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Resumo

Este trabalho pretende desenvolver um sistema automático para reconhecimento

de expressões faciais usando dados espaço-temporais 4D. Este tipo de dados tem a

vantagem de ser mais robusto contra variações das condições ambientais, quando

comparado com sistemas que usam dados 2D. Além disso permite o reconhecimento

de expressões faciais a longo de todo o seu domı́nio temporal. Assim a correcta uti-

lização deste tipo de dados é essencial para a trasmisão destes sistemas a aplicações

da vida real.

Os dados são representados através dos histogramas de um descritor de texturas

temporais, chamado Padrões Binários Locais em três planos ortogonais. A criação de

uma nove abordagem para analisar estas representações dos dados por um algoritmo

supervisionado de aprendizagem, chamado Florestas de Hough, permitiram a este

algoritmo a aprendizagem das caracteŕısticas discriminativas entre diferentes classes

de expressões faciais.

Tanto para o reconhecimento da classe como para o estado temporal de uma

expressão facial as arvores que compõem as Florestas de Hough votam num espaço

de Hough com quatro dimensões, obtendo o estado da arte em reconhecimento de

expressões faciais, com 93% de taxa de reconhecimento na base de dados dispońıvel.

Keywords

Imagens APDI, LBP-TOP, Arvores de Decisão, Florestas Aleatórias, Florestas

de Hough, Reconhecimento de Expressões Faciais, Aprendizagem Máquina
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Abstract

This work aims to develop an Automatic Facial Expression Recognition system

using 4D spatio-temporal data. This type data has the advantage of being more re-

silient against environmental variations, when compared with 2D approaches. More-

over it allows for a recognition of the facial expressions through out all of its temporal

domain. Therefore the correct usage of this data is a necessary evolution for this

systems to be used real-life application.

The data is represented through histograms of a temporal texture descriptor, the

Local Binary Patters on Three Orthogonal Planes. The creation of a novel approach

to analyse these representations of the data by a supervised machine learning al-

gorithm, the Hough Forests, allowed for this algorithm to learn the discriminative

features in between classes of Facial Expressions.

For the recognition of both the class and the temporal stage of a Facial Expression

the trees that compose a Hough Forest vote in a 4D dimensional Hough Space,

archiving a state of the art recognition rate of Facial Expressions in the available

database, with 93% recognition rate of facial expressions.

Keywords

APDI Images, LBP-TOP, Decision Trees, Random Forests, Hough Forests, Facial

Expression Recognition, Machine Learning
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Chapter 1

Introduction

The perception of other’s emotions, feelings and interactions has always been an

essential ability for the human species. Facial Expression Recognition plays a major

role in this skill, due to the fact that facial expressions are universal, unconscious

and essential for communication [5]. The first studies on Facial Expressions and

Physiognomy, the assessment of a person’s character or personality from their outer

appearance [6], date back to the 4th century BC. However, the first major advance-

ments in this area only occurred during the 17th and 18th centuries, with the work

of John Bulwer, Le Brun and Darwin. More recently, with the work of the psy-

chologist Paul Ekman in the 1970s [7] and the appearance of cheap computational

power, the interest of the scientific community in facial expression recognition and

its technological applications has grown. In addition, large advancements occurring

in the beginning of the 90’s with the appearance of robust face detection and face

tracking systems proved to be essential for this field. Throughout this period the sci-

entific community has grown to realize that automatic facial expression and emotion

recognition would completely change the way we interact with computers, making

them more warm and receptive to our emotions, or perhaps in a distant future, even

express their own. Other than direct human-technology interaction, fields such as

psychology, artificial intelligence, biometric and security systems could all benefit

from improved recognition techniques.

Despite all the advances of the last two decades, computers are not currently

capable of archiving a high recognition rate of facial expressions when inserted into

a non-laboratory environment. The systems with higher recognition rates use 2D

pictures of posed expressions at its apex. These systems are still highly sensitive

to the recording conditions such as occlusions, illumination and texture variations.

Along with this issue, when using 2D facial intensity images, it is necessary to

maintain a constant pose, usually a frontal one, to archive good recognition rates,

which is not always possible in real life applications. Which means, a single 2D

view is unable to exploit all the information displayed by the face, once out-of-
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1.1. PROPOSED WORK

plane changes of the face are hard to detect. Recently, to address most of these

problems, 3D spatial data is being used, due to its robustness against uncontrolled

environmental conditions.

The analysis of facial expressions in Psychology is essential for the success of an

automatic system [8]. Psychologists concluded that the temporal evolution of facial

actions plays an important role in interpreting sophisticated emotional states and

can help distinguish between posed and spontaneous affective behavior. So in order

to maximize the number of applications where a facial expression recognition system

can be used, the time domain should be encoded and taken into account.

1.1 Proposed Work

With these two issues in mind, both the need of 3D spatial and temporal data,

a four dimensional approach is followed in this work. Instead of using static images,

our method to Facial Expression Recognition uses a 4D video database [9], with

three spatial dimensions, provided by depth images, plus a temporal one. Moreover,

all the faces in the database are normalized, both in terms of the head-pose and face

size. This eliminates most of the problems in 2D spatial approaches, such as pose,

illumination or texture variations.

To encode the temporal information, a dynamic or temporal texture descriptor is

required. Taking into account the success of Local Binary Patterns from Three Or-

thogonal Planes (LBP-TOP) in previous applications [10], such as feature extraction

from the 2D videos, this was the descriptor adopted. This descriptor is very simple

to implement and has one of the lowest computational costs, whilst maintaining a

high discriminative power.

With all the expressions labeled, at this phase a supervised learning method is

required to learn the facial expressions data. Recently, Random Forests methods

have started to become a popular and successful method to solve this problem.

These methods are of simple understanding and implementation, are able to handle

large amounts of redundant data with a reasonable amount of noise and number

of outliers, and have a low computational cost. A Random Forest based method,

Hough Forests, proposed in [11] by Juergen Gall et al. and successfully applied in

Facial Expression Recognition [4], which happens to be our case, was the chosen

method for the supervised learning process. Once the LBP-TOP was never used in

Hough Forests, the adaptation of this descriptor for this learning process was one of

the main contributions of this work.

With the choices explained above we propose a system for facial expression recog-

nition. This system attempts to classify eight facial expressions including classes of

happiness, sadness, surprise, fear, anger, disgust and contempt. Another class with

2



1.2. MAIN CONTRIBUTIONS

the subjects saying the phrase ”Yes, we can!” was used. The temporal location of

these expressions is going to be predicted also, allowing for the classification of the

temporal stage of the expression as onset, apex or offset.

1.2 Main Contributions

The main contributions to the field of facial Expression Recognition by this

work is the development of a Facial Expression Recognition system that uses 4D

spatio-temporal information, due to the lack of systems that take this type of infor-

mation into account. The successful processing of this information is essential for

the evolution of these systems to real-life applications, since its very resilient against

environmental variation.

During this development, another contribution of our work was the adaption

of a powerful low-level histogram texture descriptor, the LBP-TOP to a successful

supervised machined learning method, the Hough Forests. This was possible by

creating a novel approach for the examination of these histogram as the Hough

Forests are created and used. To our knowledge there is no existence of systems

that use this type of descriptor in a Hough Forest.

1.3 Thesis Overview

We start this thesis by giving a general view of the State of the Art of Facial

Expression Recognition systems and all the different parts involved in the process

applied here. In the Chapter 3 all the theoretical principles used in this work are

going to be explained in detail. The Chapter 4 addresses the recognition of facial

expressions and their temporal segments, with a detailed explanation of the methods

used thought out this work. The complete implementation and the algorithms used

are covered in the fifth chapter. In the Chapters 6 and 7 we present the experiments

and analysis that confirm our approach. Finally, the conclusion and future directions

are discussed in the last chapter.

3



Chapter 2

State of The Art

Before the 1970s, the majority of facial expressions would be classified by relying

on human observers to give their personal analysis, although, these observations are

generally not accurate or reliable science. In 1978, Paul Ekman and Wallace V.

Friesen published the Facial Action Coding System (FACS) [7], which was the first

investigation of its kind. In this approach they created a set of Action Units, quanti-

fied individual facial configurations (e.g. AU 1 – raising the inner brow), that when

combined can represent a complete facial expression. Due to the fact that these

Action Units cannot be interpreted individually, they are used in Affect Recognition

Systems for high-level decision-making, which can include the recognition of basic

emotions and various affective or complex psychological states (suicidal depression

or pain) [12]. Besides the spatial configuration of facial expressions, temporal dy-

namics also play an important role in the interpretation of emotions. For instance,

psychologists have found that spontaneous and deliberate expressions differ in tem-

poral dynamics and smoothness [13], meaning that temporal data is essential for

interpreting subtle facial expressions [14].

Ekman and his colleagues also claimed that the interpretation and execution of

facial expressions is ingrained in our brains and is universal, being independent of the

race, sex or age [15]. He developed an affect model for classification with six basic

emotions: happiness, sadness, surprise, fear, anger and disgust with the emotion

contempt later being added to this model [16]. However, researchers believe that

this model is restrictive in its ability to classify the wide range of everyday emotions.

Currently, a non-basic affect model is being considered. Meaning that instead of

using a discrete approach, a continuous and multi-dimensional affect design would

be applied [17]. Even though there still no consensus about the correct method to

model affections, the basic emotion model is more widely accepted and therefore

most commonly used to classify expressions today.

The information that facial expression recognition systems need to encode from

facial expressions and its emotional significance is supplied by the cognitive sciences,

4



2.1. FACIAL REGISTRATION

such as psychology. In addition, Computer Vision and Machine Learning focus on

how to encode and use that information to classify facial expressions. For this

classification and based in Ekman’s theories, two main procedural approaches are

followed: judgment-based approaches, that attempt to directly classify the expres-

sions from a set of emotional categories; and sign-based approaches that describe

facial expression by the detecting facial action units. Usually, in both of these ap-

proaches, three fundamental components can be found: Facial Registration, Facial

Representation and Recognition [8]. During this chapter we will cover the most

popular methods for each one of these states.

2.1 Facial Registration

For the creation a facial expression database, the pixel data of the face needs to

be recorded. This is done in the first stage, the Facial Registration. Here, a system

needs to detect and track the face within its environment. Certain registration

errors due to changes in head pose and illumination are usually removed here [18].

This stage, depending on the output, can be classified as holistic, componential or

configural. For most of the systems holistic registration is used, since the whole

face is covered and more information is available. The componential classification,

when compared with the holistic approach, is more robust against differences in

configuration of the face, because it covers only some individual facial components

(e.g. eyes and mouth) without considering the spatial relations between parts. In

the configural representation fiducial points are detected and mapped to create a

spatial facial representation, making it very robust against configural information

of the face. In all of these three approaches Active Appearance Models can be used

for model fitting, reducing the errors caused by configural information of the face.

Another concern related with the creation of a database is the type of data that

is being recorded. Data can be temporally static or dynamic, using two (2D) or

three spatial dimensions (3D), with or without fiducial facial points, and containing

spontaneous or posed expressions. The majority of the databases use 2D static

images of the expression’s apex or 2D videos. The technological progress made in

the last decade, has allowed for the acquisition of 3D data accurate enough to record

all the necessary details of facial expressions [19]. However, when 3D spatial data

plus a temporal dimension (4D) is considered there is only a few databases with

this type of data, since the 3D spatial data must be acquired at a considerable

framerate. Therefore, systems that attempt Facial Expressions Recognition using

4D spatio-temporal data are not common [20]. Another alternative approach to the

problem of the computational cost of 3D spatial data is to map this data into 2D

representations, with the most popular method being a depth map of the 3D facial

5



2.2. FACIAL REPRESENTATION

meshes, originated from z values at each x and y position [21][22]. As an alternative

2D representation with APDI images were used in some systems [23].

Initially it may seems that the more data available in a database the better.

However, all this information is complex to model and it is specially hard to obtain

spontaneous facial expression, since the presence of sensor technologies necessary in

the place make it impossible [8].

2.2 Facial Representation

The second component of facial expression recognition systems is Facial Repre-

sentation. Here, features are extracted by converting pixel data into higher-level

representations of the same data. The goal is to minimize variations of facial de-

tails within the class while maximizing it between classes and, typically eliminating

registration errors caused by environmental conditions (e.g. illumination and color)

[12] or configural facial information. This component can be classified based on the

information that it encodes. When we encode frame-by-frame, time is not taken

into consideration and, therefore we classify it as spatial. However, in a spatio-

temporal representation, a neighborhood of frames is encoded and therefore time is

considered [8]. Besides temporal classification, other methods use different types of

features that are encoded in space, depending if appearance or geometric features

are used. While appearance representation uses textural information directly from

the pixel data and usually encodes low-level information, a geometric representation

ignores the texture and explicitly describes the location of fiducial facial points as

a shape, encoding more high-level information [18]. Currently, in static approaches,

appearance representation is the most common, because it can pick up the necessary

details of facial expressions. However, identity biases still a large issue for these low

level representations. As spatial and appearance representations, descriptors such as

Local Binary Patters (LBP [24], Local Phase Quantization (LPQ)[25] and Histogram

of Gradients [26] are typically used as Low-Level Histogram representations. Gabor

Filters [27] are also a popular approach for this component.

The majority of systems developed so far have attempted recognition of expres-

sions from static data. However, more recent works employ dynamic data for this

purpose. The features extracted for static and dynamic systems can differ greatly,

due to the temporal nature of data [19]. Considering 2D spatio-temporal represen-

tations, the technique of extracting features from Three Orthogonal Planes (TOP)

has become a very popular approach to adapt spatial representations to the spatio-

temporal domain. Here appearance descriptors are preferred, such as LBP-TOP

[10] and LPQ-TOP [18] in which experiments proved that these provide a better

performance, when compared with their spatial version counterparts [28].

6



2.3. RECOGNITION

Although in most of the 2D approaches appearance representation is preferred,

in 3D feature extraction the most common representations are shape based. Spatial

representations are obtained by detecting fiducial facial points [29] and subsequently

mapping the shape of the face. When spatio-temporal approaches are considered,

these points also need to be tracked in time. Then the spatial changes of the face

are used to learn different deformations [30][31]. The fiducial facial points can also

be used in methods based in the fitting of Morphable Models [32][20], facial models

that attempt to fit in certain emotional models.

In some facial expression recognition systems various descriptors and two or more

facial representations are combined [33], obtaining very good results.

2.3 Recognition

In many approaches the Recognition component starts with a pre-stage called

Dimensionality Reduction. Its main purpose is to increase the discriminant features

between classes and reduce the redundancy of the data. This component can ad-

dress numerous facial expression recognition problems, like illumination variations,

identity bias and registration errors. Dimensionality reduction can be divided in

to Feature Selection and Feature Extraction [34]. The purpose Feature Selection

is to select a relevant subset from the facial representations and optionally weigh

the selected subset [8]. Methods such as AdaBoost and GentleBoost [35] are the

most commonly used. Feature Extraction is responsible to transform a subset into

a lower dimensional space by selecting the regions or features of interest. If training

data is used the transformation is classified as adaptive, or supervised. Linear Dis-

criminant Analysis (LDA) [27] is the most popular technique. In comparison, as a

non-adaptive, or unsupervised approach, Principal Component Analysis (PCA) [36]

is the most used one.

For the Recognition process itself, a statistical model is applied to the trans-

formed features or, in some cases, to the facial representation directly. The goal

is to learn discriminant features that will allow for a high-level classification of the

non-learned cases. Again the same challenges arise, such as illumination variations,

registrations errors, head-pose variations, occlusions and identity bias. The statis-

tical model used needs to address these problems. Usually methods used for 3D

facial expression analysis are the same as in 2D. For instance models such as Hid-

den Markov Models [18], Support Vector Machine (SVM) [37], Random Forests [4],

Sparse Coding [29] or Dynamic Bayesian Networks [38] are used. Boost technics

and Neural Networks can also be used [8]. To improve prediction, a combination of

these statistical models is possible [30]. To our knowledge the recognition of facial

expressions with a Hough Forest approach, a Random Forest based method, was

7



2.3. RECOGNITION

only applied by G. Fanelli et al. in [4]. In their approach 2D facial videos were

used for training and classification, both the facial expressions and their temporal

segments were classified.

8



Chapter 3

Background Theory

The theory behind the methods we used to predict both the temporal moment

and the class of an expression is going to be covered throughout this chapter. Start-

ing with a brief psychological base for a better understanding of emotional classifi-

cations of a Facial Expression Recognition system. Following with an explanation of

the 2D Facial representations available in our database, that are the Depth Map and

the Azimuthal Projection Distance Image (APDI), along with the chosen method

for the Facial Representation, Local Binary Patters on Three Orthogonal Planes

(LBP-TOP), a dynamic or temporal texture descriptor. Finally, the Recognition

stage is implemented with Hough Forests voting in a 4D Hough Accumulator.

3.1 Psychological Basis

As stated in the previous chapters, Paul Ekman is considered to be one of the

main contributors for the psychological theories used in Facial Expression Recogni-

tion. In order to attempt to classify expressions it is necessary to be very familiar

with his work on the basic affect model, in which he grouped the facial expressions

into seven basic emotions: happiness, sadness, surprise, fear, anger, disgust and

contempt [15][16]. These are the facial expression we try to distinguish in our work.

Ekman also classified the temporal evolution of an expression, by using with four

temporal segments: neutral, onset, apex and offset. During the Neutral segment

the subject is expressionless, without noticeable signs of muscular movement. The

Onset segment starts with the beginning of muscular activity and continues while

this activity increases in intensity. Apex is the plateau of a facial expression, where

the intensity usually reaches its maximum. This is the temporal phase that allows

for a better discrimination in between different expressions. Lastly, the offset is the

stage of muscular relaxation, where the facial activity decreases. In our work, we

try to identify these temporal segments of expressions, by predicting its temporal

moment, in addition to classifying the expression.

9



3.2. 2D REPRESENTATIONS OF THE 3D FACIAL GEOMETRY

3.2 2D Representations of the 3D Facial Geome-

try

The most common 2D representation of the 3D facial geometry are Depth Maps.

This is a very simple representation which makes it common for all kinds of Com-

puter Vision applications. In this approach the image contains information that is

linear and directly related with distance of the scene, from a certain viewpoint. This

way, each pixel is originated from the Z coordinate depth value of the scene at each

X and Y position, when the viewpoint referential is taken into account.

As an alternative representation, Azimuthal Projection Distance Image (APDI)

can be used [1] and was chosen for this work. These images used the Azimuthal

Equidistant Projection (AEP), used in Geography and Earth Sciences, that when

adapted to 3D image processing are based on the normal vector to the 3D surface

we want to represent. If we consider this normal, for each pixel, and its projection

onto a Euclidean plane, a pixel is then represented by the absolute length of the

projected line in this plane. This line starts in the center of the projection, the

intersection of the normal vector with the plane, and ends in the projected terminal

point of the vector, the AEP point.

Formally, considering that n(i, j), with 0 ≤ j ≤ H and 0 ≤ i ≤ W , denotes

a normal-map (H the height and W the width of the map), where for the pixel

(i, j) we have n(i, j) = (nx, ny, nz). This way the normal n(i, j) is projected onto a

Euclidean plane and the AEP point n′(i, j) = (x′, y′) in this plane is defined as:

x′ = k cos Θ(i, j) sin
(
φ(i, j)− φ0(i, j)

)
(3.1)

y′ = k(cos Θ0(i, j) sinφ(i, j)− sin Θ0(i, j) cos Θ(i, j) cos
(
φ(i, j)− φ0(i, j)

)
(3.2)

with k = c
sin(c)

, where c is defined as:

cos(c) = sin Θ0(i, j) sin Θ(i, j) + cos Θ0(i, j) cos Θ(i, j) cos
(
φ(i, j)− φ0(i, j)

)
(3.3)

Where Θ = π
2
− arccos(nz) and φ = arctan(ny

nx
) representing the elevation angle

measured from the z-axis, and φ = arctan(ny

nx
), the azimuth angle. Θ0 and φ0 are the

elevation and azimuth angles of the reference normal, the normal to the Euclidean

plane of the projections. In our case it is necessary to be able to directly compare

the projection coordinates of neighbouring points. So at every point the reference
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3.3. LOCAL BINARY PATTERNS

normal is set to (n̂) = (1, 0, 0). This way the distance calculated is always compared

with this normal. Therefore Θ0 = π
2

and φ0 = 0. So 3.1 and 3.2 become:

x′ = k cos
(
Θ(i, j)) sin(φ(i, j)

)
(3.4)

y′ = k cos
(
Θ(i, j)

)
sin
(
φ(i, j)

)
(3.5)

With this the final image is created with the same dimensions as the normal

map and the value for each pixel is given by the length of the project line by the

following formula:

I(i, j) =
√
x′2 + y′2 (3.6)

The length of the projected line and the elevation and azimuth angles can be

seen in the Figure 3.1

Figure 3.1: The projected line (red) and the elevation (Θ) and azimuth angles (φ)[1].

As example one example of each of these representation can be seen in the Figure

3.2.

3.3 Local Binary Patterns

The Local Binary Pattern (LBP) is a powerful operator for texture description.

It was first presented by Ojala et al. in 1996 [39] and since then it has been suc-

cessfully used in a variety of Computer Vision applications, due to the fact that it

is highly discriminative, computationally efficient, and invariant to monotonic gray-

level changes and rotations [2]. The LBP operator is obtained by comparing the

value of a central pixel, a point, with a neighborhood of sampling points and assign-

ing them a binary value. The value 1 is attributed to a neighbor pixel if its value is

11



3.3. LOCAL BINARY PATTERNS

Figure 3.2: Left : An APDI image; Right : A Depth Map image.

higher than the central pixel, and 0 otherwise. The central pixel is then labeled with

a binary number created by starting at one neighbor and then following a circular

direction to the next ones. Formally, for a pixel the LBP operator is defined by the

following equation:

LBP (xc, yc)N,R =
N−1∑
p=0

S
(
I(xp, yp)− I(xc, yc)

)
2p (3.7)

with c referencing a central pixel and p its neighbours; while x and y are the

pixel coordinates. Both N , the number of neighbors, and R, the distance to the

central pixel, are the parameters of this operator. The function I(x, y) returns the

value of the pixel (x, y) and S is defined as follows:

S(x) =

{
1 x ≤ 0

0 x > 0
(3.8)

As seen in Figure 3.3, depending on these parameters a subpixel point can be

obtained, and its sampling is done by bilinear interpolation [2].

Figure 3.3: The sampling, threshold and creation of the central pixel decimal value
[2].

This operator is applied to all the pixels in the image, with exception for those

closer than R pixels to the image border. Finally, one or more histograms with 2N

bins are created to describe a texture.
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3.3. LOCAL BINARY PATTERNS

3.3.1 Three Dimensional LBP

When the available texture has motion in the temporal domain, it is a better

approach to use a dynamic texture descriptor that encodes this information. G.

Zhao and M. Pietik̈ıainen [3] considered all the advantages of the LBP and adapted

it to a video, a volume of images, calling this new dynamic texture descriptor Volume

Local Binary Patterns (VLBP). For this, the LBP operator was applied to three

sequential frames, spaced by L number of frames. In this case the binary number

of the central pixel in the central frame is obtained by comparing its value with not

only the neighboring pixels in each of the three frames, but also the value of the two

central pixels from the first and last frames.

Figure 3.4: VLBP - Top: order of the sampled frames; Bottom: procedure and its
weights [3].

Due to the fact that the weights of each neighbor point increases as we progress

through the frames, as seen in the Figure 3.4, the number of possible patterns will

be 23N+2, which is also the number of histogram bins, with N being the number

of neighbors around a central pixel in one single frame. This rapid increase in the

size of the histogram bins makes it hard to extend the VLBP to a large number of

neighboring points, restraining its applicability [3].

To address this issue Zhao and Pietik̈ıainen created a Local Binary Pattern on

Three Orthogonal Planes to describe the temporal texture. Consider a video with
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3.3. LOCAL BINARY PATTERNS

Figure 3.5: The procedure for the LBP-TOP [3].

three dimensions; where X and Y are the spatial dimensions and T is the temporal

one. They then applied the LBP operator to the XY , XT and Y T planes. In

this case the two parameters of the LBP, R and N , operator are extended for these

three planes and can be different for each one of them. After creating an independent

histogram for each of these planes, they are concatenated into one histogram that

describes a three dimensional texture, as seen in the figure 3.5. Since each one of the

histograms are independent, and therefore the number of bins is going to be 3 ∗ 2N ,

a much smaller number than the VLBP approach, which is a definite advantage.

This can be seen in the Figure 3.6

Figure 3.6: The size of the histogram versus the number of neighbours pixels [3].

Another advantage of this descriptor is that since the motion direction of the

textures is unknown, the neighboring points in a circle on the three orthogonal

planes encode the motion in all planes of the video and not only in the spatial plane

(XY ) [3]. This differs from the VLBP operator.
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3.4. RANDOM FORESTS

3.4 Random Forests

A Random Forest is a supervised ensemble learning method composed of a set

of decision trees. It was first referred by Breiman [40] in 2001 and defined as “a

classifier consisting of a collection of tree structured classifiers {h(x,Θk), k = 1, ...}
where the {Θk} are independent identically distributed random vectors and each tree

casts a unit vote for the most popular class at input x”. The construction starts by

presenting the tree with a set of categorized samples relevant to a classification task

in an effort to create a decision map, with a top-down approach [41]. Usually each

tree is constructed recursively starting from the root, by feeding a sub-set of samples

to the first node. For each node a set of random binary tests, that are applicable to

any sample, is assigned along with a group of samples. Each specific test, depending

on its result, allows the processed samples to move to one of two child nodes, by the

end splitting all the given samples between the two of them. From the set of tests

applied, the one that splits the samples in the best way is selected for that specific

node. The criterion to grade a test is usually application-specific. The process is

repeated creating more subsequent child nodes until the depth (number of previous

nodes) reaches the maximum value or the number of samples in the node is small

enough. Then the terminal node is considered a leaf-node and stores the statistical

information needed in the voting stage, based on the frequency of the samples that

reached that leaf-node. After the construction, when a sample is unknown, all the

trees cast a probabilistic vote, by testing that sample through series of nodes, until

a leaf is reached, as seen in the Figure 3.7.

Figure 3.7: The voting process of a Random Forest, with n the number of trees.
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Decision Trees are able to map a complex input space into a simpler one by

splitting the original problem into smaller ones that are solvable with simple tests.

Consequently it achieves a complex and highly non-linear mapping that selects the

most discriminant information for a specific classification. Usually, for large amounts

of learning data, this eliminates the need of an extra dimensionality reduction step.

[42].

It was proved [40] that assembling several trees together and training them in a

random manner accomplishes a higher generalization and stability when compared

to a single decision tree. This randomization is introduced by training a tree with

a random subset of learning data and a random subset of binary tests, from all

possible, for each non-leaf node. To keep the training of a tree efficient, the tests

should be simple and selected in a way that clusters the training data. This allows

the creation of simple models that make good predictions [42, 11]. As stated in [40]

by Breiman, Random Forests are relatively robust to outliers and noise; give useful

internal estimates of error, strength, correlation and the importance of the variables

and are simple and easily parallelized. These characteristics make them a successful

learning method in various Computer Vision applications [4, 42, 11].

3.5 Hough Forests

In the last years, Random Forests has become a very popular method in Com-

puter Vision for applications such as action recognition, object detection, etc. Usu-

ally they are trained with image patches to be used as discriminative codebooks

for image categorization or semantic segmentation. Therefore there is no geometric

information stored at the leaves, but only class labels. Some other implementations

do take this geometric information into account, but address the problem as pure

classification one, which is insufficient for our case.

To improve the Random Forest approach Juergen Gall et. al [11] proposed a

method based in the generalized Hough Transform. Instead of learning an explicit

codebook of patch appearances, a direct mapping between the appearance of an

image patch and the probabilistic Hough vote of a tree is used. Basically, the outputs

of the trees are votes in a continuous space with several dimensions. Since these

dimensions can be either discrete or continuous, this approach cannot be classified

as a standard supervised learning classification or regression problem since both of

these can be addressed.

When compared with other supervised learning approaches, there are some ad-

vantages to the Hough Forest method. It is able to handle very large and high-

dimensional training datasets without a substantial overfitting and is very efficient

in the testing phase, because the number of possible outcome leaves for the sample
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3.5. HOUGH FORESTS

decreases logarithmically it runs through the tree. Moreover this method can even

tolerate a reasonable amount of errors in the training data, discarding the need of

pixel-accurate segmentation of this data. Lastly, trees are built in effort to decrease

the entropy of the set of image patches as we move towards the leaves by choosing the

right criterion to grade a node’s test. This causes the tree to produce probabilistic

votes with small uncertainty.
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Chapter 4

Recognition of Facial Expressions

and their Temporal Segments

As we have seen, both the 3D spatial and the temporal information of facial

expressions are very important for the application of Automatic Expression Recog-

nition systems in real-world applications. The 3D spatial shape of the face is very

robust again illumination and texture variations, and eliminates the need of a con-

stant head pose, when compared with 2D spatial data. The temporal information

of facial actions plays a key role when interpreting sophisticated or subtle emotional

states and can help distinguish between posed and spontaneous affective behavior.

Also, this temporal domain is less affected by identity bias problems, when compared

with static representations of the face, since the changes in the face are tracked over

time. These static representations are not suitable for real-life situations, because

generally they only represent the apex of the expression, and therefore, do not al-

low for the detection of subtle spontaneous expressions or the classification of an

expression at an early or late stage.

With the problems stated above in mind, we propose a judgment-based approach

for Facial Expression Recognition system, using a 4D spatio-temporal facial expres-

sion registration represented by a temporal texture descritor. The goal of this system

is the classification of facial expressions into one of seven basic emotion labels or a

phrase and their temporal segments (onset, apex or offset stages). These temporal

segments are referenced to the apex moment of a certain expression by its offset

vector. Considering a temporal moment of an expression, its offset vector is given

by that temporal value minus the value of the expression’s apex.

To construct a Facial Expression Recognition system we follow the same proce-

dure that was used in [4] and [43]. Therefore, assuming that a set of training and

testing facial expressions have the respective labels and all the faces cropped and

aligned. Each of these expressions is represented by a video of a 2D representation

of their 3D surface. These videos are sampled in smaller spatio-temporal patches, a
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video block, that is represented in the figure 4.1.

Figure 4.1: Representation of a video block and a set of blocks from various expres-
sions [4].

Each one of these blocks is labeled with the expression and the offset vector

where it came from. If a set of facial expressions is sampled, obtaining a set of

video blocks, a supervised machine learning method, in our case a Hough Forest,

can map the visual appearance of each one of these blocks into its class and offset

vector. Contrary to [4] the visual appearance of a block is represented by the three

LBP-TOP accumulative histograms of that block. To characterize an unknown block

in relation to its class and offset vector a tree can vote in a four dimensional Hough

space. One dimension is for the class of this block and the three others for the offset

vectors, since a video has three dimensions, as seen in the Figure 4.2. Considering

a set of blocks from a specific temporal moment of an unknown facial expression

video, this Hough space is going to accumulate the votes from all blocks given by the

trees of the Hough Forest (4D Hough Accumulator). This way this Hough space is a

probabilistic map for the possible class and offset vector of the unknown expression.

The absolute maximum of this Hough space is considered to be the final prediction

for the expression’s class and offset.

As stated above the visual appearance of a block is represented by the three

accumulative histograms of the texture descriptor LBP-TOP applied to that block.

Since this feature descriptor is different from the ones used in [4], it is necessary

to create a new method to test a block once it arrives at a node of a tree. The

description of this test is done is the next section of this chapter (4.1). In the

second section of this chapter the construction of Hough Forests and the voting

process of the 4D Hough Accumulator are going to be addressed with more detail.
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4.1. TESTING A VIDEO BLOCK

Figure 4.2: The four dimensions of the Hough space: Time, height and width of the
video plus the classes.

4.1 Testing a Video Block

Since the LBP-TOP features presented in a block differ from the approaches that

guide us [4], this descriptor need to be adapted to be used in the Hough Forests. So

a new method for testing a block in a node needed to be implemented. This new test

needed to be simple and with a low computational cost to ensure a computationally

efficient tree construction. Initially, considering that the appearance of a block

is represented by three normalized histograms, one for each plane of the video.

These histograms are then transformed into a function of cumulative probability.

After that, we randomly select one of these histograms, represented by the function

y = Hi(x), with i = {1, 2, 3} . Two random values, tX and tY , that will refer to the

X and Y coordinate of this histogram are generated. These values vary from zero to

one, once the histogram is normalized and if the output of H(tX) is smaller than tY

(H(tX) < tY ) the test’s output is zero, otherwise it is one. Formally, as represented

below.

T (Hi) =

{
1 H(tX) ≥ tY

0 H(tX) < tY
(4.1)

This way three random values are generated for each test: the selected histogram

consisting of a discrete value from one to three, and the two values referring the

histogram’s coordinates, tX and tY , two continuous values from zero to one. An

example of this test can be seen in the Figure 4.3.

The test created allows for the use of a low-level histogram based texture descrip-
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Figure 4.3: An example of the designed test, with the result 1.

tor, the LBP-TOP, in the supervised machine learning method proposed by Juergen

Gall in [11], the Hough Forests, explained in detail through the next section.

4.2 Constructing a Hough Forest

The construction of a Hough Forest follows the common Random Forest struc-

ture. Consider a set of image patches, from the training data, as samples to start

a decision tree represented by {Pi = (Ai, ci, di)}, where ci is the class label of the

patch, di is the offset of a patch from a reference point and Ai is the appearance of

the patch. This appearance is characterized by one or more channels of extracted

features from a patch and is represented by Ai = (I1i, I2i, ...ICi) , where each Iji

is a single feature channel and C is the number of channels. During the training

of a tree, each non-leaf node is assigned with a subset of patches and large pool

of random binary tests, each binary test represent by t(Ai). Depending on the test

that is chosen, this subset is then split into two smaller subsets that are passed to

two new child nodes. The best test should be picked so that both the class label

and the offset vector uncertainties decrease towards the leaves. For this, quantifying

these uncertainties in a set of patches, S, is essential. Considering S, the class label

uncertainty is measured through the entropy of the classes within a set defined by

the formula:

U1(S) = |S| ·
∑
c

Entropy({ci}) (4.2)

To define the offset vector uncertainties, a simple mean of the quadratic error is

enough and is defined by the formula:

U2(S) =
N∑
i=1

(di − dS)2 (4.3)
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where dS is the mean offset vector over all object patches in the set and N the

number of patches. The binary test that minimizes the sum of the two children’s

subset uncertainty is considered the best one. The uncertainty that is minimized

in each non-leaf node is randomly decided, alternating the nodes that decrease the

class-label uncertainty with the nodes that decrease the offset uncertainty. This

allows for the sets that reach the leaves to have low variations in both class labels

and offsets. Each one of these leaves, L, stores pLc , the proportion of patches per

class that reached the leaf, i.e.
∑

c p
L
c = 1, and DL

c = {di}ci=c′ , the offset vectors for

each class c.

4.2.1 The Voting Process

To predict the class and offset vector of an unknown case, patches of video are

densely sampled from the test case. Each one of these patches is passed through

the trees and the leaves that they arrive in are used to cast votes, both for the

class and offset vector. Now, by assuming that the bounding box of the patches

is fixed during both training and testing, the only parameter that defines these

patches is its centroid. So considering a patch, P (y) = (A(y), c, d(y)), centered in

y, with c and d(y) the class and offset vector to predict, respectively. Qc(x) is a

random event denoting the existence of a patch that belongs to the class label c

and has the offset vector x. With this, in the voting process, we are interested in

finding the conditional probability p(Qc(x)|A(y)), the probability of a patch having

a certain class and offset vector knowing its appearance, A(y). This probability can

be decomposed as:

p
(
Qc(x)|A(y)

)
=
∑
l∈C

p
(
Qc(x)|c(y) = l, A(y)

)
× p
(
c(y) = l|A(y)

)
=p
(
Qc(x)|c(y) = c, A(y)

)
× p
(
c(y) = c|A(y)

)
=p
(
d(c, y)|c(y) = c, A(y)

)
× p
(
c(y) = c|A(y)

) (4.4)

Both factors of this equation can be estimated by passing the patch P (y) through

the trees. If a patch ends up in a leaf L of the tree T , the first factor of the equation

can be approximated as the Parzen-Window estimate of DL
c , the offset vector for

a class c. The second factor is approximated by pLc , the probability of the patch

belonging to class c. Therefore, by replacing these factors, the last equation applied
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for a single tree T can be written as:

p
(
Qc(x)|A(y), T

)
=

 1

DL
c

∑
d∈DL

c

G
(
(y − x)− d

) · pLc (4.5)

Where G is a 3D Gaussian Parzen Window function. With this we can apply

this equation to all the trees, calculating the average over all of them. The equation

for the forest, F , is then defined as:

p
(
Qc(x)|A(y), F

)
=

1

|F |
∑
t

p
(
Qc(x)|A(y), Tt

)
(4.6)

This equation defines the probabilistic vote for a single patch. Considering all

the patches, a Hough Accumulator integrates all of their votes and is defined as:

V (x, c) =
∑
y∈S(x)

p
(
Qc(x)|A(y), F

)
(4.7)

The local maximum of the Hough accumulator is calculated to predict the class

and the offset vector of the unknown case, as seen in the figure 4.4. A whiter pixel,

represents a higher probability.

Figure 4.4: Left: Example of a Hough voting space reduced to the two dimen-
sions, expression class and time; Right: A frame from the temporal maximum. The
absolute maximum is marked in red.

To finish, some considerations should be taken into account. First, note that

through out the voting process, the classes are treated independently, while the

offset vectors are smoothed by the Gaussian window. Therefore this supervised

learning method cannot be categorized as either a classification or regression one,

but a combination of both. Secondly, when the learning data has a time dimension,

time-scale invariance can be achieved by using different sampling densities, or rates

of sampling, for the data in that dimension. By using different sample densities

for the same case, different frame rates can be simulated. These samples are then
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learned by the same Hough Forest, archiving time invariance. Although, the Hough

Forests have some tolerance to variances built in which was enough for the facial

expression we used, so we did not consider multiple time scales.
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Chapter 5

Implementation

In this chapter, the details of our Facial Expression Recognition approach are

going to be discussed. Our implementation can be divided into three parts: Data

Reading from the database, Features Extraction using LBP-TOP and Learning and

Classification with Hough Forests.

5.1 Data Reading from the Database

To construct our Facial Expression Recognition system, the format of the data

available in the database needs to be taken into account. The two videos with 50

frames of both Depth Maps and APDI images available allows for a selection of the

best fitting format, which in this work is the APDI video. This type representation

allows for a better discrimination from the dynamic texture descriptor used, the

LBP-TOP, due to the fact that facial textures are more apparent in APDI images,

as seen in the figure 5.1.

For each one of the videos in the database, the face is cropped, aligned (without

a tilted head-pose) and all the surrounding information other than the facial area is

removed, being replaced by white pixels. The feature extractor cannot encode these

pixels, since they are not facial information. Ultimately, a mask for each frame was

made, creating a 2D video mask that identifies the facial area. To create this mask,

the border between the face and the blank pixels is clearly identified due to the

distinct contrast. Each frame was then converted to a binary image using a high

threshold, but one that is lower than the white pixels of the surroundings. Then

the pixels in the face that were higher than this threshold value were filled so that

the mask should only be false (0) when out of the face. An image of a mask from a

frame can be seen in the Figure ??.

The next step of the data reading is the resizing of each frame, from 500x500

pixels to 100x100 pixels, for a lower computational cost, without losing significant

facial information. After reading the video, the apex frame of each expression was set
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Figure 5.1: Left: APDI image; Center: Depth Map image; Right: a frame mask.

manually for each expression. The pixel with the coordinates X = 50 and Y = 50 of

the apex frame is the reference coordinate for the offset vector we want to predict.

5.2 Feature Extraction using LBP-TOP

The Feature Extraction from the APDI videos was achieved using a dynamic

texture descriptor, Local Binary Patterns on Tree Orthogonal Planes of the video.

To use this descriptor the implementation of Zhao and Pietikäinen [35][47] was

adapted to our system. Their implementation was created to output three LBP

histograms from a block of video, one for each plane. In our approach, the video is

not divided in a grid of pre-defined blocks; instead, all the pixels of a video could

be chosen randomly to serve the central pixel of a block. Once the size of these

blocks is fixed, this pixel is enough to reference a block. It is too computationally

expensive and unnecessary to compute the LBP-TOP feature histogram for each

possible block before the creation of the trees. As an alternative, the LBP-TOP

value of each pixel is calculated for the whole video and stored beforehand in an

LBP-TOP video with three channels per pixel, one for each video plane, as seen in

the Figure 5.2. Then, the histograms of the randomly selected blocks for a specific

tree are calculated online, during the creation of this tree. This means that only

the histograms of the blocks used by a tree are calculated. In comparison with

the implementation of Zhao and Pietikäinen the output of our implementation is a

LBP-TOP video, rather than a set of three histograms.

Another issue of Zhao and Pietikäinen’s implementation was that their method

is not ready to receive a 2D video mask identifying the facial area, while ignoring

the white pixels in the surroundings of the face, during the calculation of the LBP’s.

Consequently we modified the technique so that if any of the pixels used in a LBP

operation from any video plane are out of the mask, this operation is ignored and

those pixel channels are set to −1. This way, all the pixels in a block that do not
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belong to the facial area are ignored during the creation of the histograms.

Figure 5.2: A grey-scale representation of the LBP values in the XY, XT and YT
planes of the LBP-TOP video.

5.3 Learning and Classification with Hough Forests

The learning and classification stage is carried out by the Hough Forest method,

and implemented throughout this work based on [32] and [40]. The first step is to

randomly select a percentage of all the cases that are going to be learned by the

trees, while leaving the other cases to be used in the test phase. For a certain tree,

each of the learning cases is randomly sampled to obtain a certain number of blocks.

The LBP-TOP cumulative histogram is then calculated in all the blocks from all

the cases, using the LBP-TOP video. For a better comparison in between blocks,

these histograms are normalized to one. The tree is then initialized, passing all the

sampled blocks to the first node. For this node and each of the subsequent ones, a

set of random tests is generated and the subset of blocks is split accordingly to each

one of these tests. A test is rejected if the split subsets are smaller than a certain

specified number, in order to obtain a good statistical power in each leaf node. The

accepted tests are graded using the method in [40] which allows a test to be weighed

with respect to the entropy of its classes or offset vectors, depending on a random

decision at each node. The test’s grade is the sum of the two grades of the subsets

that were split by that test. For each one of these subsets, the entropy is calculated

by one of the formulas below, depending if the class’ (Eq. 5.1) or the offset vector’s

(Eq. 5.2) entropy is being evaluated.

U1(S) = −|S| ·
∑
c

pc ln(pc) (5.1)
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5.3. LEARNING AND CLASSIFICATION WITH HOUGH FORESTS

U2(S) =
∑
i

‖di − dS‖2 (5.2)

Where S is the set of patches that is being evaluated, dS the mean distance of

the set, c a certain class, pc the proportion of a certain class in the set and i the ith

sample of the set.

The best (or most fit) test is the one with the smaller sum. This test is then

used and the subsets created by it are passed to the child nodes. When none of

the tests in a node can split its set into subsets that are large enough to obtain a

good statistical power, that node is considered a leaf node. In our case, a maximum

depth was not established since better prediction was our aim, despite the slightly

higher computational power required.

Once again, the depth of a node is the number of previous nodes in the tree. Our

algorithm processes the nodes by increasing depth order. Therefore the nodes with

a certain depth are all processed before their child nodes. When none of the nodes

produce children, the tree is over, advancing to the next one. The whole algorithm

can be seen in the Algorithm 1.

The classification is then accomplished with a 4D Hough Accumulator. Here

the cases that were not used to train the trees are classified. For that we start by

dense sampling an unknown case that was chosen for classification. The LBP-TOP

cumulative histogram is calculated for all the sampled blocks. Then, each one of

these blocks, with unknown class, ci, and offset vector, di, is passed through all of

the trees, being split according to the binary tests previously established in the non-

leaf nodes and, depending on the leaf reached, L, a vote per tree is obtained. A vote

is composed of eight groups of offset vectors, one per class of emotion, DL
c = {di}∈c,

and the proportion of each class that reached the leaf, pc. In the voting process, a

single vote is processed by accumulating the votes of each offset vector though the

tree dimensional space of its class dimension. The votes in this three dimensional

space are smoothed by a 3D Gaussian Parzen Window, as seen in the equation

below:

V (x, c) =

 1

DL
c

∑
d∈DL

c

G
(
(y − x)− d

) · pLc (5.3)

Where y is the position of the central pixel of each vote’s block, x and c are the

spatio-temporal and class dimensions of the Hough Space, repectivly, with x ∈ IR3.

The process is repeated for all the votes of all the sampled blocks and the absolute

maximum of the Hough Accumulator is the final prediction for the all four dimension,

one to classify the class and three to the offset vector of the unknown case.
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5.3. LEARNING AND CLASSIFICATION WITH HOUGH FORESTS

Data: LBP-TOP Videos and Expression Labels
Result: Hough Forest

for Tree = 1 to Number Of Trees do
Randomly select the Blocks from the Learning Cases;
Calculate the Blocks’ Histograms;
Initiation of the first node;
for Depth = 1 to Tree’s Maximum Depth do

for Node = 1 to Number of Nodes do
Load the node’s Blocks;
Randomly create all of the node’s tests;
Do all the tests for all of Blocks;
Divide the set of Blocks depending on the Tests;
Validate and grade all the Tests;
if No valid tests then

The node is a leaf-node;
Save the proportion of blocks per class;
Save the offset vector per class;

else
The node is a non-leaf node;
Save the best test;
Create the two child-nodes with Depth = Depth+ 1;

end

end
if No child-nodes at Depth+ 1 then

Break;
end

end

end
Algorithm 1: Creation of a Hough Forest
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5.3. LEARNING AND CLASSIFICATION WITH HOUGH FORESTS

Data: LBP-TOP Videos and Hough Forest
Result: Hough Forest

Randomly select the Blocks from the unknown case;
Calculate the Blocks’ Histograms;
for Each Block do

for Each Tree do
Assign the first node to the Block;
for Depth = 1 to Tree’s Maximum Depth do

if The assigned node is a Leaf then
Save the Leaf’s vote (DL

c , pLc );
else

Test the block with the test of the assigned node;
if Test’s result is 0 then

Assign the first node’s child to the block;
else

Assign the second node’s child to the block;
end

end

end
for Each offset vector (x) do

for Each class (c) do
Add the vote’s proportion to the coordinate (x,c) of the voting
Hough Space;

end

end

end

end
Check the absolute maximum of the voting Hough Space;

Algorithm 2: Voting in a Hough Space for an unknown Facial Expression.
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Chapter 6

Experimental Results

After the implementation of our Facial Expression Recognition system, it is nec-

essary to experimentally verify its results. The procedures used for this verification

and its results are covered thought this chapter.

The database we used, [9], has 192 expressions available, divided equally between

six people. Each one of individuals performs four repetitions for each expression,

with the documented emotions being happiness, sadness, surprise, fear, anger, dis-

gust, contempt and the phrase “Yes, we can!”. A single case is represented by a 2.5

seconds APDI video with 100x100 pixels, at 20 frames per second. In each expres-

sion, the subject starts with a neutral face, flowing with the onset, apex and offset

stage of each expression, as seen in the Figure 6.1.

Figure 6.1: Five subsequent APDI Images from a Happy Facial Expression.

6.1 Tuning of the Parameters

After the reading of all the videos and their respective classes, the next step is

the tuning of the parameters within the whole algorithm. In our case, this was one

of the harder tasks, due to the fact that a full run of the algorithm is a long process

and there are many parameters to tune. Meaning that the performance effects of

changing a certain parameter are difficult to identify and modify in a short period

of time making the whole process very time consuming.

The first parameters that are tuned belonged to the descriptor we used, the
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6.1. TUNING OF THE PARAMETERS

LBP-TOP. The possible parameters are R, the radius, and N , the number of

neighbors. The authors of this descriptor already used these in facial expression

recognition applications in [10] and tested the descriptor with various configurations,

obtaining R = 3 and N = 8 as the best parameters for the three orthogonal planes

of the video. These values were then used in our experiments.

For the construction of the Hough Forests, four parameters could be set. Hypo-

thetically, the number trees, when increased, should make the success of the clas-

sification better until a certain point, and then stabilize. The number of tests per

node and the number of samples per expression should also both increase the success

of the experiments until a certain value, where the success stops having major im-

provements. As for the size of a block, that has three values (X,Y and Z), the only

way to decide the best dimensions is by trial and error, since this value is very case

specific and depends, for example, on the size of the facial features or the framerate

of an expression. Therefore, these four parameters should be decided by gradually

changing one of them, while keeping the other ones constant. When the increase of

a parameter does not majorly improve the success of the classification, this value is

considered to be the best. This adjustment guarantees a good performance with a

low computational cost. Besides tuning our algorithm, these experiments are also

useful to investigate the influence of each of the parameters in the success of our

approach.

The parameters for the voting stage are the number of samples per tested ex-

pression and the variance of the 3D Gaussian Parzen Window. The latter is referred

to be var = 9 by the authors [11] of the Hough Forests and used in our approach.

For the number of samples per tested expression a much higher value that the learn-

ing stage should be considered, since dense sampling is necessary, so we considerer

double the number of samples, when compared with the learning stage.

This way, the experiments to tune the algorithm are preformed by randomly

selecting five different training and testing sets of expressions that were maintained

through the tuning experiments, allowing for more stable and comparable results.

During this phase 85% of the expressions are used to train the trees while the

remaining are used for testing purposes. We run each of these training and testing

sets with all the proposed values for all four parameters involved in the construction

of the Hough Forest. Then, 100 tests are performed, their accuracy is registered

and the mean of the five sets is shown from 0% to 100%. Therefore, based in the

pre-experiments during the development of our approach, the following four base

parameters were determined to be: 200 for the number of samples per expression;

100 for the number of tests per node; 5 for the number of trees and (X, Y, T ) =

(200, 40, 7) for the size of the video block. The first parameter to be varied, while

keeping the other three constant, is the size of the blocks and as stated above
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6.1. TUNING OF THE PARAMETERS

this parameter was chosen by trial and error. The influence of the T coordinate

was very small and considered always seven. The Figure 6.2 shows the success of

our experiments based in different block sizes. The complete table can be seen in

Appendix A.1.

Figure 6.2: The obtained Success versus the Block Size.

For the other three parameters the same five training and testing sets are used,

with different increasing values for the respective parameter. The relation between

these values and the mean of the five sets of expressions accuracy is shown in the

Figures 6.3, 6.4 and 6.5.

Figure 6.3: The obtained Success versus Number of tests per node.

Taking into account the values which do majorally improve the success of the

classification, we select the flowing parameters: 300 for the number of samples per

expression; 150 for the number of tests per node; 10 for the number of trees and

(X, Y, T ) = (200, 40, 7) for the size of the video block. These values are the result of
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6.1. TUNING OF THE PARAMETERS

Figure 6.4: The obtained Success versus Number of Trees in a Forest.

Figure 6.5: The obtained Success versus Number of Blocks sampled per Expression.
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6.2. FINAL RESULTS

our tuning and are the ones that obtain the best relation between success rate and

computational cost.

6.2 Final Results

After the tuning, the definitive experiments of our approach can be tested. For

this we need to test the success of both the expression classification and the pre-

diction of the spatio-temporal offset vector. The experiments of the later one are

addressed in the next section. In the Section 6.2.2 the emotional classification is

presented.

6.2.1 Temporal Classification

The experiments used to test the success of the spatio-temporal offset vector,

start by randomly selecting five training and testing sets, with 90% training cases.

During the testing phase the only samples that are fed to the trees are selected from

a specific temporal area by sampling blocks from a specific frame. This way we

associated the stages initial neutral, onset, offset and final neutral with the frames

−20, −10, 10 and 20 respectively, and in relation to the apex frame, the zero frame.

The apex was considered a stage itself as well. Then, the success of the temporal

prediction is measured by the proportion of predicted frames that fall in a certain

interval. With these intervals being −25 to −16, −15 to −5, −4 to 4, 5 to 15 and

16 to 25 for the same respective stages. Also, the absolute error of the difference

between the frame that is predicted and the sampled frame is registered. This is

done for 50 testing expressions and the mean and standard deviation of this error

is measured. The success of the emotional classification is measured for each one of

these states too. The average of the five testing sets are showed below:

Stage Stage Avg. Emotion Avg. Temp. Avg. Pred. Avg. Std. of
Name Int. Class. Succ. Success Error Pred. Error

Ini. Neutral [-25 -14] 14.0% 12.4% 5.24 3.19
Onset [-15 -5] 56.0% 32.8% 5.27 2.65
Apex [-4 4] 91.2% 81.2% 2.51 2.15
Offset [5 15] 67.0% 31.8% 5.69 3.49

Fin. Neutral [16 25] 33% 13.2% 8.04 3.77

Table 6.1: Results of the temporal experiments. The errors are measured in frames.

6.2.2 Emotional Classification

To ensure success of the expression classification, the goal is to obtain the highest

possible classification rate for the eight classes present in the database. For this the
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parameter selected to be the most fit during the training phase is used. Once again,

five training and testing sets, with 90% training percentage, are randomly selected.

The average classification of the five sets was 87%.

To increase the success of our approach while considering the results of the

temporal tests we only sample the testing expressions between −10 and 10 frames

in reference to the apex. This temporal interval has more discriminative features

than the beginning or the end of an expression. This frame interval proved to have

the best success rate for expression classification.

Avg. Success Set 1 Set 2 Set 3 Set 4 Set 5
No Temporal Selection 0.87 0.78 0.96 0.79 0.9 0.94

With Temporal Selection 0.93 0.92 0.98 0.9 0.93 0.94

Table 6.2: Final results, with and without temporal selection.

Next we present the confusion matrix for both cases, with and without temporal

selection. This matrix represents the relations between the ground true emotions,

in the first column, and the classified emotions, in the first line.

An Co Di Fe Ha Ph Sa Su
An 61.1 0 15.3 0 0 0 16.7 6.9
Co 0 100 0 0 0 0 0 0
Di 0 0 97.1 0 0 0 0 2.9
Fe 0 2.9 2.9 79.1 0 0 0 14.9
Ha 0 0 0 0 90 10 0 0
Ph 0 0 0 0 0 94.1 0 5.8
Sa 0 7.3 0 0 0 0 92.7 0
Su 0 0 0 11.1 0 0 0 88.8

Table 6.3: Confusion matrix of the run with temporal selection.

An Co Di Fe Ha Ph Sa Su
An 71.4 0 9.5 0 0 0 19.0 0
Co 0 100 0 0 0 0 0 0
Di 0 0 89.4 0 5.2 5.2 0 0
Fe 7.6 0 11.5 65.4 3.8 0 7.7 3.8
Ha 0 0 0 0 100 0 0 0
Ph 0 0 0 0 0 95.5 0 4.5
Sa 7.1 7.1 0 0 0 0 85.7 0
Su 0 0 0 0 0 0 0 100

Table 6.4: Confusion matrix of the run without temporal selection.

36



Chapter 7

Experimental Analysis

In this chapter we present a experimental analysis of the results that were shown

in the previous chapter. The variations of the Hough Forest ’s parameters, both

the temporal and the emotional classification are analysed through the next two

sections.

7.1 The Hough Forest’s Parameters

The tuning process addressed in the previous chapter, other than the optimiza-

tion of our system, allowed us to study the influence of the Hough Forest parameters

in the success rate of our system.

As we can see in Section 6.2, the block size has a big effect on the classification

success rate, as expected, since the shape and size of the block directly influences the

histograms of our texture descriptor (LBP-TOP). Contrary to [4] where the best

block was a vertical rectangle that covered almost half of the face, in our approach

the best block had horizontal orientation, also covering half almost of the face.

As we increase the number of executed tests per node, the success rate archives

a satisfactory value (72%) with only 25 tests per node, a surprisingly low value. We

decided to select 150 tests per node for the final results, which increased the success

10 percentual points, and was the value at which the success rate stops increasing

despite the added number of tests, as seen in the Figure 6.3.

The number of trees per Hough Forest surprisingly does not heavily influence

the success rate of our algorithm, archiving the highest rate with 10 trees and then

actually slightly decreasing the success rate as the number of trees was increased.

This can be due to the statistical variance through the algorithm, since a multitude

of random variables are involved. This variance can be as seen in the Figure 6.4

when the success decreased from 10 to 15 trees and then increased again for 20

trees. This is why 10 trees per Hough Forest were selected as the value for the
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final results. When compared with [4], where only 5 trees per forest were used, our

approach needs more trees to archive maximum success rate.

As we increase the number of blocks that were sampled in each one of the Facial

Expressions used in the learning stage, contrary to [4], the success rate of our method

increases, continuing until 300 Blocks per expression, the value we selected for the

number of blocks during the final results.

7.2 Final Results

The temporal tests performed in the last chapter proved that the success rate of

our approach increases immense as we classify an expression with blocks sampled

from a temporal area closer to the apex. This agrees with the psychological theory

of the face, since the most discriminative phase of a facial expression is at the

apex. When the blocks are sampled from a temporal area further from of the apex,

the appearance of these blocks are more similar to different classes, decreasing the

success of our system, in both the temporal stage and the emotional classification.

For the same reason both the error and the standard deviation of this error decrease

as we sample the expression closer to the apex.

Due to the lack of systems that used Facial Expressions with 3D spatial and

temporal information and the absence of Facial Expression databases with this type

of information in which the faces were normalized (centered, cropped and aligned)

is was not possible to directly compare our system with other approaches. Although

when compared to [4], which achieved a maximum of 87.1%, our approach obtained

a similar success rate of the expression class, with 87% of the expressions being

correctly recognised. Other approaches that did not use Hough Forests, such as

[20] and [44], that applied Deformable Models and Expressive Maps respectively,

both obtained 90.4% success rate with other databases. Since the facial expressive-

ness is higher closer to the apex, when we consider Facial expression with only 10

frames before and after the apex our success rate increased to 93%, confirming that

the beginning and the end of an expression are less descriptive in regards to their

emotional class.

When we look into the confusion matrix its clear that both Angry and Fear are

the hardest class to identify. The Expression Angry is often confused with Disgust or

Sadness and the expression Fear was mostly confused with Surprise and vice-versa.

Both of these results are acceptable since these expressions have similar appearances,

even for humans. The confusion in between these facial expressions was encountered

by other systems as well [8].
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Chapter 8

Conclusions and Future Work

Automatic Facial Expressions Recognition systems are quite far from operat-

ing in real-world applications. During this work we proposed a Facial Expression

Recognition system to approximate these systems to the real-world by considering

3D spatial and temporal facial Expressions. The 3D spatial information is more ro-

bust to environmental conditions, such as illumination, texture and pose variations,

while the temporal information takes into account the temporal changes that hap-

pen in the face, allowing for an early and more realistic detection of emotions. The

success of our method is comparable with the State of the Art for systems that take

temporal information into account, and allows for the detection of an expression

before or after its apex.

8.1 Future Work

Facial Expression Recognition systems are still in an infant stage, if we consider

its final goal the applicability to real-word applications. They face a multitude of

computer vision problems, most specifically relating to the variation of the environ-

mental conditions. Therefore, as a future approach, high-level shape representations

seem to be the trend, since they play an important role in the human vision, as ar-

gued by the cognitive sciences. They are also less sensitive to identity bias and

environmental conditions, such as variations of illumination and texture, but are

more sensitive to other problems such as registration errors. Recently, 3D regis-

tration tries to address most of these problems, but the heavy computational cost

and the elevated price of an adequate sensor technology with enough speed to take

the temporal modeling into account, essential for real world applications [19], make

this method unapplicable to the real world. However, instead of using only shape

representations, another alternative would be the use of various representations and

weighing them based in their reliability [8].

Spontaneous expressions are of vital importance for correct human emotion mod-
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eling through facial expressions. In an ideal system both posed and spontaneous

expressions should be learn so that this system can distinguish them. The gathering

of these spontaneous expressions is another problem of Facial Expression databases,

since the actual sensor systems with the necessary precision are to bulky and dis-

tract the subjects. A possible approach would be to provoke a certain emotion and

record the facial expressions without the knowledge of these subjects. Although its

not an easy process to ensure that all the subjects feel the desired emotions or even

provoke these feelings, especially in a laboratorial setting. This means that it is

necessary to wait for technological developments that will allow for the extraction

of facial expressions from the real world.
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Appendix A

Tables of Results

In this section we present the complete results for all the learning and testing

sets of facial expressions presented during the Chapter 6.

(X, Y ) Mean Set 1 Set 2 Set 3 Set 4 Set 5
(200, 40) 0.768 0.89 0.71 0.74 0.7 0.8
(100, 20) 0.56 0.78 0.38 0.58 0.64 0.42
(39, 199) 0.698 0.81 0.64 0.68 0.67 0.69
(21, 99) 0.572 0.67 0.48 0.58 0.66 0.47
(27, 27) 0.44 0.62 0.32 0.38 0.57 0.31
(49, 49) 0.534 0.7 0.35 0.53 0.61 0.48

Table A.1: The results of the Block Size variations versus the Success Rate for the
5 testing sets.

No. of Tests Mean Set 1 Set 2 Set 3 Set 4 Set 5
5 0.12 0.2 0.11 0.05 0.45 0.19
10 0.46 0.69 0.26 0.43 0.59 0.35
25 0.713 0.85 0.58 0.71 0.7 0.62
50 0.76 0.91 0.6 0.77 0.68 0.78
75 0.763 0.91 0.63 0.75 0.71 0.79
100 0.79 0.9 0.71 0.76 0.72 0.79
150 0.81 0.92 0.75 0.76 0.76 0.83
300 0.81 0.92 0.75 0.76 0.73 0.82

Table A.2: The results of the Number of Tests per Node versus the Success Rate
for the 5 sets.
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No. of Trees Mean Set 1 Set 2 Set 3 Set 4 Set 5
1 0.736 0.87 0.62 0.73 0.73 0.73
2 0.754 0.9 0.63 0.77 0.72 0.75
5 0.762 0.89 0.66 0.78 0.71 0.77
10 0.774 0.9 0.68 0.77 0.7 0.82
15 0.764 0.88 0.68 0.75 0.7 0.81
20 0.772 0.92 0.67 0.75 0.72 0.8
30 0.768 0.89 0.72 0.75 0.72 0.76
50 0.762 0.89 0.67 0.75 0.7 0.8

Table A.3: The results for the number of Trees in a Forest versus the Success Rate
for the 5 sets.

No. of Blocks Mean Set 1 Set 2 Set 3 Set 4 Set 5
20 0.52 0.72 0.42 0.48 0.59 0.4
50 0.668 0.84 0.56 0.75 0.64 0.55
100 0.698 0.88 0.63 0.75 0.67 0.56
200 0.748 0.9 0.69 0.77 0.69 0.69
300 0.802 0.92 0.8 0.77 0.75 0.77
400 0.8 0.92 0.81 0.75 0.73 0.79
500 0.816 0.92 0.81 0.77 0.76 0.82

Table A.4: The results of the Number of Sampled Blocks per Expressions versus the
success for the 5 sets.
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Set Stage Stage Avg. Emotion Avg. Temp. Avg. Pred. Avg. Std. of
Name Int. Class. Succ. Success Succ. Pred. Error

Ini. Neutral [-25 -14] 0.1 0.08 4.36 2.593
Onset [-15 -5] 0.64 0.46 4.74 2.028

Set 1 Apex [-4 4] 0.9 0.76 1.9 1.298
Offset [5 15] 0.82 0.22 5.3 3.215

Fin. Neutral [16 25] 0.3 0.2 8.68 3.216
Ini. Neutral [-25 -14] 0.04 0.1 7.66 4.663

Onset [-15 -5] 0.56 0.3 5.7 2.866
Set 2 Apex [-4 4] 0.84 0.8 1.94 1.659

Offset [5 15] 0.6 0.32 6.98 4.187
Fin. Neutral [16 25] 0.34 0.2 7.8 4.262
Ini. Neutral [-25 -14] 0.24 0.12 5.38 2.955

Onset [-15 -5] 0.4 0.2 6.4 3.534
Set 3 Apex [-4 4] 0.9 0.84 2.72 2.373

Offset [5 15] 0.64 0.3 5.78 3.333
Fin. Neutral [16 25] 0.44 0.08 7.76 4.023
Ini. Neutral [-25 -14] 0.08 0.22 4.38 2.702

Onset [-15 -5] 0.66 0.28 5.94 2.780
Set 4 Apex [-4 4] 0.96 0.82 2.667 2.503

Offset [5 15] 0.8 0.50 5.62 3.811
Fin. Neutral [16 25] 0.34 0.12 8.74 3.890
Ini. Neutral [-25 -14] 0.24 0.1 4.42 3.038

Onset [-15 -5] 0.56 0.4 3.6 2.090
Set 5 Apex [-4 4] 0.96 0.84 3.333 2.944

Offset [5 15] 0.52 0.25 4.76 2.911
Fin. Neutral [16 25] 0.24 0.06 7.24 3.497

Table A.5: The results of the Temporal Error, its Standard Deviation and the
Success Rate for the 5 sets.
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