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Abstract

This paper presents the solution for a fixed cylindrical irregular cavity of infinite length submerged in a homogeneous fluid medium, and
subjected to dilatational point sources placed at some point in the fluid. The solution is first computed for a wide range of frequencies and
wavenumbers, which are then used to obtain time-series by means of (fast) inverse Fourier transforms into space–time.

The method and the expressions presented are implemented and validated by applying them to a fixed cylindrical circular cavity
submerged in an infinite homogeneous fluid medium subjected to a point pressure source for which the solution is calculated in closed form.

The boundary elements method is then used to evaluate the wave-field elicited by a point pressure source in the presence of fixed rigid
cylindrical cavities, with different cross-sections, submerged in an unbounded fluid medium and in a half-space. Simulation analyses with
this idealized model are then used to study the patterns of wave propagation in the vicinity of these inclusions. The amplitude of the wavefield
in the frequency vs axial-wavenumber domain is presented, allowing the recognition, identification, and physical interpretation of the
variation of the wavefield.q 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Wave propagation; Submerged fixed cylindrical cavity; Point pressure source; Scattering; Boundary element method; Two-and-a-half-dimensional
problem

1. Introduction

The behaviour of waves as they propagate in a semi-infi-
nite medium with discontinuities has drawn the attention of
many researchers over the years. Some of the first analytical
studies on wave diffraction and scattering were concerned
with the problem of wave motion and reverberations in
alluvial basins of regular shape [1,2], and with the issue of
wave scattering induced by cavities [3–6]. More recently,
semi-analytical methods have been used to analyse wave
diffraction caused by geological irregularities of arbitrary
shape within globally homogeneous media [7–9]. By
contrast, the application of purely numerical methods (i.e.
finite elements or differences combined with boundaries)
has been restricted, for the most part, to situations where
the response is required only within localized irregular
domains, such as soil–structure interaction problems [10–
12]. Discrete methods have also occasionally been used to
model large alluvial basins, under plane-strain conditions
[13]. A boundary integral equation method has been applied
[14] to compute the two-dimensional (2D) acoustic scatter-
ing field arising from deformations of an oceanic

waveguide’s surfaces. This same method was used [15,16]
to obtain the 2D acoustic scattered field generated by objects
embedded between two half-spaces with different densities.
More recently, a boundary integral formulation for the
analysis of acoustic barriers over an impedance plane as
infinitely thin structures has been presented [17].

Hybrid methods involving a combination of finite
elements to model the interior domain containing the inho-
mogeneities and semi-analytical representations for the
exterior domain have been used [18]. A transitional matrix
solution for the spectral scattering response of a partially
buried 3D elastic obstacle in a plane stratified fluid media
has been formulated [19].

The application of most of these numerical methods has
been restricted to situations where the solution is required
within 2D domains. The evaluation of the full scattering
wavefield generated by sources placed in the presence of
3D propagation media requires the use of computationally
demanding numerical schemes.

The solution becomes much simpler if the medium is 2D,
even if the dynamic source remains 3D, a point load, for
example. Such a situation is frequently referred to as a two-
and-a-half-dimensional problem (or 2-1/2-D for short), for
which solutions can be obtained by means of a two spatial
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Fourier transform in the direction in which the geometry
does not vary. This requires solving a sequence of 2D
problems with different spatial wavenumberskz: Then,
using the inverse Fourier transform, the 3D field can be
synthesized.

This solution is known in closed form for inclusions with
simple geometry, such as a circular cylinder, for which the
wave equation is separable. However if the inclusion has an
irregular cross-section the solution is more difficult to
obtain. This paper presents the solution obtained for a
fixed cylindrical cavity of infinite length submerged in a
homogeneous fluid medium, and subjected to dilatational
point sources placed at some point in the fluid, using bound-
ary elements.

The solution at each frequency is expressed in terms of
waves with varying wavenumberkz; (with zbeing the direc-
tion in which the geometry does not vary), which is subse-
quently Fourier transformed into the spatial domain. The
wavenumber transform in discrete form is obtained by
considering an infinite number of virtual point sources
equally spaced along thez-axis and at a sufficient distance
from each other to avoid spatial contamination [20]. In addi-
tion, the analyses are performed using complex frequencies,
shifting down the frequency axis, in the complex plane, in
order to remove the singularities on (or near) the axis, and to
minimize the influence of the neighbouring fictitious
sources [21].

The method presented is implemented and validated by
applying it to a fixed cylindrical circular cavity submerged
in an infinite homogenous fluid medium subjected to a point
pressure source for which the solution is calculated in closed
form.

The boundary elements method is then used to evaluate
the wavefield elicited by a point pressure source in the
presence of a fixed rigid cylindrical cavity submerged in
an unbounded fluid medium and in a half-space. Simulation
analyses with this idealized model are used to study the
patterns of wave propagation in the vicinity of these

inclusions when different cylindrical cross-sections with a
common perimeter are used. The amplitude of the wavefield
in the frequency vs axial-wavenumber domain is presented,
allowing the recognition, identification, and physical
interpretation of the variation of the wavefield.

2. Problem statement

Consider a cylindrical irregular inclusion of infinite
extent, submerged in a spatially uniform fluid medium
(Fig. 1), subjected to a harmonic point pressure source at
position�x0;0; 0�; oscillating with a frequencyv .

pinc � A ei�v=a��at2
��������������
�x2x0�21y21z2
p

��������������������������x 2 x0�2 1 y2 1 z2
p �1�

in which the subscript inc denotes the incident field,A is the
wave amplitude,a is the pressure wave velocity of the
medium, and i� ����

21
p

:

Defining the effective wavenumbers

ka �
�����������
v2

a2 2 k2
z

s
; Im ka , 0 �2�

by means of the axial wavenumberkz; and Fourier-trans-
forming Eq. (1) in thez direction, one obtains

p̂inc�v; x; y; kz� � 2iA
2

H�2�0 �ka
������������������
�x 2 x0�2 1 y2

q
� �3�

in which theH�2�n �…� are second Hankel functions of ordern.
If one considers an infinite set of periodically placed

sources along thez direction at equal intervals,L, the inci-
dent field may be written as

pinc�v; x; y; z� � 2p
L

X∞
m�2 ∞

p̂inc�v; x; y; kz� e2ikzmz �4�

with kzm� �2p=L�m: This equation converges and can be
approximated by a finite sum of terms.

3. Boundary element formulation

The boundary element method (BEM) is used to obtain
the 3D field generated by a cylindrical inclusion with an
irregular shape. In the case of an acoustic medium, the 2-
1/2-D problem can be solved as a discrete summation of 2D
BEM for differentkz wavenumbers. Then, using the inverse
Fourier transform, the 3D field can be synthesized. The
wavenumber transform in discrete form is obtained, as
explained above, by considering an infinite number of
virtual point sources equally spaced along thez-axis and
at a sufficient distance from each other to avoid spatial
contamination [20].

Considering the literature currently available on the
BEM, it does not appear relevant to repeat yet again the
details of the formulation required for the type of the scat-
tering problem presented herein (see for example Ref. [22]).
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Fig. 1. Geometry of the problem.



It suffices to state that each 2D BEM solution requires the
evaluation of the integral

Hkl �
Z

Cl

H�xk; xl ;nl� dCl �5�

in whichHkl is the pressure velocity component atxk due to
pressure load atxl ; andnl is the unit outward normal for the
lth boundary segmentCl : In the present case, the required
pressure velocity function is

H�xk; xl ;nl� � 2ika
4r

H�2�l �kar� 2r
2nl

: �6�

In this equationr is the mass density,r is the source–recei-
ver distance on the planexy, and i� ����

21
p

:

Mathematical manipulation of the integral equations,
combined and subjected to null normal particle velocity at
the inclusion boundary, and discretized appropriately, gives
a system of equations that can be solved for the nodal pres-
sures. The required integrations in Eq. (5) are performed by
means of Gauss–Legendre quadrature, using four
integration points.

The scattered pressure field in the fluid is then defined as a
function of the nodal pressure values, as follows:

pk
sca�

XN
l�1

plH
kl �7�

wherepk
sca is the scattered pressure field at receiverk, N is

the total number of boundary elements andpl is the nodal
pressure value at elementl.

4. Pressure in time–space

The pressures in the spatial–temporal domain are
obtained by a numerical fast Fourier transform inkz; consid-
ering a source whose temporal variation is given by a Ricker
wavelet, as defined below. This wavelet form is chosen
because it decays rapidly, in both time and frequency; this

not only reduces the computational effort, but allows easier
interpretation of the computed time-series and synthetic
waveforms. Notice that the type of wavelet only defines
the frequency domain where the BEM solution is required.
Shorter duration pulses are better identified in the time
domain, but they require a larger number of frequency
responses to be calculated.

The Ricker wavelet function is given by

u�t� � A�1 2 2t2� e2t2 �8�

whereA is the amplitude,T � �t 2 ts�=t0 andt denotes time;
ts is the time when the maximum occurs, whilept0 is the
characteristic (dominant) period of the wavelet. Its Fourier
transform is

U�v� � A�2 �����
pt0
p

e2ivts�V2 e2V2 �9�

in whichV � vt0=2:
As stated before, the Fourier transformations are

achieved by discrete summations over wavenumbers and
frequencies, which is mathematically equivalent to adding
periodic sources at spatial intervalsL � 2p=Dkz (in the z-
axis), and temporal intervalsT � 2p=Dv; with Dkz andDv
being the wavenumber and frequency steps, respectively
[1]. The spatial separationL must be sufficiently large to
avoid contamination of the response by the periodic
sources. In other words, the contribution to the response
by the fictitious sources must be guaranteed to occur at
times later thanT. This goal can also be aided substantially
by shifting the frequency axis slightly downward, that is,
by considering complex frequencies with a small imagin-
ary part of the formvc � v 2 ih (with h � 0:7Dv). This
technique results in a significant attenuation or virtual
elimination of the periodic sources. In the time domain,
this shift is later taken into account by applying an expo-
nential window eht to the response [23].
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Fig. 2. Circular cylindrical inclusion in an unbounded medium.
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Fig. 3. Scattered pressure field. Harmonic pressure load of 200 Hz.



5. Validation of the BEM algorithm

The BEM algorithm was implemented and validated by
applying it to a fixed cylindrical circular cavity, submerged
in a homogeneous fluid medium, subjected to a harmonic
point pressure load applied at point O, as in Fig. 2, for which
the solution is known in closed form and described in
Appendix A.

The response is calculated over a fine vertical grid
plane, placed along the longitudinal axis and perpendi-
cular to it as illustrated in Fig. 3. This figure also
displays an example of a BEM mesh, including the
nodal points in the middle of each constant boundary
element. Fig. 3 represents the scattered pressure field
computed when a harmonic pressure load of 200 Hz is
excited. In these figures, both the response obtained
with the closed form solution and the amplitude of
the difference in the response obtained using the
BEM (labelled error) when the inclusion is modelled
with a different number of boundary elements are
displayed. In this case, the Green’s function that
applies is given by

Gfull �v; x; y; kz� � i
4

H�2�0 �ka
��������������������������
�x 2 xp�2 1 �y 2 yp�2

q
� �10�

where x identifies the receiver andxp gives the posi-
tion of the concentrated pressure load.

As expected, the BEM accuracy improves as shorter
boundary elements are used to model the response. In the
present example, the ratio between the wavelength of inci-
dent waves to length of boundary elements varies from 10.0
(42 boundary elements) to 20.0 (84 boundary elements).
Analysis of the results also makes it possible to verify the
improvement of the BEM solution as the distance to the
surface of the inclusion increases. It appears to be advanta-
geous to use a higher number of boundary elements when
the response is required at points close to the boundary of
the cavity, where the response changes rapidly.

6. Applications

6.1. Fixed cylindrical irregular cavities submerged in
unbounded fluid medium

Next we consider the scattered pressure field of fixed rigid
cylindrical cavities submerged in an unbounded fluid
medium, with different cross-sections: circular, oval and
kidney-shaped. The perimeter of all these cavities is kept
constant (10p m) as one may conclude from analysing Fig.
4, which displays the geometry of the cross-section of the
inclusions considered herein. At timet � 0; a point source
at a point O creates a spherical pressure pulse propagating
away from O. The field generated is computed at receivers
R1 located in five planes equally spaced (10 m) along thez
direction. The geometry of the plane containing the point
source is illustrated in Fig. 4.

The pressure wave velocity�a � 1500 m=s� and density
�r � 1000 kg=m3� of the host fluid are kept constant in all
the analyses. The computations are performed in the
frequency range 2.5–320 Hz, with a frequency increment
of 2.5 Hz, which determines the total time duration�T �
0:4 s� for the analysis in the time domain. The spatial period
considered in the analysis isL � 2Ta � 1200 m: The
source time dependence is a Ricker wavelet with a charac-
teristic frequency of 128 Hz.

The cavity is modelled with a number of boundary elements
that changes with the frequency of excitation of the harmonic
load. A ratio between the wavelength of the incident waves to
length of the boundary elements is kept at a minimum of 10.0.
In any case the minimum number of the boundary elements
used is less than 30. Fig. 5 displays the amplitude of the scat-
tered wave field of these responses in the frequency vs axial-
wavenumber domain, and the correspondent synthetic wave-
forms (0–100 ms) of the scattered wave fields obtained in the
presence of the different fixed cavities, at the aforementioned
receiver. Each plot is normalized with respect to its own
maximum. Values ofkz in excess ofv=a correspond to inho-
mogeneous, evanescent waves which decay rapidly in space.
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The time records are a sequence of a reflected (scattered)
pulse and another pulse that travels around the cylinder
(diffracted). A geometric acoustic ray analysis shows that
these signals result from the propagation of a reflected and
diffracted wavefront on the surface of the inclusion. Asso-
ciated with each wavefront is a ray; thus there are two

principal rays backscattered from such an inclusion. Fig. 6
shows the propagation path of these waves between the
source and the receiver located at the plane source.

The travel times of the aforementioned rays, are equal to
the corresponding arrival times of the signals in Fig. 6.
Arrows are added in this figure to indicate their arrival. In
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the case of the kidney-shaped inclusion, the results reveal
complicated wave patterns which originate from reverbera-
tions within the concave section of the cavity. Hence, the
time signals are more difficult to analyse due to the inter-
ference between these different pulses. A ray analysis of the
concave part can be quite cumbersome.

The Fourier spectra of the scattered field exhibit
pronounced maxima and minima, occurring at particular
frequencies and in definite frequency intervals. The periodi-
city of these peaks and troughs can be understood in terms
of the interference of reflected and diffracted waves. The
waves interfere constructively when their phase difference
is a multiple of 2p. Thus, forkz � 0; the frequency interval
between successive maxima and minima isDf � a=Ds;
whereDs is the travel path difference between the reflected
and diffracted pulses�Df < 95:6 Hz�; which coincides with
the results displayed in Fig. 5. Again, the kidney response is
influenced by the existence of the reverberations within the
concave section of the inclusion. It originates a poorly
developed second fold and a more pronounced third fold
in the frequency vs wavenumber spectra.

Additionally, the spectra plots show a smoother response
for higher frequencies. This was expected, since for higher
frequencies the amplitude of the waves travelling around the
inclusion decreases, giving place to a shadow zone. This
indicates that, in order to observe the interference, the
source pulse should be rich in low frequencies.

As kz increases, the frequency distance between peaks

and valleys decreases. This fact can be explained because
as the inclination of the wave path decreases in relation to
the axis of the cylinder (largerkz) Ds increases, implying a
smaller distanceDf :

6.2. Fixed cylindrical irregular cavities submerged in a
half-space

Consider the inclusions previously analysed submerged
in a fluid, bounded by a fixed flat surface (half-space), illu-
minated by a point source placed at the surface (Fig. 7). The
source generates a Ricker wavelet pressure pulse with a
centre frequency of 128 Hz. Calculated frequencies range
from 2.5 to 320 Hz with an increment of 2.5 Hz. The
response is computed at two receivers placed on the surface.

The BEM uses Green’s function for the elastic half-space,
expressed as the sum of the pressure fields generated by the
real load and a virtual load placed at its mirror position, so as
to obtain the suitable boundary conditions at the flat rigid
surface

Ghalf �v; x; y; kz� � i
4
�H�2�0 �ka

��������������������������
�x 2 xp�2 1 �y 2 yp�2

q
�

1 H�2�0 �ka
��������������������������
�x 2 xp�2 1 �y 1 yp�2

q
�� �11�

in which Ghalf�v; x; y; kz� is Green’s function for pressure at
x due to a concentrated pressure load atxp:

The definition of the number of boundary elements and
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Fig. 8. Half fluid medium. Responses at receivers R1 and R2; circular cross-section.

Fig. 9. Half fluid medium. Responses at receivers R1 and R2; oval cross-section.



the distance between virtual point sources along thez axis
follow the same procedures as for the previously applica-
tions. The minimum number of the boundary elements used
to model the inclusion is again set at 30.

Figs. 8–10 display the time responses and spectra repre-
sentations of the scattered field at the receivers. The Fourier
amplitude spectra are observed to exhibit pronounced
maxima and minima, which occur at particular frequencies
and in definite frequency intervals. Both receivers experi-
ence similar responses. The periodicity of these peaks and
valleys is mainly the result of the interference between
waves that are reflected at the top of the inclusion and the
flat surface. The frequency intervals between successive
maxima and minima areDf � a=2h; whereh is the depth
of the inclusion. In the present examplesDf �circular� �
75 Hz; Df �oval� � 67 Hz andDf �kidney� � 62:5 Hz: One
may observe that in the case of the kidney-shaped inclusion,
the distanceDf is not affected by the concave section of the
inclusion. Indeed, the depthh is related to the shortest
distance from the inclusion to the flat surface. However,
the value of amplitude of the spectra response shows
evidence of the result of multi-reverberations which origi-
nate within the concave section of the cavity.

Notice that there is an additional peak at low frequencies,
which is the result of waves diffracted around the cavity. In
the absence of these waves the first peak would occur atf �
a=2h: The influence of these waves travelling around the
inclusion decreases rapidly as the frequency of excitation
increases, as explained in the previous application. Thus, the

position of the folds that follow the first fold is less and less
affected as the frequency increases.

The time signals at each receiver are a sequence of pulses
resulting from the reflection and diffraction of waves at the
boundary of the cavity and at the fixed flat surface. The first
pulse arrival corresponds to pulses that are directly reflected
by the inclusion. These are followed by pulses with progres-
sively lower amplitudes, which are the result of reverbera-
tions between the flat surface and the inclusion. As these
pulses reflect back and forth between these boundaries, they
lose energy, and eventually dissipate. The time-of-flight of
each of these pulses corresponds to its travel path. The pulse
travelling around the inclusion is not easily visible in the
time signals because its energy is very small in comparison
with the energy of the reflected pulses. The train pulses
sequence, in the case of the kidney inclusion, is complicated
as it is again the result of the multi-reverberations at the
concave part of the inclusion. The amplitude of the
responses reveals that the kidney-shaped inclusion allows
the energy of the response to be focalized at the top of the
inclusion. The circular inclusion, on the other hand, is the
one that better dispels the energy. Notice that in this case,
the response at receiver R2 is the biggest, while that at
receiver R1 is the smallest.

7. Conclusions

A discrete integration over wavenumbers and frequencies
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Fig. 10. Half fluid medium. Responses at receivers R1 and R2; kidney cross-section.



has been used to compute the 3D scattered field generated
by harmonic spherical wave pressure illuminating cylindri-
cal fixed irregular inclusions in an unbounded and half-
space homogeneous fluid. This technique has been applied
to the study of the scattering of waves generated by three
different shapes of inclusions, namely circular, oval and
kidney. The discretization of the wavenumber-frequency
integral transform presented is mathematically equivalent
to a periodic sequence of sources, parallel to the axis of
the cylinder, that are also periodic in time. We have
removed the effects of these periodicities by using complex
frequencies.

The main features and the spectral representation of the
signals scattered by these inclusions have been described. It
has been shown that, although time records may appear
complicated, the arrival of various pulses at the receivers
can be understood in terms of the ray theory of geometric
acoustics. The results obtained are consistent with predic-
tions by ray acoustics, and are used by the authors to eluci-
date the most important aspect of wave acoustics, that can
be used as the basis for the development of non-destructive
testing and imaging methods.

It has been shown that the spectra of the response of the
inclusions studied exhibit a regular peak and valley struc-
ture. The oscillations are due to interference between the
waves reflected and diffracted by the boundary of the inclu-
sion and the reflected waves at the flat surface, in the case of
the half-space.

Appendix A

The appendix presents in condensed form the closed form
solution to evaluate the 3D field generated by a point pres-
sure load in the presence of a fixed circular cylindrical
cavity of infinite length submerged in a fluid medium.

Since the method used for finding the closed form solu-
tion is well known, only a sketch of the formulation is given
here [24]. The incident pressure field (Eq. (3)) may be writ-
ten in terms of waves centred at the axis, which can be
achieved using Graf’s addition theorem, leading to the
expression (in cylindrical coordinates):

pinc�v; r ; u;kz� � 2
iA
2

X∞
n�0

�21�n1nH�2�n �kar0�Jn�kar� cosnu

�A1�
in which theJ�2�n �…� are Bessel functions of the first kind
and ordern, u is the azimuth, and

1n �
1=2 if n� 0

1 if n ± 0
:

(

r �
���������
x2 1 y2

q
� radial distance to the receiver

r0 �
���
x2

0

q
� ux0u � radial distance to the source

cosu � x=r :

The scattered field can be expressed in a form similar to
that of the incident field, namely

psca�v; r ; u; kz� �
X∞
n�0

AnH�2�n �kar�cosnu �A2�

in which the subscript sca denotes the scattered field. The
unknown coefficientAn is obtained by imposing a null pres-
sure wave velocity along the normal to the surface of the
cylinder atr � a:

An � 1n�21�nH�2�n �kar0���kaa�Jn11�kaa�2 nJn�kaa��
�nH�2�n �kaa�2 �kaa�H�2�n11�kaa�� : �A3�
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