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Abstract

Part | of these two related papers consideredatiadytical evaluation of singular integrals for anti-plane boundary elements, the results of
which were then applied to the evaluation of scattering problems involving SH waves. This second part provides an extension of these results
to the more complicated case of in-plane boundary elements, and presents their application to scattering problems involving SV-P waves.
First, the singular integrals for constant, linear and quadratic boundary elements are evaluated a in closed form. Thereafter, the formulation is
used to model cylindrical inclusions in a two-dimensional elastic medium illuminated by dynamic in-plane (plane-strain) line sources. The
boundary element method (BEM) results are then compared with the known analytical solutions for these p@h&38<EIsevier Science
Ltd. All rights reserved.
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1. Introduction motion involves the integrals [2—4]

Part | of these two related papers [1] considered the anaIy—Hi'j(' = J dHj; (X, %, ny) dCy (i,j=1,2 (@B)
tical evaluation of singular integrals for anti-plane boundary G
elements and their application to scattering problems with
SH waves. This second part extends those results to theG}}' :J DG (X, %) dCy (,j=12 2
more complicated case of in-plane (plane strain) boundary G
elements, and applies them to scattering problems involving in which Gjj (% %) and H; (%, %, ny) are, respectively, the
SV-P waves. First, the singular integrals for constant, linear components of the Green'’s tensor for displacement and trac-
and quadratic boundary elements are evaluated analytically tion components at the observation poigtin directioni
These exact integrals are then compared with those obtainectaused by a concentrated load acting at the source yant
with Gaussian quadrature, which both demonstrates thedirectionj. Also, n is the unit outward normal for thkh
validity of the analytical expressions presented and also boundary segmei@;, and¢ contains the interpolation func-
allows us to assess the accuracy of the numerical methodtions. The requisite Green’s function for this problem is [5]
Thereafter, the formulation is used to model cylindrical _
inclusions in a two-dimensional elastic medium insonified Ci % %) = 1/(4){ — &jHo(Kgr) + 8;/(kgr)Ha(kgr)
(or illuminated) by dynamic in-plane (i.e. plane-strain) line .
sources. Finally, the boundary element method (BEM) ~ kDl — 14w

results are compared with the known closed-form solutions { ar or )

—— ——|Ha(kgr) — §2H2(kar)J}

for these scattering problems. o a_xj-

(,j =1,2).

In this equationa = /(A + 2uw)/p and g = \/u/p are the
The boundary element formulation for in-plane wave Velocities of dilatational and shear waves, respectivaly,

andu are the Lameconstantsk, = w/a andk; = /g are
* Corresponding author. the wave-numbersy the circular frequencyp the mass

2. Boundary element formulation

0955-7997/99/$ - see front matt€r 1999 Elsevier Science Ltd. All rights reserved.
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Fig. 1. Interpolation functions and position of the Gauss—Legendre nodes.
density,r = |x — Xo| the source—receiver distande,( ) = below. To demonstrate this assertion, considettthsingu-
H@( ) the Hankel function of the second kind of orae’; lar segment of length. shown in Fig. 2, together with

the Kronecker delta, anid= +/—1 (not to be confused with  constant, linear and quadratic interpolation functigns

the sub-indexi indicating direction). The corresponding The integration of the Green’s functions can be expressed
expressions for the tractiortd;, which may be obtained in terms of the following integrals:

from G; by taking partial derivatives, are omitted here for

the sake of brevity. J G, dr: J Gy dr; J 2G; dr; J H; dr;
(€]
3. Element integration JrH” dr: JFZHU dr (4,j =1,2).

As in the anti-plane formulation, discontinuous elements
are used here to allow discontinuity of stresses between TheH; are obtained from the derivatives of tg, namely,
contiguous elements. The interpolation functions used are
d_epicted_in Fig. 1, Whi(_:h shoyvs the elements’ nodes coin- 9Gj _ i_[{&j (C, +C, + Cy) — (ﬂ)(ﬂ)c
ciding with the sampling points in the Gauss—Legendre dx 4 aX; 9%;
numerical integration.

When the element to be integrated is not the loaded ar ar ar

. . . +2 — || — Jcst—

element in Egs. (1) and (2), the integrands are non-singular ( % )( 0% ) }axk
and the integration is best carried out using the standard
Gaussian quadrature. For the loaded element, however, ar ar -
the integrands exhibit a singularity, but it is then possible _<8ika_xj + ika_xi)c5] (.jk=12
to carry out the integration in a closed form, as described

)
uke where
n n; n;
1 C]_ - Cl(l’) - kBHl(kBr)
L > L > L . Cz = Ca(r) = —U(kgr ) Ha(kgr) — €Ha(k,D)}
= = 2
Y, Xo v Ak e C3 = C3(r) = llkﬁl’{ - Hl(kﬁr/r + kBHo(kBr)

Fig. 2. The local co-ordinate system for segment integration. — &—Hyk,r)/r + kHo(k, )}
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Cy = Ca(r) ={ — 2/rH(Kgr) + kgH1(Kgr) ascending series for the Bessel functions, Eqg. (A6), and
observing that the singular terms vanish exactly on account

of the fact thatt = B/a = kg/k,. For example,

R 1 dHy(kgr)
B, = Lim L{[Ho(kgr) b

2 _ 1 dHi(kar)
& [Ho(kar) k. —a ]} dr

— E(=2rHa(K, 1) + Ky Hi(K,r)}

Cs = Cs(r) = {Ha(Kgn)/r — EHy(K, 1)1}

The partial derivativesr/ax;, ar/ax;, in Eq. (5) represent
the slope of the line connecting the nodal point with the
integration point. As for the loaded element this equals
the slope of the segment, which is constant, it follows that
these derivatives do not affect the integration of the singular
terms. To evaluate the various integrals, it is necessary to
make use of the recurrence relations for the Bessel func-
tions, the ascending series for these functions and the inte- 21 Lim J’L[ dHy(kgr) — dHy(k,r) ] ar
grals listed in Appendix A [6]. Still, a considerable algebra Kg e—0 dr dr
is necessary, as discussed later.

L
- jo [Ho(ke) — Ho(k,r)] dr

&

_ _ _ 1 H _ L
3.1. Integration off  G; dr = Bulksl) — £BukaL) P, [Ha(gn) = eHa(ka];

B
In view of Eq. (3), this integral may be written as ®
- i or_ o B, = By(b) — £By(a) — - [Hy(b) - 9
Gijzjoeij(x,xr)drzm W(By+ By — LB, 2 =BuD) — £8,(@) — ([Hi(0) — &Hy(a)l ©)

with a= k,L. By similar manipulations with the second

=12 recurrence relation for the Bessel function, Eq. (A2), we
(6) obtain
with 1
n B:=B;— k—[Hl(b) — &Hy(a)] (10
J O
- 3.2. Integration off§ rG;; dr
B2 = Jo @{Hl(k/’r) ~ eHa(ker) dr (6) In view of Eq. (3), this integral may be written as
L i ar ar
rL
) rGj dr=—[8—-(—B (b) +By) — — —B ]
By = | {Halksn) — €Halkur) o (60) Jo ! T oo a1y
The first integral, namel§d;, was obtained in Part 1, i,j=12
- - , with
B, = By(b) = Jo Ho(kgr) dr = JO [Jo(Kgr) — iYg(kgr)] dr
L
. B (b)erH(kr)dr
= Llly(b) — il (b)) . o 7
(7)

L1
with b = kgL and Ba = JO k—B{Hl(kBr) — ik} dr

l1(b) = Jo(b) + 7 [So(b)y(b) — Sy(b)Io(b) )
Bo. = [ r{Hatn) — EHatkr} o
12(b) = Yo(b) + Z[SB)Ya(D) ~ Si(D)Yo(D)]

whereS)() andS,( ) are Struve functions angy( ) andY,() L
arenth order Bessel functions of the first and second kind, B (b) = Jo rHo(Kgr) dr

respectively.
To evaluateB, andBs,, it is necessary to make use of the L TL 2
To evaluateB,, it is again necessary to dispose of the

The first of these integrals was already obtained in Part 1 [1],

12

recurrence relations for the Bessel functions, Eq. (Al), and
to dispose of an apparent singularity at the lower limit of the
integrals. This may be accomplished by considering the
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Pl P - L L Con(b :J r2H-(kor) dr
Hﬁ [Hij dr = [Hy dr 2(P) 0 2(kg")

L
Cxo(@) = JO r?Hy(k,r) dr.

Fig. 3. The constant-element integration.

The evaluation ofCyn(a) andCyo(b) involves the use of
apparent singularity at the lower limit of the integrals. This the recurrence relation for the Hankel function, Eq. (A2),
can be accomplished by considering the ascending series fond an integration by parts,
the Bessel function in Eq. (A8), and verifying that the terms - . | 1 (L 1 (L, dHy(kr)
attributable to the singularity vanish exactly becagse Jof Ha(kr) dr = K Jo rHy(kr) dr — —J 4 dr
Bla = K,/Kg. For example,

3 r L1t
L = —|Lim|—-—H kr]+—JHkr dr]
BZL:J ki{Hl(kBr)—ng(kar)}dr k[a—»o[ k ok ¢ klJo ok
0 Kg
r2 -
= k[(ka —Jo(b)) — 1~ &1~ Jo(a))) =0 K :
B B @
(16)
il ~ Yo(kgr) 4 Yo(kyr) - To again dispose of the apparent singularity at the lower
'3 Kg ¢ ke |, limit of the integrals, it suffices to consider the ascending

series for the Bessel functions, Egs. (A5) and (A8), and

1 ) make use of the known limit for the expression
= 7 [{ = J® + J@} — iy = Yo(b) + Yo(a) Lim o [(kr) In(kr)], = 0. The result is
kB
L 3L 3 (t
2
r“Ho(kr) dr = — — Hg(kL) + —J Ho(kr) dr
- EIng}]. (13) Jo 2 k2 © K)o °
v
L2
By similar manipulations, and using the recurrence relation B ?Hl(kL)' an

for the Hankel function, Eq. (A3), one obtains

Thus,
L L
By = J'O {rHa(kgr) — §2rH2(kar)} dr Cxo(@) = J r?Hy(k,r) dr
0
18
= 2By — By (b) + &By (@) 14 3L 3 L2 @9
= - FHo(a) + k_zBl(a) - k_Hl(a)
with . ‘ i
L TL 2 L
By (a) = [k_aJl(a)] - |[ k_aYl(a) + e ] Cxo(b) = JO r2H2(kBr) dr
3L 3 L?
= - k_ngO(b) + k_lziBl(b) - k—BHl(b)-

3.3. Integration off § r’G; dr
The evaluation ofc,o makes use of the recurrence rela-

In view of Eq. (3), this integral is tion for the Hankel function, Eq. (A3), to yield

L i L L
2 i ar ar 2 J 2 1 J
i dr = —1| & - — - Cio= Ho(kgr) dr — — | rHq(kgr) d
,[or G; dr 4M[6|J Cio a% 9% (Cxo(b) — & CzQ(a))] 10 or 2(kgr) dr ks or 1(Kgr) dr
L L
ihj=1,2 _ £ rHy(k,r) dr. (19
(15) ks Jo
with These integrals may be calculated as in Eq. (16),

L 1
) L Cio = Coo(D) + = [Ho(b) + Ho(a)] — = [By(b) + By(a)].
Cio = —J r2Ho(kgr) o +J T Hykgr) — Hy(kar) o 10 = C2o®) T3 [Fo®) + (@] = i [B1B) 1 BC

0 0 kﬁ (20)
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aG
3.4. Integration of[ g g

U dr To determine the lower limit of Liny,g [rCg] it is necessary
o %« o ~ toonce again make use of the ascending series for the Bessel
First, it must be observed that in this case, the tractions fynctions, Egs. A5, and apply the known value for the limit

within the loaded element are anti-symmetric with respect | j, |(kgr) In(kgr)], = 0 and to observe that the terms

to the loaded nodal point. Thus, the terhis for hj=12 attributable to the singularity vanish exactly on the account
can be calculated by integrating between the liragsidL,, of the fact thatt = Bla = ka/kg'
(Fig. 3), because the integration alonge;e] vanishes. The integration of the ternfig Cs dr is obtained as in Egs.

Also, when the nodal point is at the centre of the element, (7) (9) and (10),
the global integral vanishes.

Consider next the integration @bG;/dx,) for i,j,k =
1,2. In view of Eq. (5), the integration of these terms may
be written as

- ar or

As for the second integram'@ rB, dr, requires the integra-

L 3G L L
—Ldr :J A dr +J' B, d (21 tion of j'(;rC;, dr, which was previously obtained in Eq.
e OXg e e (10)
with . . ,
; Bs=| rCsdr = | [Hakgr)— &Ha(k,r)] dr
i ar ar ar 3 J 5 J 2\8s 2Ky
Axm[aij(C1+C2+C3)—(a—xi>(a—xj)c4:|@ 0 0
1
=B — k_[Hl(b) — &Hi(@)]. 27
i B
i ar ar \ or ar ar
- - =1 =& — + & —
B 4u [2( X )( % ) IX¢ (8”‘ % ik 0% )]CS
G
(i,j,k=1,2). 3.6. Integration off 5 rzé—x“ dr
k

The firstintegral can easily be integrated by using the recur-  In view of Eq. (5), this integral may be expressed as
rence relations, Egs. (A1)—(A4).

L, 3G L L o
Ly i L Jr—dr:JrAXdr+Jerdr i,j,k=12
J A dr = 4—[Ct~,]e1 (22 0 0% 0 0
e o (28
with . .
The first term can be integrated by parts,
1
Ce = 5ij[ — Ho(kgr) + T{Hl(kﬁr) - §H1(kar)}] L, T L
il J r°A, dr = Lim [r Csl: — ZJ rCe dr. (29
0 &= 0
ar \ [ or ) L _ .
“|ax a {Hao(kgr) — & Ha(k, 1)} The lower limit can yet again be shown to vanish by means
1

of the ascending series for the Bessel functions, Egs. (A5)—

For the integralB, = [5* Cs df, it is necessary to use the ~(A8), and observing that Lim.q[(ksr)? In(kr)l, = 0. The
recurrence relation for the Hankel functions Eq. (A1), which terms attributable to the singularity then gets cancelled

yields becaus€ = p/a = k,/Kg.
1 The integration offérC6 dr can be obtained as in Eq.
B, = E[_Ho(kgr) — Ha(kgr) + E(Ho(k,r) + Ha(k,M)Is. (112),
(23

0

L i L r
. J rCe dr = m JO I:Bij( - rHo(kﬁr) + _kBr {Hl(kﬁr)
3.5. Integration of[gr —2 dr
Xy

ar or
In the light of Eq. 5, this integral may be written as - ng(kar)}) - (a_xi)(a_xj){rHZ(kﬁr)

L 3G L L o
J r—drzj rAXdr+J rB, dr i,j,k=12 (29 )

0 X 0 0 — ErHa(k,N} | dr
The first term can be evaluated making use of integration by
parts i ar ar

= ml:aij(_BlL(b) +By) — (&)(&)B&]

L L
— i L_
Jo rA, dr = L|mO [rCsl; Jo Ce dr. (25 30)
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Fig. 4. The real part of the analytical integrationd®,, andqﬁ yy(d) =1r,r).

The integration ofjb r?A, dr can thus be written as

i .
j (2A, dr = '[Lz(ai,-( — Ho(®) + S {Hy(b) — eHl<a>})
0 4 b

- ( - )( ){Hz(b) £ Hz(a)})
(5|J( By (b) + By ) — (‘j; )(%)B&)]
i

The second mtegra]l0 r2B, dr reduces to the integration of
f r2Cs dr, which can be performed as in Eq. (14),

(3D

L L
J r’Cg dr = J [rHa(kgr) — ErHa(k )] dr =By, (32)
0 0

4. Analytical versus numerical integration

quadrature using 2, 4 and 6 points. The singular integrals

L L L L 9G:
J G” dr; J rGij dr; I rZGij dr; J U dr;
0 0 0 e 0Xg

JL iy JL 296
00X 0 Xy

for(i,j,k=1,2 e=0.02 m),

are computed along a horizontal straight lir@ifection) of
length L. Computations are performed in the frequency
range (10-200 Hz) at increments of 10 Hz. The medium
is characterized by a shear wave velocity of 100 m/s and a
compressional wave velocity of 200 m/s. Typical results are
displayed in Figs. 4—6.

Fig. 4 depicts the exact values of the integrals ¢@,,
and(9Gyy)/(0X) (p = L,1,1 2), while Figs. 5 and 6 illustrate
the error committed by using the numerical integration. As
can be seen, the agreement between the numerical and
analytical values improves with the number of Gaussian
stations, and the results are virtually exact when using six
points. On the other hand, these comparisons indicate that
two Gaussian points are generally not enough for accurate
results. Extensive additional numerical tests for the other

The analytical expressions previously derived are integrals confirmed the validity of the analytical expressions
next compared with the results provided by the Gaussian presented here.
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Fig. 5. The real part of the analytical integrationd®,,(¢ = 1, r,r?).
5. Example of application u® = —k 4 Hy(kar), where k,; = wley is the wave-

number,o the circular frequencyy, the velocity of dilata-

The equations developed previously were implemented in tional waves in the medium surrounding the inclusion and
a computer program and used to carry out simulations for the source—receiver distance. Upon impinging the inclusion,
problems of wave scattering. To check the correctness of thethe incidentP waves reflect, refract and convert partially
program, the elastic inclusion was first assigned the sameinto other types of waves, which are then scattered in all
material properties as the external medium, which indeed directions.
reproduced the free field conditions. Simulations were then The motions shown at the receiver is computed using
carried out for both cylindrical cavity and elastic inclusion constant, linear and quadratic boundary elements. Because
in the path of a dilatational wave field. In as much as the of symmetry, the receiver does not move in the horizontal
results of the cavity and the elastic inclusion are qualita- direction. The motion is also computed with the exact solu-
tively similar, only the latter will be presented. tion reported by Pao & Mow [7].

Consider an elastic inclusion in an unbounded homoge- Figs. 8 and 9 display, as a function of frequency, the real
neous medium, as shown in Fig. 7. A compressive source isand imaginary parts as well as the amplitude of the vertical
applied at poin©O, out of which onlyP waves emanate. In  displacement associated with the scattered field. The results
the absence of the inclusion, this source elicits particle are computed at 64 frequencies in the range 1-64 Hz. This
motions along radial directions only, whose amplitude is corresponds to incide® waves with wavelengths between
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Fig. 7. The cylindrical inclusion in an unbounded medium.

20.0 and 0.3125 times the diameter of the cylinder. The
inclusion is modelled with 25 and 50 boundary elements,
and results are shown in Figs. 8 and 9, respectively. Not
surprisingly, the results improve both with the number and

Figs. 10 and 11 display the same information as Figs. 8
and 9, but expressed in terms of the number of elements, and
for a pulsating source vibrating at a single frequency,
namely 32 and 64 Hz. These two frequencies correspond
to incident waves with wavelengths of 6.25 and 3.125 m,

respectively. The results confirm yet again that the response
improves with the expansion order and number of elements
used to model the cavity, as expected. More importantly,

these results provide confirmation of the correctness of the
analytical integrals presented here.
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<

Fig. 8. The in-plane vertical field scattered by a cylindrical elastic inclusion modelled with 25 boundary elements.

was then tested by means of an ideal problem for which
the exact solution is known, namely the problem of waves

This paper presented exact expressions for the singulardiffracted and scattered by a cylindrical inclusion embedded
integrals involved in the application of the BEM to in homogeneous medium when illuminated byPaline
problems of wave motion in plane strain (SV-P case). source.

Boundary elements with constant, linear and quadratic inter- Comparisons of the analytical integrals presented with
polation functions were considered and implemented in a those obtained by numerical quadrature demonstrated on
computer program. The correctness of these expressionghe one hand the correctness of the theoretical formulae.

6. Conclusions
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Fig. 9. The in-plane vertical field scattered by a cylindrical elastic inclusion modelled with 50 boundary elements.

On the other hand, it was observed that accurate numericalimprovements in accuracy and efficiency that can be
integration via Gauss—Legendre quadrature requires at leasbbtained by using higher order elements is offset by the
four, if not six points for reliably accurate results. increased demands that they place o@RU time. As is

The results obtained with the BEM formulation for the well known, however, higher order elements may be indis-
waves scattered by an elastic inclusion were in excellent pensable in regions where large strain gradients can be
agreement with the known analytical solution for this expected.
problem. As expected, the agreement improved with both  All of the previous findings provided a firm validation
the expansion order and grid refinement (i.e. size of the for the correctness of the singular integrals presented
elements). From a practical point of view, however, the here.
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Fig. 11. The in-plane vertical field scattered by a cylindrical elastic inclusion subjected to a 64 Hz source.

Appendix A

A.1. Recurrence relations for the Bessel functions

dd,(kr) _ v, (kr)

ar + k3, q1(kr)

dd, (k) _ v,(kn)

ar - kﬂV+ 1(kr)

B, (kr) — 9, _q(kr) = 9,4 (kr)

dﬁ‘y(kr)

r2,51(k0) = (k) — o

¥ denotes], Y, H, or any other linear combination of these

functions.
A.2. Ascending series for the Bessel functions

< (i)

1= (12 2 WM kT D

1N "o -
Yn(z>=—(2i) y oy (32)+ 2 (320

& K
(-42)
Kin+ k!
(A6)

1, n
(A1) (2 ?) Z{¢(k+ 1) + ¢(n + k + 1)}

(A2) wherey(n) is the Psi (Digamma) function.

A3 J =1- 4 — 7
( ) o(Z) ( ’)2 + ( ')2 ( ')2 + (A )

(A4) >
Yo(2) = ;{In(%z) + y}Jo(z)

2
+E i—(l-l— l>(%22)
| ()2 2] (@3 (A8)

(A5) +(1+ 1+ %) @ Tl
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