2 j2H0�kar�� dr

2
1
kb

Lim
1!0

ZL

1

"
dH1�kbr�

dr
2 j

dH1�kar�
dr

#
dr

� B1�kbL�2 j2B1�kaL�2
1
kb

Lim
1!0
�H1�kbr�2 jH1�kar��L1

�8�

B2 � B1�b�2 j2B1�a�2
1
kb
�H1�b�2 jH1�a�� �9�

with a� kaL. By similar manipulations with the second
recurrence relation for the Bessel function, Eq. (A2), we
obtain

B3 � B2 2
1
kb
�H1�b�2 jH1�a�� �10�

3.2. Integration of
RL

0 rGij dr

In view of Eq. (3), this integral may be written asZL

0
rGij dr � i

4m
dij �2B1L�b�1 B2L�2

2r
2xi

2r
2xj

B3L

" #

i; j � 1;2

�11�

with

B1L�b� �
ZL

0
rH0�kbr� dr

B2L �
ZL

0

1
kb

{ H1�kbr�2 jH1�kar�} dr

B3L �
ZL

0
r{ H2�kbr�2 j2H2�kar�} dr :

The first of these integrals was already obtained in Part 1 [1],

B1L�b� �
ZL

0
rH0�kbr� dr

� L
kb

J1�b�
" #

2 i
L
kb

Y1�b�1
2

pk2
b

" #
:

�12�

To evaluateB2L, it is again necessary to dispose of the
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apparent singularity at the lower limit of the integrals. This
can be accomplished by considering the ascending series for
the Bessel function in Eq. (A8), and verifying that the terms
attributable to the singularity vanish exactly becausej �
b=a � ka=kb: For example,

B2L �
ZL

0

1
kb

{ H1�kbr�2 jH1�kar�} dr

� 1
kb

" 
1
kb
�1 2 J0�b��2

1
ka

j�1 2 J0�a��
!

2i Lim
1!0

"
2

Y0�kbr�
kb

1 j
Y0�kar�

ka

#L

1

#

� 1
k2
b

"
{ 2 J0�b�1 J0�a�} 2 i

(
2 Y0�b�1 Y0�a�

2
2
p

lnj

)#
: �13�

By similar manipulations, and using the recurrence relation
for the Hankel function, Eq. (A3), one obtains

B3L �
ZL

0
{ rH2�kbr�2 j2rH2�kar�} dr

� 2B2L 2 B1L�b�1 j2B1L�a� �14�

with

B1L�a� � L
ka

J1�a�
� �

2 i
L
ka

Y1�a�1
2

pk2
a

� �
:

3.3. Integration of
RL

0 r2Gij dr

In view of Eq. (3), this integral is

ZL

0
r2Gij dr � i

4m
dij C1Q 2

2r
2xi

2r
2xj
�C2Q�b�2 j2C2Q�a��

" #

i; j � 1;2

�15�
with

C1Q � 2
ZL

0
r2H0�kbr� dr 1

ZL

0

r
kb

{ H1�kbr�2 jH1�kar� dr

C2Q�b� �
ZL

0
r2H2�kbr� dr

C2Q�a� �
ZL

0
r2H2�kar� dr :

The evaluation ofC2Q�a� andC2Q�b� involves the use of
the recurrence relation for the Hankel function, Eq. (A2),
and an integration by parts,ZL

0
r2H2�kr� dr � 1

k

ZL

0
rH1�kr� dr 2

1
k

ZL

0
r2 dH1�kr�

dr
dr

� 3
k

Lim
1!0

2
r
k

H0�kr�
� �L

1
1

1
k

ZL

0
H0�kr� dr

� �

2 Lim
1!0

r2

k
H1�kr�

" #L

1

:

�16�
To again dispose of the apparent singularity at the lower
limit of the integrals, it suffices to consider the ascending
series for the Bessel functions, Eqs. (A5) and (A8), and
make use of the known limit for the expression
Lim1!0 ��kr� ln�kr��1 � 0. The result isZL

0
r2H2�kr� dr � 2

3L

k2 H0�kL�1
3
k2

ZL

0
H0�kr� dr

2
L2

k
H1�kL�: �17�

Thus,

C2Q�a� �
ZL

0
r2H2�kar� dr

� 2
3L

k2
a

H0�a�1
3
k2
a

B1�a�2
L2

ka
H1�a�

�18�

C2Q�b� �
ZL

0
r2H2�kbr� dr

� 2
3L

k2
b

H0�b�1
3
k2
b

B1�b�2
L2

kb
H1�b�:

The evaluation ofC1Q makes use of the recurrence rela-
tion for the Hankel function, Eq. (A3), to yield

C1Q �
ZL

0
r2H2�kbr� dr 2

1
kb

ZL

0
rH1�kbr� dr

2
j

kb

ZL

0
rH1�kar� dr : �19�

These integrals may be calculated as in Eq. (16),

C1Q � C2Q�b�1
L

k2
b

�H0�b�1 H0�a��2
1
k2
b

�B1�b�1 B1�a��:

�20�
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3.4. Integration of
RL

0
2Gij

2xk
dr

First, it must be observed that in this case, the tractions
within the loaded element are anti-symmetric with respect
to the loaded nodal point. Thus, the termsHll

ij for i; j � 1; 2;
can be calculated by integrating between the limitseandL1,
(Fig. 3), because the integration along�2e; e� vanishes.
Also, when the nodal point is at the centre of the element,
the global integral vanishes.

Consider next the integration of�2Gij =2xk� for i; j; k �
1;2: In view of Eq. (5), the integration of these terms may
be written asZL

e

2Gij

2xk
dr �

ZL

e
Ax dr 1

ZL

e
Bx d �21�

with

Ax
i

4m
dij �C1 1 C2 1 C3�2

2r
2xi

� �
2r
2xj

 !
C4

" #
2r
2xk

Bx
i

4m
2

2r
2xi

� �
2r
2xj

 !
2r
2xk

2 dik
2r
2xj

1 djk
2r
2xi

 !" #
C5

�i; j; k � 1;2�:
The first integral can easily be integrated by using the recur-
rence relations, Eqs. (A1)–(A4).ZL1

e
Ax dr � i

4m
�C6�L1

e �22�

with

C6 � dij

"
2 H0�kbr�1

1
kbr

{ H1�kbr�2 jH1�kar�}
#

2

 
2r
2xi

! 
2r
2xj

!
{ H2�kbr�2 j2H2�kar�} :

For the integralB4 �
RL1

e C5 dr, it is necessary to use the
recurrence relation for the Hankel functions Eq. (A1), which
yields

B4 � 1
2
�2H0�kbr�2 H2�kbr�1 j2�H0�kar�1 H2�kar���Le:

�23�

3.5. Integration of
RL

0 r
2Gij

2xk
dr

In the light of Eq. 5, this integral may be written asZL

0
r
2Gij

2xk
dr �

ZL

0
rAx dr 1

ZL

0
rBx dr i ; j; k � 1;2: �24�

The first term can be evaluated making use of integration by
partsZL

0
rAx dr � Lim

1!0
�rC6�L1 2

ZL

0
C6 dr : �25�

To determine the lower limit of Lim1!0 �rC6� it is necessary
to once again make use of the ascending series for the Bessel
functions, Eqs. A5, and apply the known value for the limit
Lim1!0 b�kbr� ln�kbr�c1 � 0 and to observe that the terms
attributable to the singularity vanish exactly on the account
of the fact thatj � b=a � ka=kb:

The integration of the term
RL

0 C6 dr is obtained as in Eqs.
(7), (9) and (10),

ZL

0
C6 dr � dij �2B1�b�1 B2�2

2r
2xi

2r
2xj

B3: �26�

As for the second integral,
RL

0 rBx dr, requires the integra-
tion of

RL
0 rC5 dr, which was previously obtained in Eq.

(10),

B3 �
ZL

0
rC5 dr �

ZL

0
�H2�kbr�2 j2H2�kar�� dr

� B2 2
1
kb
�H1�b�2 jH1�a��: �27�

3.6. Integration of
RL

0 r2 2Gij

2xk
dr

In view of Eq. (5), this integral may be expressed as

ZL

0
r2 2Gij

2xk
dr �

ZL

0
r2Ax dr 1

ZL

0
r2Bx dr i ; j; k � 1;2:

�28�
The first term can be integrated by parts,

ZL

0
r2Ax dr � Lim

1!0
�r2C6�L1 2 2

ZL

0
rC6 dr : �29�

The lower limit can yet again be shown to vanish by means
of the ascending series for the Bessel functions, Eqs. (A5)–
(A8), and observing that Lim1!0 b�kbr�2 ln�kbr�c1 � 0: The
terms attributable to the singularity then gets cancelled
becausej � b=a � ka=kb:

The integration of
RL

0 rC6 dr can be obtained as in Eq.
(11),

ZL

0
rC6 dr � i

4m

ZL

0

"
dij

 
2 rH0�kbr�1

r
kbr

{ H1�kbr�

2 jH1�kar�}
!

2

 
2r
2xi

! 
2r
2xj

!
{ rH2�kbr�

2 j2rH2�kar�}
#

dr

� i
4m

"
dij �2B1L�b�1 B2L�2

 
2r
2xi

! 
2r
2xj

!
B3L

#
:

�30�
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The integration of
RL

0 r2Ax dr can thus be written as

ZL

0
r2Ax dr � i

4m

"
L2

 
dij

 
2 H0�b�1

1
b

{ H1�b�2 jH1�a�}
!

2

 
2r
2xi

! 
2r
2xj

!
{ H2�b�2 j2H2�a�}

!

2 2

 
dij �2B1L�b�1 B2L�2

 
2r
2xi

! 
2r
2xj

!
B3L

!#
:

�31�

The second integral
RL

0 r2Bx dr reduces to the integration ofRL
0 r2C5 dr, which can be performed as in Eq. (14),

ZL

0
r2C5 dr �

ZL

0
�rH2�kbr�2 j2rH2�kar�� dr � B3L: �32�

4. Analytical versus numerical integration

The analytical expressions previously derived are
next compared with the results provided by the Gaussian

quadrature using 2, 4 and 6 points. The singular integralsZL

0
Gij dr;

ZL

0
rGij dr;

ZL

0
r2Gij dr ;

ZL

e

2Gij

2xk
dr ;

ZL

0
r
2Gij

2xk
dr;

ZL

0
r2 2Gij

2xk
dr

for �i; j; k � 1;2 e� 0:02 m�;

are computed along a horizontal straight line (x direction) of
length L. Computations are performed in the frequency
range (10–200 Hz) at increments of 10 Hz. The medium
is characterized by a shear wave velocity of 100 m/s and a
compressional wave velocity of 200 m/s. Typical results are
displayed in Figs. 4–6.

Fig. 4 depicts the exact values of the integrals forfGyy

andf�2Gyy�=�2x� �f � 1; r ; r2�; while Figs. 5 and 6 illustrate
the error committed by using the numerical integration. As
can be seen, the agreement between the numerical and
analytical values improves with the number of Gaussian
stations, and the results are virtually exact when using six
points. On the other hand, these comparisons indicate that
two Gaussian points are generally not enough for accurate
results. Extensive additional numerical tests for the other
integrals confirmed the validity of the analytical expressions
presented here.
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5. Example of application

The equations developed previously were implemented in
a computer program and used to carry out simulations for
problems of wave scattering. To check the correctness of the
program, the elastic inclusion was first assigned the same
material properties as the external medium, which indeed
reproduced the free field conditions. Simulations were then
carried out for both cylindrical cavity and elastic inclusion
in the path of a dilatational wave field. In as much as the
results of the cavity and the elastic inclusion are qualita-
tively similar, only the latter will be presented.

Consider an elastic inclusion in an unbounded homoge-
neous medium, as shown in Fig. 7. A compressive source is
applied at pointO, out of which onlyP waves emanate. In
the absence of the inclusion, this source elicits particle
motions along radial directions only, whose amplitude is

uinc
r � 2ka1H1�ka1r�; where ka1 � v=a1 is the wave-

number,v the circular frequency,a1 the velocity of dilata-
tional waves in the medium surrounding the inclusion andr
the source–receiver distance. Upon impinging the inclusion,
the incidentP waves reflect, refract and convert partially
into other types of waves, which are then scattered in all
directions.

The motions shown at the receiver is computed using
constant, linear and quadratic boundary elements. Because
of symmetry, the receiver does not move in the horizontal
direction. The motion is also computed with the exact solu-
tion reported by Pao & Mow [7].

Figs. 8 and 9 display, as a function of frequency, the real
and imaginary parts as well as the amplitude of the vertical
displacement associated with the scattered field. The results
are computed at 64 frequencies in the range 1–64 Hz. This
corresponds to incidentP waves with wavelengths between
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20.0 and 0.3125 times the diameter of the cylinder. The
inclusion is modelled with 25 and 50 boundary elements,
and results are shown in Figs. 8 and 9, respectively. Not
surprisingly, the results improve both with the number and
order of the boundary elements.

Figs. 10 and 11 display the same information as Figs. 8
and 9, but expressed in terms of the number of elements, and
for a pulsating source vibrating at a single frequency,
namely 32 and 64 Hz. These two frequencies correspond
to incident waves with wavelengths of 6.25 and 3.125 m,
respectively. The results confirm yet again that the response
improves with the expansion order and number of elements
used to model the cavity, as expected. More importantly,
these results provide confirmation of the correctness of the
analytical integrals presented here.
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6. Conclusions

This paper presented exact expressions for the singular
integrals involved in the application of the BEM to
problems of wave motion in plane strain (SV-P case).
Boundary elements with constant, linear and quadratic inter-
polation functions were considered and implemented in a
computer program. The correctness of these expressions

was then tested by means of an ideal problem for which
the exact solution is known, namely the problem of waves
diffracted and scattered by a cylindrical inclusion embedded
in homogeneous medium when illuminated by aP line
source.

Comparisons of the analytical integrals presented with
those obtained by numerical quadrature demonstrated on
the one hand the correctness of the theoretical formulae.
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Fig. 8. The in-plane vertical field scattered by a cylindrical elastic inclusion modelled with 25 boundary elements.



On the other hand, it was observed that accurate numerical
integration via Gauss–Legendre quadrature requires at least
four, if not six points for reliably accurate results.

The results obtained with the BEM formulation for the
waves scattered by an elastic inclusion were in excellent
agreement with the known analytical solution for this
problem. As expected, the agreement improved with both
the expansion order and grid refinement (i.e. size of the
elements). From a practical point of view, however, the

improvements in accuracy and efficiency that can be
obtained by using higher order elements is offset by the
increased demands that they place on aCPU time. As is
well known, however, higher order elements may be indis-
pensable in regions where large strain gradients can be
expected.

All of the previous findings provided a firm validation
for the correctness of the singular integrals presented
here.
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Fig. 9. The in-plane vertical field scattered by a cylindrical elastic inclusion modelled with 50 boundary elements.



Appendix A

A.1. Recurrence relations for the Bessel functions
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q denotesJ, Y, H, or any other linear combination of these
functions.

A.2. Ascending series for the Bessel functions
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wherec�n� is the Psi (Digamma) function.
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Fig. 11. The in-plane vertical field scattered by a cylindrical elastic inclusion subjected to a 64 Hz source.
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