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Jury
Prof. Doutor João Pedro de Almeida Barreto and

Prof. Doutor Nuno Miguel Mendonça da Silva Gonçalves and
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da Visão por Computador foram fatores determinantes para o sucesso deste projeto.
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Abstract

Plenoptic cameras or light field cameras are a recent type of imaging devices that are starting

to regain some popularity. These cameras are able to acquire the plenoptic function (4D light

field) and, consequently, able to output the depth of a scene, by making use of the redundancy

created by the multi-view geometry, where a single 3D point is imaged several times.

Despite the attention given in the literature to standard plenoptic cameras, like Lytro, due

to their simplicity and lower price, we did our work based on results obtained from a multi-focus

plenoptic camera (Raytrix, in our case), due to their quality and higher resolution images.

In this master thesis, we present an automatic method to estimate the virtual depth of a

scene. Since the capture is done using a multi-focus plenoptic camera, we are working with

multi-view geometry and lens with different focal lengths, and we can use that to back trace the

rays in order to obtain the depth.

We start by finding salient points and their respective correspondences using a scaled SAD

(sum of absolute differences) method. In order to perform the referred back trace, obtaining

robust results, we developed a RANSAC-like method, which we call COMSAC (Complete Sample

Consensus). It is an iterative method that back trace the ligth rays in order to estimate the depth,

eliminating the outliers.

Finally, and since the depth map obtained is sparse, we developed a way to make it dense,

by random growing.

Since we used a publicly available dataset from Raytrix, comparisons between our results and

the manufacturers’ ones are also presented.

A paper was also submitted to 3DV 2014 (International Conference on 3D Vision), a confer-

ence on three-dimensional vision.

Keywords: Plenoptic cameras, light-field, Raytrix, Lytro, RANSAC, COMSAC, depth esti-

mation, virtual depth





Resumo

Câmaras plenópticas ou câmaras de campo de luz são dispositivos que estão a voltar a ter alguma

popularidade. Este tipo de câmaras são capazes de adquirir a função plenóptica (campo de luz

4D) e, consequentemente, capazes de estimar a profundidade de uma cena, usando a redundância

criada pela geometria ”multi-view”, onde um ponto 3D é projetado na imagem diversas vezes.

Apesar de ter sido dada uma maior atenção na literatura às câmaras plenópticas standard,

como são exemplo as Lytro, visto que são mais simples e com um preço muito mais interessante, o

nosso trabalho foi desenvolvido tendo por base os resultados obtidos por uma câmara plenóptica

”multi-focus” (uma Raytrix, no nosso caso), visto que a qualidade é superior e consegue obter

imagens com maior resolução.

Nesta tese de mestrado, apresentamos um método automático para estimar a profundidade

de uma cena. Visto que a captura da cena é efetuada com uma câmara plenóptica ”multi-focus”,

estamos a trabalhar com geometria ”multi-view” e com lentes que têm distâncias focais diferentes,

podendo ser usado esse facto para efetuar traço de raios de forma a obter a profundidade.

Começamos por encontrar pontos salientes e as suas respetivas correspondências usando um

valor escalado de SAD (soma das diferenças absolutas). Por forma a efetuar o traço de raios,

obtendo resultados mais robustos, desenvolvemos um método estilo RANSAC, ao qual chamámos

COMSAC (Complete Sample Consensus). É um método iterativo que efetua o traço de raios de

forma a estimar a profundidade, eliminando resultados indesejados.

Finalmente, e visto que o mapa de profundidade obtido é esparso, desenvolvemos um método

para o tornar denso, com recurso a um método de crescimento aleatório.

Por forma a testar os algoritmos desenvolvidos, utilizámos um conjunto de dados abertos

ao público da Raytrix e apresentamos também a comparação entre os nossos resultados e os

resultados obtidos pela Raytrix.

Foi também submetida um artigo para a 3DV (Conferência Internacional em Visão 3D), uma

conferência em visão tri-dimensional.



Palavas-chave: Câmaras Plenópticas, campo de luz, Raytrix, Lytro, RANSAC, COMSAC,

estimação de profundidade, profundidade virtual
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Chapter 1

Introduction

Plenoptic cameras or light field cameras are a recent type of imaging devices that are starting

to regain some popularity. While 2D conventional cameras project a 3D scene into a 2D image,

plenoptic cameras work in a different way, since they acquire the plenoptic function, which not

only contains information about the intensities of each pixel but also the amount of light that

travels in every direction.

The construction of these cameras is slightly different from the standard ones. As standard

cameras have only one lens, plenoptic cameras have a micro lens array between the main lens

and the CCD sensor. This second level of lenses causes a single 3D point to be imaged several

times, which leads to the formation of smaller images that compose the 4D light field.

Plenoptic cameras were formalized in the early 20th century, but since the resolution of the

micro images are limited by the resolution of the sensors, they only started being produced in the

last decade. The computational power back then was also a setback to the development of this

cameras, as well as the quality of the micro lenses arrays. Nowadays, the existence of graphic

cards with high processing power and the existence of higher resolution sensors surpasses the

difficulties previously found.

We can distinguish two types of plenoptic cameras. The first one developed is called standard

plenoptic camera (or plenoptics 1.0), being Lytro� the main example. Then, Raytrix� developed

a different type of camera, called multi-focus plenoptic camera (or plenoptics 2.0). The main

difference between them is the position of the focal plane. In the standard plenoptic camera,

the focal plane is in the same place as the micro lenses array (the main lens is focused to match

the micro lenses array), however, in the multi-focus camera, this does not happen. Also, Raytrix
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camera has micro lenses with different focal lengths, which extends the depth-of-field (DOF) and

leads to higher resolution images and better quality.

Basically, these cameras can obtain 3D information from a single shot, making them excel-

lent devices for several applications like computer graphics, photography, microscopy, 3D shape

recovery, depth map estimation and many more.

1.1 Motivation

We are facing a brutal growing on 3D content, whether it is on a consumer or commercial level. On

a consumer level, entertainment (e.g. 3D televisions and 3D cinema) is one of the main examples

of this growing, as the technology fascinates the users. The same happens in a commercial level,

with areas like computer vision (e.g. virtual reality) working in order to develop and improve

technologies able to use or create 3D content.

Projecting a 3D scene into a 2D scene results in a loss of the depth information. However,

this depth information is vital to 3D reconstruction, for instance. There have been developed

ways to recover the depth from a scene, from stereo camera systems to devices like Kinect, as

well as plenoptic cameras. Despite the common goal, the way to achieve it differs. Kinect, on

oposition to the micro lens array used by plenoptic cameras, use a time-of-flight technology by

combining an IR projector with a CMOS sensor.

It is important to be able to estimate the depth from a scene, due to the numerous applications

that can make use of it. It is then the main problem we try to solve on this dissertation. However,

and despite being formalized in an article [14], Raytrix’s algorithms to depth estimation are not

publicly available, making our work harder and almost a process of reverse engineering.

1.2 Objectives

The objective of this dissertation is clear and it has to do with depth estimation. Our goal is

to develop a fully-automatic algorithm able to estimate the depth of a scene captured with a

multi-focus plenoptic camera and, if possible, obtain better results than those presented by the

manufacturers.
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1.3 State of the art

Despite being formalized in 1908 by M. G. Lippmann [11] and developed by several other authors

during that time, plenoptic or light field cameras are a recent theme. Due to the lack of high

computational power (at least at a reasonable cost), to low resolution image sensors and other

issues, it was only in 2005 that Ng [13] built a plenoptic camera and, since then, some companies

started to build and commercialize their own plenoptic cameras, like Lytro�[12, 13], Raytrix�[14]

or Pelican Imaging [18]�.

We have nowadays several configurations for optical systems. On plenoptic cameras, the

configuration used by Raytrix and Lytro consists of a micro lens array placed behind the main

lens and in front of the CCD sensor.

However, there has been some research on this topic and there are now configurations of

optical systems that use, in front of the main lens, spherical mirrors [2, 16]. Agrawal et al. [1]

and Reddy et al. [15] present a similar configuration where they use, in front of the main lens,

an array of refractive devices.

Plenoptic cameras have a wide range of applications. We can point depth map estimation,

3D shape recovery [3, 19, 21] and photography as the main ones. In this last one, we can detach

the super resolution, the all-in-focus images [4] and the ability of performing a digital refocusing

of the image after it has been taken.

Robotics or microscopy are also topics that found ways to integrate plenoptic cameras on

their field of study. Robotics are starting to make use of plenoptic cameras on robotic navigation

[6] and microscopy used them on the conception of a three-dimensional microscope [10].

In terms of depth estimation, several approaches have been tried. Dansearau [5], in 2004,

proposed a method of depth estimation using 2D gradients applied to subsets of the light field

data. The application of these gradients allowed him to found the orientation of the planes and

thus, the depth of the scene. By using three color channels instead of a gray scale, he created

redundancy on his depth estimations, resolved using a weighted sum based on the confidence

(magnitude of the corresponding gradient vector) of each estimation. Areas where the depth

cannot be estimated were filled by applying region growing. His method turned out to be effective

even in the presence of occlusions.

Recently, there has been some development of this techniques, like multi-view stereo ap-
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proaches with Bishop and Favaro [3], where the depth estimation is done with some calibrated

images from a scene at different viewpoints. They start to extract images from the light field

data, in order to have suitable data for a multiview geometry. This extraction allows them to

obtain low-resolution views of the scene and, therefore, estimate their depth. However, plenoptic

cameras are not immune to spatial aliasing, which can result on depth estimation errors. The

method proposed by Bishop and Favaro tries to compensate the present aliasing, allowing them

to recover the depth map from the multiple views extracted from the 4D light field. Their method

produces good results, both on real or synthetic data.

Epipolar Plane Images (EPIs) are another approach to this depth estimation topic and can

be described as 2D slices of constant angular and spatial direction in the 4D light field data.

Wanner and Goldluecke [19] used the referred approach, starting to locally estimate the depth

of EPI images. Then, labeling the local estimations, they integrate them on global depth maps,

and, imposing spatial constraints, they are able to recover depth estimations that satisfy global

visibility constraints. They claim to obtain results that surpasses the ones from traditional

stereo-based methods and even the results from Raytrix, as they also test their method on

Raytrix datasets.

1.4 List of main contributions

The main contribution of this work is a novel approach used to achieve a virtual depth estimation,

where we can use the redundancy created by the fact that a single 3D point is imaged several

times by the main lens. This redundancy allows us to backtrace the light rays in order to estimate

the depth.

The main contribution is followed by a series of minor contributions that helps to reach the

goal of this work, as follows:

� Finding correspondences of the image points

Before we backtrace the light rays, we need to find correspondences of the image points,

which we do using the SAD method, but scaled in a way to obtain better results.

� Implementation of a COMSAC (Complete Sample Consensus) method to perform the sparse

depth map

4



We developed an iterative method to perform the referred backtrace, where we estimate

the depth of each point. This iterative method allows us to eliminate bad results (outliers)

and, consequently, produce robust results.

� Random growing of the sparse depth map

The final contribution is the random growing of the sparse depth map, where we analyze

a pixel without color information and use the intensity of neighboring pixels to fill the

referred pixel, transforming the sparse depth map into a complete dense depth map.

1.5 Structure of the thesis

In chapter 2, we present an overview on light fields and plenoptic cameras, like the image for-

mation model on a plenoptic camera or the difference between different types of these cameras,

providing the essential information to better understand these subjects. Chapter 3 has all the

information about the developed algorithms. We explain in detail our approach in order to obtain

the depth estimation. The obtained results and their discussion are presented in chapter 4. Our

work is concluded on chapter 5.
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Chapter 2

Light Fields and Plenoptic Cameras

In this chapter, we present the theory about light fields and plenoptic cameras. We start with a

theoretical background on light fields in order to introduce the concept of plenoptic cameras and

how they work. This chapter has all the vital information needed to understand both light fields

and plenoptic cameras, and the way they are related.

2.1 Light Fields

A light field can be described as a vector field that spans all the rays of light that travels in all

directions for every point in space.

It was mathematically formalized as a 7D plenoptic function, described as

l(u, v, x, y, z, λ, t) (2.1)

where x, y and z represents the coordinates of the 3D point, u and v represents the direction of

the light rays, λ represents the light wave length and t the time.

It is however very hard to measure the referred plenoptic function in a 3D scene, for every

locations at all times. Having that in mind, the plenoptic function was reformulated to a 4D one

[8, 9], where the observer stays in free space.

In terms of representing light fields, there are several configurations. The most common one

is the two-plane parameterization (see Fig. 2.1).

In this case, the 4D light field can be viewed as a set of pinhole images from different view-

points that are parallel to an ordinary image plane. Figure 2.2 represents the geometry to this

7



parameterization of the 4D light field.

Figure 2.1: Two-plane parameterization

Figure 2.2: 4D geometry

2.2 Plenoptic Cameras

Over the past 100 years, it has been studied ways to acquire the light field from real world scenes.

Devices like camera arrays, multi-plexing cameras and plenoptic cameras have been developed

in order to perform that acquisition.
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As stated before, in 1908, Lippmann [11] formalized the concept of plenoptic cameras, which

was improved during time. As these cameras are one of the main topics of this dissertation, we

need to understand them and how they work.

Plenoptic cameras are, as previously said, cameras able to capture the 4D light field of a

scene. This capture is done by placing a micro lens array between the main lens and the image

sensor. This micro lens array placement turns a standard camera into a 3D camera, with many

advantages and a wide range of applications, which we are going to present later in this chapter.

This topic has been improved in the last decade and we start now to see the first cam-

eras commercially available. Lytro� and Raytrix� are the most significant manufacturers, but

other companies are starting to join this list, like Pelican Imaging�, who was recently bought

by Nokia�, and has been developing plenoptic cameras small enough to be incorporated on

smartphones. Recently this year, Lytro presented Illum, a plenoptic camera for photography

enthusiasts.

(a) Raytrix R11 Camera (b) Lytro Camera

(c) Pelican Imaging Array camera (d) Lytro Illum

Figure 2.3: Different types of existing plenoptic cameras
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Despite Lytro’s popularity, mainly to its smaller price and simplicity, Raytrix cameras can

achieve a higher resolution due to their particular construction and are called multi-focus plenop-

tic cameras or plenoptic cameras 2.0. The first ones are denoted as standard plenoptic cameras

or plenoptic cameras 1.0.

In this dissertation, we give more attention to Raytrix cameras since they produce images

with better quality and higher resolution. Also, we have a Raytrix camera (at the Vision Lab of

Institute of Systems and Robotics of University of Coimbra) that we intend to use in the future,

to test our method.

2.2.1 Standard Camera Image Formation

Before we actually start to explain the image formation on plenoptic cameras, it is important to

revise the image formation on standard cameras.

On a standard camera, and ideally, the main lens generate an image of a point by gathering

the whole cone of light that emanate from that point and refocusing all the light rays gathered

to a single point on the image plane.

However, using lenses can lead to defocus. If the image plane (I in figure 2.4) is not at the

correct focal distance, as it happens in figure 2.4, the lens will not be able to focus the entire

cone of rays that passes through it, producing a blurred image of the point.

If a lens is sufficiently thin, we can calculate the distance between lens and the image plane

using the thins lens equation, expressed as follows:

1

a
+

1

b
=

1

f
(2.2)

In the previous equation, a represents the distance from the ”real-world” point to the lens,

b is the distance between the lens and the focal plane and f denotes the lens focal length. This

distances are measured parallel to the optical axis. If this equation is satisfied, we guarantee that

the projected point is in focus.
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Figure 2.4: Simplified model of image formation on a standard camera

2.2.2 Multi-Focus Plenoptic Cameras

As mentioned early in this chapter, Raytrix cameras have a different construction than Lytro’s

ones. They still have a CCD sensor and a main lens with a micro lenses array between them,

but with an improvement, since this array is composed by micro lenses with three different focal

distances, extending then the depth of field (DOF). This is why they are called multi-focus

plenoptic cameras.

In a light field camera, the main lens generate an intermediate image somewhere behind it.

It can be a real main lens image or a virtual one, in the sense that the formation of the image

happens behind the image plane. Let us denote a 3D point in the scene as (3D)p and the virtual

point projected by the main lens as (ν)p. We can assume, without loss of generality, and for a

simple model, that the virtual point is projected between the main lens and the micro lens array.

Perwaß and Wietzke [14] mentioned that the main lens focal plane depends on the main lens

itself and its focal properties. For virtual images formed behind the CCD sensor, and accordingly

to authors, the only consequence is the negative value of virtual depth.

As we are able to see in figure 2.5, the exact placement of the optical devices is important to

understand the image formation. So, the system parameters are:
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Figure 2.5: Image formation on a plenoptic camera

� DL - aperture of the main lens

� D - aperture of the micro lenses

� BL - distance from the main lens and the image plane

� B - distance from the array of micro lenses to the image plane (CCD sensor)

� f - focal length of the micro lenses

We can establish a relation between the ”real world” point and the virtual one (projected by

the main lens), which is given by the thin lens equation (2.2). However, as this relation is straight-

forward, our focus is on estimating the virtual point and hence in developing a computational

method to estimate the virtual depth.

In order to design the relation between the main lens and the micro lenses (in terms of optical

properties), we need to first define the f-number. The f-number of an optical system is thus the

ratio of the focal length of a lens to the diameter of that same lens (it should be noticed that

this diameter is variable and it is called, in photography, aperture).
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So, in order to use the image sensor as much as possible, the f-number of micro lenses should

match the f-number of the main lens to avoid that micro image overlaps or the existence of gaps

between neighboring images [14].

So, this f-number matching can be expressed as:

B

D
≈ BL

DL

(2.3)

This relation implies that the design of the main lens is fixed by the design of micro lenses. It

also means that the micro images will touch each other and not overlap, which is what we want.

Since we have a two-dimensional array of micro lenses, its design needs to be defined as the

micro lenses can be placed in an orthogonal or hexagonal grid. As we can see in Figure 2.6,

the hexagonal grid is the one that allows to achieve the maximum usage of the sensor, since it

minimizes the gaps between the micro lenses. Thus, Raytrix chooses the hexagonal grid in the

construction of their cameras.

(a) Orthogonal grid (b) Hexagonal grid

Figure 2.6: Micro lens projection cones in a 2D configuration

The location of the micro lens array will also determine the number of micro lenses that will

project a virtual point onto the image plane. Perwass and Wietzke [14] showed that, when the

image plane dists B from the micro lenses array, every virtual point is projected at least one

time to the image. This plane is therefore called TCP (Total Covering Plane). Similarly, when
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this distance increase to 2B, every virtual point is imaged by at least two micro lenses, in which

case the plane is called Double Covering Plane. Since depth estimation is only possible at that

double covering plane (or at higher distances), the complete design of a plenoptic camera places

the micro lens array at exactly 2B distance from the CCD sensor.

We now have a multi-focus plenoptic camera fully designed and configured. So, the projection

of a virtual point (ν)p to its image points (ik)p is made by all three types of micro lens, each type

with different depth of field, and focusing different planes.

2.2.3 Virtual Depth

Since our main goal is to estimate the virtual depth of a scene, we need to formally define this

concept. Like Perwaß and Wietzke stated in [14], virtual depth is the ratio of the distance

between the micro lens array and the virtual point (a in figure 2.5) and the distance between the

micro lens array and the image plane (B).

We thus have ν = a/B.

For a better understanding of this concept, virtual depth is the number of B times that the

virtual point is far from the micro lens array. Keep in mind that the double covering plane,

mentioned in the previous section, is the locus of points with ν = 2, which means that every

point in that plane is imaged at least by two micro lenses.

Thus, points with virtual depth equal to 3 are imaged at least by 3 micro lenses and so forth.

2.2.4 Differences Between Standard and Multi-Focus Plenoptic Cam-

eras

As stated before in this dissertation, there are standard plenoptic cameras and there are multi-

focus plenoptic cameras, being Lytro and Raytrix the main examples, respectively.

On a standard plenoptic camera, like the one proposed by Ng et al. [13], the distance between

the micro lens array and the image plane equals the focal length of micro lenses (f = B). This

case has one major limitation like the low resolution of the images. So, to increase the image

resolution, the number of micro lenses need to be increased too in the same amount, which not

always is viable. However, it is simpler to obtain an all-in-focus image in standard plenoptic
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cameras than in multi-focus ones. To synthesize an image, only one pixel from each micro image

at the same relative position to the respective micro lens center is taken into account.

Regarding the limitation on image resolutions, Lumsdaine and Georgiev, in 2006, introduced

a new design of a plenoptic camera, a focused plenoptic camera or plenoptics 2.0, like the ones

Raytrix produces.

In this new design, the focal plane is not the same as micro lens array (f 6= B), which gives a

larger depth in which the micro images appear focused. Combining this new design with micro

lenses of different focal lengths, it is better since it allows a better compromise between a higher

effective resolution and the size of depth of field, resulting in higher resolution images.

2.2.5 Applications, Advantages and Disadvantages

A plenoptic camera can be viewed as a single 3D camera that allows the user to perform some

post-processing.

They have a wide range of applications like stereo [20], video [17], depth map estimation or

3D shape recovery [3, 19, 21].

Robotics are making use of these cameras on robotic navigation [6] and recently, plenoptic

cameras were also applied to microscopy in the conception of a 3D microscope [10].

Depth map estimation is obviously an application to these cameras, which leads to other ones,

like quality inspection.

However, photography is the area with the most popular applications. We can obtain the

depth of a scene, all-in-focus images, super resolution and some advanced post-processing, where

the user is able to digitally change the focus and the point of view after the picture has been

taken.

The astonishing growing on digital photography and the referred applications for plenoptic

cameras lead to a consumer market that is ready and anxious to embrace these systems, however,

the prices of these optical systems are the main setback. To the commercial market, this is still

a disadvantage. Nevertheless, the technology behind plenoptic cameras needs to be improved in

order to reduce the prices of these systems.

On the other hand, plenoptic cameras are robust (when compared with stereo pairs of cameras,

for instance), since we only have one camera and one main lens. Another advantage is the fact
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that we do not need to synchronize multiple cameras in order to obtain a plenoptic function.

These are great accomplishments that can change photography and computer vision the way

we know them.
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Chapter 3

Algorithms

In this chapter, it will be presented the developed algorithms in order to obtain the depth

estimation. It should be noticed that computational efficiency wasn’t one of our main concerns.

The developed methods are applied to a raw image present in a publicly available data set from

Raytrix�1 and we can divide them in 3 major categories: pre-processing, point set virtual depth

estimation and depth recovery.

The work was developed on a Linux environment, using C and C++ languages and OpenCV.

3.1 Pre-Processing

In this section, we will explain the necessary steps to perform before we actually start estimating

the depth, which is to find all the micro lenses centers and their types and find a suitable point

cloud to analyze.

3.1.1 Finding micro lens centers and their types

The first thing to do, in this step, is to find the center coordinates of the central type 1 micro lens,

which we are able to do by analyzing the calibration data file generated after taking a picture

using a Ratrix� camera. In our case, since we are using public datasets available, we just analyze

1The dataset contains all files generated after the capture of an image using a Raytrix camera, such as raw

images, depth images (grayscale and color), all-in-focus image, an image containing a 3D view and calibration

data. It is available in: http://www.raytrix.de/index.php/Research.html
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Figure 3.1: Raw image from the Watch dataset provided by Raytrix

the data they provide.

The referred central micro lens center is obtained by adding a vector present in the referred

calibration data to the image center. Then, since we know the micro lens diameter, we are able

to find the first micro lens in the same line as the central one. We need to refer that this method

works when the rotation of the image is zero (or approximately). When the rotation is different

than zero, we need to previously perform some axis alignment in order to use it. Using another

vector present in the calibration data, we can obtain the first micro lens center in the image. To

make this process simpler, we only consider complete micro lenses.

Having all the complete micro lens centers, we created an associative array to help us to iden-

tify the micro lens, which will be necessary later. Each one of the micro lens has an identification

number, but has too an associative code, which allows us to better identify them. This array is

filled based on the following formula:

Associative Code = (y coordinate of center ∗ image width) + x coordinate of center (3.1)

The use of an associative array to identify a micro lens center is faster, and therefore advan-
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tageous, than other techniques (e.g. calculating the distance of a point to all micro lens centers)

because it allows us to identify a micro lens center by only comparing two associative keys, which

means we only perform a single sweep of the associative array.

3.1.2 Obtaining a 2D Point set

In order to estimate the depth map, we need a point set to analyze. We need points that are

visually recognized (with sufficient texture detail), which we denote as salient points. It is more

difficult to achieve a depth estimation on points with less texture and that’s why this is a key step

on the algorithm. It is obvious that we want as many points as possible, but we need to avoid

wrong correspondences that can produce bad results and therefore, a bad depth estimation.

The point set is obtained using the SIFT descriptor. This method allows us to obtain the most

significant points like corners, edges and contrast points, only by adjusting some parameters, like

edge and contrast thresholds.

We choose this method because it is fast and produces good results, comparing to other

methods available.

3.2 Point set depth estimation

Since we now have a suitable point set, we can start to process it in order to estimate the depth.

This estimation can be divided in 3 minor steps, which are the identification of the micro lens

where the point resides, finding the correspondences of that point and, finally, the actual virtual

depth estimation, where we developed a COMSAC method to eliminate points that leads to bad

estimations.

3.2.1 Finding in which micro lens the point is

To identify to which micro lens the point belongs, the first step to do is a projection of the point

to the line of centers below the point (see Fig. 3.2). Then, we calculate the associative value of

the projected point (using equation 3.1) so we can search the associative array of micro lenses

to find out the values right after and before of the projected point, and, therefore, the respective

micro lenses center.
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This method allow us to achieve the identification of the micro lens to which the point belongs

without computing many distances that are computationally expensive.

Figure 3.2: Projection of the point

The next step is to find out the micro lens center in the line above those two we just discovered.

Since we know how many horizontal micro lens we have in a single line, it is easy to find the

referred micro lens center.

Figure 3.3: The three possible micro lenses and the detected one on blue

By now, we have 3 different micro lenses (and their respective centers) and we need to identify

which one of them is the one that contains the point. This can be achieved by simply calculating

the distance of the point obtained by the SIFT method to each one of the 3 micro lenses centers.

The minimum distance tells us which micro lens contains the point.
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3.2.2 Finding correspondences

The step of finding correspondences is automatic and consists on searching for the salient point

in the neighboring micro lens images. It should be noticed that our searching profile is different

from Raytrix. As we can see on Fig. 3.4, we use the surrounding micro images instead of a

sequence of 10 micro lens to the right of the salient point.

(a) Our search profile (b) Raytrix search profile

Figure 3.4: Searching profiles for correspondences of a given salient point.

Perwaß and Wietzke stated, in [14], that a point is imaged more and more times as the

virtual depth increases. This leads to the existence of multiple searching profiles for finding

correspondences. Our profile, as seen in figure 3.4(a), highlights the surrounding micro images

from the micro lenses detected. However, we intend to test other profiles, as future work. For

instance, we intend to use a profile where we search for correspondences on microlens that dists

two diameters from the detected micro lens.

To find a correspondence we need to select the micro lens where the salient point is and

another one from the searching profile. Then, given those two micro lenses, we use the sum of

absolute differences (SAD) of a shifting window along the epipolar lines of the selected pair of

lenses. Since the micro lenses are in a fronto-parallel configuration, the epipolar lines are parallel

to the baseline, which is the line that intersects both micro lens centers, assuming to be the

principal points.

However, when we talk about subpixel resolution, a small deviation can cause the missing of

a correct correspondence. To overcome this situation, we search for correspondences in a band

around the epipolar lines, as illustrated in Fig. 3.5.

21



Figure 3.5: The epipolar band where we search for correspondences

In order to obtain robust results, we introduced another improvement in which we scaled the

SAD by the number of pixels that lie inside the shifting window. We did it because it happens

very often that the correct correspondence is very close to the micro lens border. So, to avoid

rejecting this points and use only the part of the window that really contributes to the SAD, we

must scale it by the number of pixels that actually belong to both window and micro lens.

We denote this new value as mean absolute difference (MAD), expressed as follows:

MAD =
SAD

number of pixels inside image
(3.2)

Our main goal, as stated, is to achieve a fully automatic algorithm, so we need to be aware

of every situation that could happen on an image. Having that in mind, we also need to fulfill

salient points with different scales of intensity. The best example that can illustrate this situation

is the case of a dark point on a bright zone, or even the total opposite.

The need of a threshold to reject automatically some of the correspondences is vital and we

need to be able to tune it for the entire image. So, we defined another measurement by doing

another scaling, this time to the MAD. In this case, we divide it by the difference between the

value of the central pixel of the SAD window and the mean value of the micro lens where the

salient point is. The referred scaling factor is denoted by µ, while the final value is called MRD

(Minimum Relative Difference).

MRD =
MAD

µ
(3.3)
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(a) Dark point on bright zone (b) Bright point on dark zone

Figure 3.6: Salient points with different surrounding intensities

After searching the whole band, we can establish the correspondence point as the one with

the smallest value of MRD, ensuring that it is below a threshold.

Using only the SAD method without any scaling did not produce the best results. This hap-

pened because, sometimes, we had to search for correspondences on areas without considerable

different levels of intensity, which easily leads to bad correspondences. The fact that we are

searching for correspondences on a micro lens, which is circular, did not help either, since the

shifting window used to search for them is square and we could be using information from outside

of the micro lens. So, regarding this limitations, we had to perform the explained scaling to the

SAD in order to obtain better results, which we did.

3.2.3 Virtual Depth Estimation

Now that we have the correspondences for each point of the point set, we can estimate the

virtual depth using the redundancy present in the image. We decided to recover the depth by

back tracing the rays that comes from micro images and intersecting them to obtain the virtual

point. The profile we use to find correspondences may obtain up to 6 correspondences for a single

salient point, resulting on an intersection of seven back traced rays in space.

To eliminate points that could lead to bad results, we developed a COMSAC method (inspired

in RANSAC) in order to robustly obtain the virtual depth. Points with a small number of
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correspondences are more error prune, so that’s why we only consider points to apply this method

with two or more correspondences.

This method consists on a series of seven steps, which we present in detail, for a better

understanding.

� Step 1 - Selection of a subset of three lines

This step is really simple, as we only select the first three lines of the model to estimate

the 3D virtual point.

� Step 2 - Estimation of the 3D virtual point

The main goal of this step is to estimate the 3D virtual point. In order to obtain the

referred point, we group the three lines considered in the previous step two by two, and

we search for the point that minimizes the distance between those lines [7]. Since we are

talking about lines in space, we cannot do a simple intersection of them, as they can be

skewed lines. Selecting three lines, we are able to make three different combinations with

them, which leads to three 3D points. In order to estimate the final 3D point, we use the

median of their coordinates.

� Step 3 - Testing the model

Having an hypothetical 3D point, obtained in the previous step, we now need to test the

hypothesis for this virtual point. The chosen error measurement is the distance of the

virtual point to all the correspondence lines obtained in the previous step.

� Step 4 - Assessment of the model

In this step, we establish a threshold so we can distinguish the good from the bad results,

allowing us to assume which lines are suitable to add to the model. If the distances of the

3D point to every single one of the correspondence lines is below the referred threshold, we

can label that line as an inlier, since it passes close enough to the 3D point. If not, it is

considered and outlier and it is discarded from the model.

We are able now to classify the chosen model, based on the number of inliers and outliers.

If there is more than one outlier in the model, the model is discarded and we go back to

Step 1 and test another combination of lines. If not, we advance to the next step, since

we can consider it an usable model.
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� Step 5 - Re-estimation of the 3D virtual point

The idea on this step is similar to the one in Step 2, since we do another estimation of the

3D virtual point. But there is a slightly difference to Step 2. In that step, we considered

three random lines. But now, the lines considered are the ones labeled as inliers in the

previous step. So, in order to estimate the new 3D virtual point, we group lines two by

two and repeat the process of finding the point that minimizes the distance between them

as many times as possible combinations of inliers, which will lead to several 3D points.

Finally, the new 3D virtual point is obtained by computing the median of the coordinates

of the previously referred 3D points.

� Step 6 - Error metrics

In this step, we evaluate the model in terms of error. It is a mean error, and it is the sum

of the inliers distances obtained in Step 3 divided by the number of inliers.

� Step 7 - Repeat steps 1-6

Now that we have the error of the model, we start over the process and repeat steps 1 to

6 as many times as possible combinations between the correspondence lines.

This COMSAC method is done for each one of the salient points, and we analyze every error

model. In order to obtain robust results, we need to define another quality threshold for the error

model. The 3D point considered to the virtual depth is thus the one returned by this method

with minimum error, regarding that it is below the referred threshold.

For instance, a salient point with 6 correspondences can lead up to 35 models, which means

35 different 3D virtual points. Since this method returns the model with the minimum error, we

can assume that the respective 3D virtual point is the correct one.

After analyzing the entire point set, we are able to obtain each respective 3D point and,

consequently, the virtual depth map.

3.3 Depth Recovery

In this section, we will present the developed method to densify the sparse depth map and create

the final depth image. It is the process of transforming a sparse 3D point cloud into a dense
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2D map. We developed this method using a random approach, where we pick a random point

without depth (intensity) information and estimate its depth considering the surrounding points.

The densification of sparse point clouds is a topic that is intensively studied, due to its

importance on 3D reconstructions or depth estimations. In the majority of the cases, the depth

maps obtained are sparse and it is vital that they become dense, in order to completely estimate

the depth of a scene, for instance. There are several methods that have been developed and

improved in order to perform this densification. We can highlight region growing methods, an

iterative process that begins to select seed points and then analyze the neighboring pixels in

order to decide their inclusion on the selected region. However, due to the lack of time to explore

solutions of densification sparse maps, we developed an heuristic method of random growing that

produced good results.

For a better understanding of the developed method, we can divide it in two major steps.

The first one is the processing of the sparse data, where we make the adequate adjustments to

use it on the second step, which is the random growing of the point cloud.

Since it is hard to perform a random growing of an image with the original raw size (it

would lead to an heavy computational time), we start the processing step by creating an image

downsampled 8 times from the raw image. Then, we scale the x and y coordinates of the virtual

points from the sparse depth map to the new image. This leads to information loss, as some

points can overlap, however, it is not a major concern (as proved by our experiments).

The depth values (z coordinate) from the sparse point cloud obtained in the previous section

are also mapped, but this time they are mapped to values between 123 and 255, representing

the grayscale intensity of the mapped points. Filling the image with the mapped information,

we obtain a representation of the 2D sparse depth map (see figure 4.7), where we can already

perceive some of the depth.

Finally, we create a list of the pixel coordinates from the partially filled image without depth

information.

To perform the random growing, we pick a random point without depth information previously

stored. Then, and defining a 3 by 3 window, we analyze the 8 surrounding pixels. To fill the

random point, we must assure that half of the window has depth information. If this condition

is satisfied, we compute the median of those values, which becomes the intensity of the randomly

picked point. If not, we randomly pick another point to analyze.
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If a point is filled with depth information, we remove it from the list of points without depth

information and we pick another point from it to analyze.

This process is repeated until the whole image has depth (color) information, which leads to

a totally filled gray level depth image - a dense depth map (Figure 4.8).

We need to reinforce the idea that computational efficiency was not our main concern, which

means that there may exist methods with better efficiency, but this random growing method

produced good results, for a first approach.
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Chapter 4

Results

In this chapter, we present the obtained results of our depth estimation method as well as a brief

discussion of them.

In order to test the method, we used a dataset from Raytrix that is publicly available. The

dataset has all the files generated after the capture of an image using a Raytrix camera. Using the

dataset, we have access to the raw image, depth images and also to the calibration data, which

means we have the necessary parameters to develop our work, such as the micro lens diameter,

the distance between micro lenses of the same type, and so many others.

Using a dataset from Raytrix is important since it allows us to compare our results with the

ones they provide.

We developed our work using the Watch dataset. It presents an image with a watch in the

background, between two heavily textured planes and also a sloped plane in the ground where

we can see four upside-down screws at different distances from the observer. It is an interesting

image to depth estimation purposes, since the objects in the image are at different distances,

which is good to depth perception. We can also notice the loss of texture and blur increasing on

the ground plane as it comes closer to the observer.

We will present the results in the same way we presented the developed algorithms, dividing

them in three categories, so we get a better understanding and also a better organization.
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4.1 Pre-Processing

The first relevant result to be presented is the salient point set obtained using the SIFT method.

Figure 4.1 shows the 2D point set obtained marked in the raw image.

Figure 4.1: 2D point set obtained with the SIFT method

In order to obtain a different amount of points, SIFT parameters need to be tuned. As we

can see in the figure 4.1, we manipulated them so we could find a trade-off between the amount

of points and their location, only to cover the majority of the image, which we did.
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The SIFT method returned a large amount of points (almost 400000), which turned to be

enough to obtain the sparse depth map.

Analyzing the obtained results, they were satisfactory, since we have a great amount of points

at lower computational time. Thus, we can say that SIFT method is fast and it has almost no

impact on the performance of the developed algorithm.

4.2 Sparse Depth Map

Having now the point set to analyze, it is time to analyze the results about the sparse depth map

estimation.

Before we present the depth results, it is important to show some results obtained during the

method, like the process of finding correspondences.

Figure 4.2 shows some correspondences found and how we print them in the image (marked

in red). The presented correspondences are examples of good ones, but there are points where

the task of finding correspondences is harder. However, and following what has been said in

section 3.2.2, all the scaling done to the SAD helps us in this process.

As stated before, we choose only to process points with two or more correspondences, as we

get the sufficient redundancy to process and apply the COMSAC method.

The presented result in figure 4.3 is the representation of all correspondences found for each

salient point detected. Doing a brief analysis to some points, like we did in figure 4.2 it is the

best way to analyze the results, however, even with the overlap of data, our results appear to be

reasonable.

Despite the good results produced by the developed method of finding correspondences, the

method is not immune to errors. Bad correspondences can lead to bad depth estimations, which

is why we need to apply the COMSAC method, in order to eliminate them and obtain robust

results.

The results obtained after applying that method are presented in figures 4.4, 4.5 and 4.6.

They are the representation of the results at different views, allowing us to do a better analysis.
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(a) Two correspondences (b) Five correspondences

(c) Six correspondences

Figure 4.2: Examples of correspondences found for some points
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Figure 4.3: All correspondences found

Figure 4.4: Frontal view
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Figure 4.5: Top view
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Figure 4.6: Lateral oblique view

To analyze the obtained results, we will consider the frontal view, as it is the best one. The

depth is clearly visible in the figure, with the color map helping us to have a perception of the

depth. Comparing the point cloud depth estimation with figure 4.1, it is possible to spot some

similarities. The most visible one is the depth differences between the four screws, but there are

some other examples, like the watch, which we know that it is the object with the most distance

from the observer, with figure 4.1 corroborating that fact.

Despite we cannot guarantee the correctness of Raytrix’s results, as they are also estimated

from the raw image, we still consider them as the reference results. So, in order to measure the

difference between the results, we compared our depth values with their values. Their depth

values were obtained from the depth image available in the dataset. Since the values are 16 bit

values, we need to divide the pixel value by 65535, resulting in a normalized value. Then, we

compute the virtual depth based on the following formula:

ν =
1

1− p
(4.1)
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where ν is the virtual depth value and p the normalized pixel value.

Since virtual depth is the ratio of the distance between the micro lens array and the virtual

point and the distance between the micro lens array and the image plane, we were also able to

estimate our virtual depth values.

We obtained a mean error of 11%, which we consider good and allows us to believe that the

deviation between our depth and the reference depth is not high.

4.3 Dense Depth Map

The final part of the developed method is to transform the sparse depth map into a dense depth

map. Figures 4.7 to 4.12 illustrate the process.

Figure 4.11 shows the color depth map. Doing an analysis of the obtained results by comparing

them to Raytrix ones (see Figures 4.10 and 4.12), we conclued that our method of region growing

produces good results, despite the presence of discrepancies. However, the greatest limitation of

this method is the computational time. For instance, to build an image with a 400x300 resolution,

it take approximately 6 minutes. The problem is that, for bigger images, the time it takes to fill

the image increases dramatically. If we try to fill a 800x600 image, the method takes, at least, a

couple of hours before ending. This happens because the random picking of points becomes less

efficient over time. However, we highlight the fact that the efficiency of our algorithms is not our

main concern.
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Figure 4.7: Sparse virtual depth estimation

Figure 4.8: Dense virtual depth estimation

37



Figure 4.9: Dense virtual depth estimation with a median filter

Figure 4.10: Raytrix depth estimation
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Figure 4.11: Dense virtual depth estimation with a color map

Figure 4.12: Raytrix depth estimation with the same color map
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4.4 Other Datasets

To understand how well our depth estimation method works and it limitations, we applied the

developed method to another dataset. This time, we choose the Andrea dataset, which is com-

posed by a face capture. This image is harder to process due to the lack of texture on the skin,

being a great challenge to our method.

Figure 4.13: Raw image from the Andrea dataset
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Figure 4.14: Frontal view

Figure 4.15: Top view
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Figure 4.16: Lateral oblique view
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(a) 8 bits (b) 16 bits

Figure 4.17: Sparse virtual depth estimation

(a) 8 bits (b) 16 bits

Figure 4.18: Dense virtual depth estimation
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(a) 8 bits (b) 16 bits

Figure 4.19: Dense virtual depth estimation with a median filter

Figure 4.20: Raytrix depth estimation
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(a) 8 bits (b) 16 bits

Figure 4.21: Dense virtual depth estimation with a color map

Figure 4.22: Raytrix depth estimation with the same color map
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As stated before, the lack of texture poses as one of the biggest challenges to our method.

The results of our method applied to the Andrea dataset are presented from figure 4.14 to 4.22.

The application of the Andrea dataset to the developed method turned out to be an excellent

way to test our method, due to the results produced. It is presented, in figure 4.14, the frontal

view of the sparse depth map. We obtained a significant mesh of points - more than 159.000

- which was vital to obtain good results. Analyzing the referred figure, we can perceive the

difference of depths, but not as much as in the Watch dataset. The chin and the nose are clearly

closer than the eyes or the forehead, however, in areas like hair, where it is lacking information,

the perception of depth is not as good as that.

In a general way, the obtained results to the sparse depth map are good, in which we obtained

a relative error of 8%, comparing the difference between the virtual depth obtained and the

corresponding virtual depth in the Raytrix image.

The process of transforming the sparse depth map into a dense depth map also produced

satisfactory results. Figure 4.21 is the representation of the dense depth map and the different

depths obtained are consistent with the theoretical assumptions. For instance, the nose and the

chin are closer than the forehead, which makes sense.

We can see the similarities between the obtained color depth map and the one provided by

Raytrix (see Figure 4.22), being the chin and the nose the most perceptive cases of similarity.

The remaining zones are similar too, but the lack of textured points leads to bigger areas with

the same intensity, which is something that we can observe on both figures.

However, analyzing the whole color depth map from Raytrix, we are able to perceive some

artifacts in the image, especially outside of the face zone, which makes us to believe that they

also had difficulties to estimate the depth on that areas, due to the referred lack of salient points

to process. It is also important to mention that the color maps used in both images are different,

despite the similar tonalities. However, we can clearly see the similarities between our results

and Raytrix results.

In a brief review, the good results obtained in both datasets (Andrea and Watch) makes us

believe that we developed a quality and consistent method.
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Chapter 5

Conclusions

Plenoptic cameras are definitively a theme to be followed. The fact that these cameras are able

to acquire the plenoptic function and then use the redundancy created by a single 3D point

being imaged several times makes them useful cameras to several applications like photography,

robotics or microscopy. Depth estimation or the ability of refocusing an image after it has been

taken are probably the most appreciated features of these type of cameras.

In this dissertation, we presented a novel approach to perform a depth estimation from a raw

image captured by a multi-focus plenoptic camera. It is not a fully automatic algorithm, since

one threshold cannot be automatically tuned, however, it is able to fully automatically search for

salient points and find their correspondences. They allow the algorithm to back trace the light

rays that come from the micro lens image and intersect them in the virtual space, which is where a

”real world” 3D point is imaged by the main lens of a plenoptic camera. However, as some found

correspondences are affected by noise, producing bad results, we developed a COMSAC method

to obtain robust results, eliminating the outliers and producing a sparse depth map. Since the

density of the salient point cloud is high enough, the algorithm is also able to transform the

sparse depth map into a complete dense depth map, by performing a random growing.

The developed algorithm was tested using a dataset from Raytrix that is publicly available,

and the obtained results were good, as different objects and their depth can be identified. We

were able to find similarities on the results, when compared to Raytrix ones, which makes us

believe that our method is good and consistent, as we also tested our method on a different and

challenging dataset. As stated before, the algorithm to depth estimation from Raytrix is not

publicly available, which lead to a process of reverse engineering in order to develop our own
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method.

However, and despite what has been said about the concern on the efficiency of the algorithms,

the computational time is the most important and noticeable limitation. With the increased

computational power and all the parallel processing techniques, we want good results but as

fast as possible. Real time, if possible. Graphic cards are an excellent example that may help

to overcome the time limitation, as they already have their own processing units, called GPUs,

specialized in graphics processing, being CUDA, from Nvidia, the main example on this parallel

processing techniques. However, the first improvement it has to be done at the implementation

level. During the development of the depth estimation method, the efficiency of the algorithm

was taking in consideration (despite not being the main concern), as we were always trying to

produce code in the most efficient way possible.

In summary, the developed method can and should be improved. Not only at a programming

level (parallel programming, for instance) but also on a processing level, with the use of CUDA

devices being one of the most used methods to improve the speed of algorithms.

As future work, and obviously considering the improvement of the algorithm as it, we intend

to make this a fully automatic method. We also intend to enhance our algorithm by augmenting

the number of searching profiles, as different profiles produces different results. Additionally, we

want to use our depth map in order to synthesize an all-in-focus image.

Finally, we want to port our method to standard plenoptic cameras, like the Lytro ones. This

requires some modifications on the algorithm, but it is a work that we think that has do be done.
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